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Abstract

With the advent of mobile and handheld devices, power consumption

in embedded systems has become a key design issue. Recently, it has

been shown that cache requirements of the applications vary widely and a

significant amount of energy can be saved by tuning the cache parameters

according to the needs of the application. To this end, techniques have

been proposed to tune the cache for single-task based systems but no work

has been done to extend these techniques to multitasking applications. In

this research work, we present novel, lightweight and fast techniques for

energy-sensitive tuning of the instruction cache hierarchy for multitasking

applications. Cache tuning for RTOS-driven multitasking applications is

achieved by intelligently separating the user tasks and RTOS components

and profiling them in isolation to identify the nature of loops in them.

We then apply the proposed techniques to tune a predictor based filter

cache hierarchy for instructions for both single-task based applications

and RTOS-driven multitasking applications. The proposed techniques

are able to identify optimal or near-optimal filter and L1 cache sizes for

all the applications tested and are up to an order of magnitude faster

than exhaustive cache hierarchy simulation techniques. The proposed

techniques are also highly scalable and can be relied upon to predict the

instruction cache hit rate for any range of instruction cache sizes after a

one-time simulation and profiling.

1 Introduction

Loop profiling enabled cache tuning has been shown to achieve considerable
energy savings for standalone embedded applications. While such loop profil-
ing techniques work well for stand-alone applications, there has been no work
done to extend them to multitasking systems running on a real-time operating
system. The challenge in applying loop profiling algorithms to tuning multi-
tasking systems lies in the inherent pseudo-random nature of control flow in
multitasking systems. In a stand-alone application or single-task-based appli-
cation, there is no sharing of system resources like processor, memory, I/O, etc.
In such systems, the functions that need to be performed by the stand-alone
application proceed without interruptions because it is the sole master of all
resources available to it. However, in a multi-task based system, tasks com-
pete with each other for system resources and end-up pre-empting each other
as a result of mutual competition. This pre-emption makes the control flow of
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multitasking systems pseudo-random and prohibits direct extension of loop pro-
filing techniques developed for stand-alone applications to include multitasking
systems.

With the increasing complexity of modern day embedded applications, RTOS
based multitasking systems are fast becoming the norm. There exists a need
to extend existing cache tuning techniques developed for standalone embedded
applications to multitasking systems. In this paper, we present a framework for
energy centric-tuning of the instruction cache for embedded multitasking appli-
cations. Our framework is built upon an analysis of control flow of multitasking
system and how the pseudo-random flow of control affects execution of loops
and consequently, the size of the optimal cache for the multitasking application.
We validate our proposed techniques by using it to tune a predictor based fil-
ter cache hierarchy for instructions. For all the multitasking programs tested,
our techniques are able to successfully predict configurations that are optimal
or near-optimal. The proposed methods are also able to achieve speed-ups of
up to an order of magnitude compared to exhaustive design space exploration
techniques.

The rest of the paper is organized as follows. We discuss tunable cache
memories and techniques for tuning the cache parameters in section 2. The
cache tuning heuristics that we use in this work for the predictor-based filter
cache hierarchy are presented in section 3. In section 4, we analyze the nature
of control flow in multitasking application and comment on its determinism.
We show that the control flow in multitasking systems is part deterministic
and part non-deterministic resulting in a pseudo-random flow. We discuss the
impact of this pseudo-random control flow on cache accesses in section 5. We
show that the pseudo-random control flow results in two kinds of misses - misses
due to instructions of the same tasks or intrinsic interference and misses due to
competition between different tasks to occupy the instruction cache or extrinsic
interference. We show that misses due to intrinsic interference are much lesser
as compared to extrinsic interference through empirical experiments and explain
the observation theoretically as well. Based on our observations on the relative
impacts of intrinsic and extrinsic cache misses, we propose our tuning framework
in section 6. We present our experimental results on instruction cache tuning
for multitasking systems in section 7. We present a method to estimate the
number of extrinsic instruction cache misses in section 8 and conclude the paper
in section 9.

2 Application-specific tuning of cache memories

Cache requirements of applications vary widely [41]. Some may need a larger
cache for the best performance while others may need to save on energy and
it may be reasonable to use a smaller cache for such applications. When it
comes to block sizes too, the amount of spatial locality may be different in
different applications and using a one-size-fits-all approach may not be ideal.
Tuning cache parameters in an application specific manner has been shown to
aid in considerable savings in energy and improvement in performance [29][40].
With these requirements in mind, configurable or tunable cache memories were
proposed to tweak cache parameters in an application specific manner. In this
section, we discuss tunable cache memories and also present techniques proposed
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in the literature for application-specific cache tuning.

2.1 Tunable cache memories

The concept of configurable or tunable cache memories has been prevalent in
both softcore and hardcore processors. In softcore processors like Microblaze
and Nios II [3][38][27], the cache configuration is chosen at systhesis-time. On
the other hand, in hard-core processors [2][18][41] the cache is configured at run-
time. For soft-core processors, the user usually chooses a cache configuration
before systhesis and generates a customized cache. In hard-core processors,
the desired cache configuration can be obtained by initializing registers on the
chip that control muxtiplexers and the cache controllers using software code at
run-time.

Techniques have also been proposed in the literature wherein the cache ad-
justs its parameters automatically to the executing application. This is achieved
by observing special counters at run-time at regular intervals and efficiently ex-
ploring the configuration space to select the best cache configuration [40][12].
Such an approach is known as the self-tuning approach.

While self-tuning is a neat method for cache tuning, the infrastructure for
the special counters required in this method may not be always available. Even
if the infrastructure is available, the overheads associated the control circuit
may defeat the purpose of cache tuning. These problems are addressed by
one-shot software-reconfigurable tuning wherein optimal cache parameters for
the applications are determined statically and instructions are added to the
application to tune the cache at run-time.

2.2 Design space exploration for cache tuning

Cache tuning is usually achieved by obtaining cache hit rates for a variety of
cache configurations and then identifying the optimal cache configuration using
user-defined tuning heuristics as shown in figure 1. The first step in this process
is to obtain the hit/miss rates for a variety of cache configurations. In the
next step, the multitude of cache configurations for which the hit rate has been
measured using cache memory simulation or estimated using profiling is fed to a
cache energy-delay model database like CACTI [36]. CACTI is able to estimate
the energy per cache access and the delay per cache access for the input cache
configurations. The hit rates, per access energy and delay values are then used
to identify an optimal cache configuration using a set of user defined heuristics.
A common heuristic searches for a cache configuration that results in the lowest
energy consumption [12][31][41].

While the heuristics for selection of an optimal cache is based on system con-
straints and is left for the system designer to specify, there are many techniques
to measure or estimate cache hit/miss rates for multiple cache configurations.
The techniques for measuring the hit rates rely primarily on cache simulation
of the desired cache configuration by using the program trace as an input for
simulation. On the other hand, techniques to estimate the cache hit rates are
based on analyzing the locality in the programs either with the help of a com-
piler or through a profiler. The profiler is fed with runtime information about
the execution of the program and identifies potential zones of locality of ref-
erence in the application. In this sub-section, we discuss the various options
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Figure 1: Analytical cache tuning techniques for the filter cache hierarchy

available for design space exploration to identify optimal cache parameters for
an application.

2.2.1 Design space exploration using exhaustive cache simulation

In exhaustive techniques for cache tuning, simulation based search methods are
used to find optimal cache configurations. In such techniques, multiple cache
configurations are simulated to identify the optimal cache configuration. The
number of combinations that need to be searched in this approach is very large.
This entails simulating the application multiple times and can be prohibitively
time consuming even for small applications. Such brute-force search techniques
are ineffective in projects with time-to-market pressures.

Therefore, a significant amount of work has focussed on reducing the num-
ber of cache configurations that need to be examined to arrive at an optimal
configuration. Several tools do exist for assisting designers in tuning a single
level of cache. Platune[11] is a framework for tuning configurable system-on-
a-chip (SOC) platforms. Platune prunes the search space by isolating interde-
pendent parameters from independent parameters. However, cache parameters
like cache size, block size, associativity,etc being inter-dependent, are explored
exhaustively which makes this approach prohibitively time consuming.

Heuristic-based methods were proposed to prune the search space of the
configurable cache. A genetic algorithm was proposed in [22] to improve upon
the exhaustive search used in Platune to produce comparable results in less time.
Another technique was presented in [] wherein a cache configuration exploration
methodology wherein a cache exploration component searches configurations in
order of their impact on energy, which reduces the number of combinations that
need to be evaluated. Iterative heuristics were proposed in [39] so that near-
optimal cache configuration is reached without actually simulating the entire
configuration.
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2.2.2 Design space exploration using static control flow graphs

Optimizing compilers have long relied on analysis of program locality to detect
data reuse and estimate cache misses. The analysis of data dependencies and
reference patterns has been used in a variety of loop transformations to improve
locality of reference in the program and reduce accesses to the main memory.
Researchers have worked on numerous such re-ordering or transformation tech-
niques to improve the locality of reference in applications like loop interchange
[9][20], loop fusion/fission [20] and loop tiling [6][8][16].

In [20], a cost model was proposed to find desirable loop organizations by
computing both the spatial and temporal reuse of a cache line. The cost model
was shown to be highly effective in deriving loop structures that result in the
fewest number of accesses to the main memory. A technique to estimate con-
flict misses by linearizing array references and then evaluating the amount of
cache conflict resulting from memory references was presented in [24]. Cache
miss equations were presented in [10] to describe the cache performance of ap-
plications analytically. In this technique, deciding whether a reference causes a
hit or miss for a given iteration of a loop was equivalent to deciding whether it
belonged to a polyhedra defined by the cache miss equations.

Design space exploration using control flow graphs has low overheads because
it can be done at compile time without needing to run the application. However,
it is insensitive to loops whose boundary is known only at runtime and therefore,
offers inaccurate measures of locality for applications that contain such loops.

2.2.3 Design space exploration using runtime trace

Design space exploration techniques that have relied on the runtime trace gener-
ally focus on extracting features from the trace that quantify the level of locality
in the application. The techniques proposed in the literature rely on these ex-
tracted features to predict the hit/miss rates for a range of cache configurations.
One of the earliest of such techniques was proposed in [7]. In that work, it was
proposed that the miss rate of the cache size of C could be modeled by the equa-
tion MR(C) = C−α. The parameter α could be found based on the available
program trace. Based on the empirical model in [7], a fractal model of locality
was also proposed [28]. The argument put forth in [28] was that the sequence
of memory references represented a random walk through memory. The jumps
from one region of the memory to another are often short and occassionaly long.
It was shown that such a randon walk is a special case of fractals and therefore,
existing work in fractal theory can be relied upon to model the locality of the
trace. The miss rate for a cache of size C is modeled as MR(C) = ACθ in this
work. The different values for A and θ can be obtained using existing data.
These models were effective in shedding some light on the nature of locality
of the program. However, they focussed only on the cache size and were not
detailed enough to observe the effect of changing the block size and associativity
on the hit rate. Moreover, for the fractal model of locality, while the instruction
stream showed characteristics of a random walk necessary for a fractal model,
most of the data stream lacked this.

A detailed model for modeling temporal and spatial locality of the reference
stream after breaking the reference stream into time granules was proposed in
[1]. Apart from considering the cache size, the model also takes into account
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the block size, associativity and cold start effects. To estimate the miss rate,
this model has four locality parameters. The first parameter is the number of
unique references that are made in a time granule. The second parameter is the
collision rate of different cache blocks in the cache. The last two parameters are
inputs to a two-stage markov model for analysing the effect of block sizes on the
collision rate. The collision rate is derived from the number of unique references
and the inputs to the markov model using an expression. These input values to
the model are measured from the trace of the application. While this technique
offered a feasible way to model a variety of parameters affecting the miss rate,
the average error rate in miss rate estimation occasionally reached as high as 23
% for certain benchmarks and configurations. Measurement of locality based
on reuse distance, which is discussed subsequently, offered a solution to this
problem by reducing the maximum error rate to about 5 to 10 %.

The analysis of program locality based on reuse-distance analysis was ini-
tially proposed in [19]. In this technique, the number of distinct data accesses
are counted between two accesses to the same data element. After obtaining
information about the reuse distance for the data elements, the whole program
can be represented as histogram describing reuse distance distribution, where
each interval showing the portion of memory references which falls into the
same reuse distance range. This reuse distance information can then be used
to estimate the hit/miss rate for multiple cache sizes. While the reuse-distance
analysis offered a feasible technique to explore multiple cache sizes and offered
fairly accurate results when compared with other techniques, there were issues
with its scalability. The time complexity of a naive stack distance algorithm is
in the order of O(NM) where N is the length of the trace and M is the size of
the program data. The space complexity of the distance analysis data structure
is O(M) in this case. Indeed, this was the complexity reported in early research
work in this area [19]. As the size of programs increased, this complexity was
found unacceptable, therefore further research was done to deal with this and
an m-ary tree built on a vector was used for analysis in [4]. The same work also
showed how to use blocked-hashing in a pre-pass. The first tree-based organi-
zation of the data access trace using an AVL tree was discussed in [21]. In the
same work, techniques were also proposed to compress the trace vector used in
[4]. In [26], it was shown that a splay tree has better performance than an AVL
tree. Vector based techniques reduce the time complexity to O(NlogN) but the
space complexity remained very high at O(N). Tree-based techniques reduced
the time complexity to O(NlogM) with space complexity being O(M).

Relying on the program trace to determine a suitable cache configuration
was feasible as long as the program traces were small. The ever-increasing com-
plexity of modern-day applications forced researchers to investigate on efficient
program trace collections techniques. Some techniques were also reported to re-
duce the trace generated by the simulated application and/or simulate multiple
configurations in one go [14] [25]. To improve the simulation speed, techniques
were formulated to find approximate trace [15] or lossless trace reduction [23]
[35] [37].

2.2.4 Design space exploration using dynamic control flow graphs

Lately, cache tuning based on loop profiling has been shown to achieve signifi-
cant speed-up in the tuning process [33][30]. It relies on tuning the cache based
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on results from a one-time loop profiling of the weighted or dynamic control
flow graph (DCFG) of the application. DFCGs are edge-weighted versions of
the static control flow graph. The DCFG of an application can be obtained by
instrumenting the application with counters so that the frequency of a branch
can be obtained. Alternatively, a weighted control flow graph can also be ob-
tained by obseving the trace of the application and then deducing the frequency
of the edges.

Compared to the static control flow graph based design space exploration,
the dynamic control flow graph approach is more accurate as it contains runtime
information. The runtime information is useful in identifying the frequent code
segments like loops whose boundaries are known only at runtime. Identification
of frequent code segments is essential to calculating the working set size for the
program and then selecting a suitable cache for the application.

Compared to stack distance based techniques, the dynamic control flow
graph offers a faster and scalable solution. Building, maintaining and ana-
lyzing a dynamic control flow graph is simpler that computing locality based
on stack distance probabilities. Firstly, because the DCFG is at the basic block
level, it is simpler to obtain. When the edge weights are computed, it is just a
simple increment operation. For example, when a basic block is executed, only
a counter needs to be incremented to keep track of the execution frequencies.
However, for the stack distance method, the stack has to searched and the prob-
abilities updated for every reference made. This is more involved than building
the DCFG. On the flip side, due to a higher level of abstraction, the DCFG
based technique is not as accurate as stack distance based measures.

There are three steps in using DCFGs to obtain estimates for suitable cache
sizes for the application. First the application is simulated in an instruction set
simulator or the actual platform if available. After simulation, the DCFG is
available for further processing. Loop exploration algorithms are then applied
to obtain the frequent code segments in the application. In the final step, the
relative frequency of these loops and their size is taken into account in obtaining
an estimate for a suitable cache size for the application. The heuristics used for
selecting the cache size are usually defined by the designer and usually measures
for energy spent per access to the cache are used to identify an optimal cache
size.

3 Tuning Heuristics for Predictor Based Filter

Cache

To test our profiling techniques for mulitasking cache tuning, we chose the pre-
dictor based filter cache hierarchy as a testcase. This is a common solution for
low power cache hierarchies in the embedded systems domain. In this section,
we give an overview of the predictor based filter cache hierarchy and also discuss
energy-centric heuristics for tuning the same.

3.1 Predictor based filter cache hierarchy

The predictor based filter cache hierarchy, shown in figure 2, consists of a filter
cache in conjunction with an L1 instruction cache [32][34][30]. The filter cache
is a tiny auxiliary instruction cache whose purpose is to hold the instructions
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Figure 2: Predictor based filter cache hierarchy

of the many loops inherent in embedded applications. While these tiny loops
execute, access to the small filter cache reduces the energy expended in the cache
hierarchy. However, the filter cache could be a potential liability for larger loop
sizes as they cannot be contained in the small cache.

This is where the predictor becomes useful. Simply put, its role is to mini-
mize accesses to the filter cache when the requisite instruction is not expected to
be there. The predictor in a filter cache hierarchy works in a two stage manner.
The first level is the cache line level. It assumes that the address of the next
instruction to be accessed will be the current value of the program counter plus
the instruction size. If the current instruction and the future instruction map
to the same cache line, instruction access is directed to the filter cache. If they
do not map to the same cache line, a pattern predictor is accessed to decide
whether the next access will be from the L1 cache or the filter cache [32]. The
prediction process is shown in figure 3.

The important thing to note here is that when an instruction is accessed
from the L1 cache, a full filter cache line containing the instruction is moved
to the filter cache too. Subsequent access to instructions from the same line
are done from the filter cache instead of the L1 cache. So in an ideal case, the
predictor can sense that the instruction will be a miss in the instruction cache
and direct it to the L1 cache. The proportion of the instructions directed to the
L1 cache will therefore be the application wide miss rate for the filter cache.

3.2 Instruction cache hierarchy tuning heuristics

Energy consumption is a prime issue in modern day embedded systems. There-
fore, our objective behind cache tuning is to find an ideal instruction cache
hierarchy for a given application which reduces the energy consumption of the
cache hierarchy without trading off too much performance. Consideration of
the performance clause is important because using a smaller cache may help
save energy but it will ultimately lead to poorer performance due to the many
misses that might occur while accessing it. To meet our tuning objective, we
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Figure 3: Filter cache prediction methodology
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used a yardstick that captures both the energy saved and the performance that
is sacrificed to achieve this - the energy-delay product.

For calculating the energy-delay product of the filter cache and the L1 cache
in the predictor based instruction cache hierarchy, we look at the following
properties of the cache.

• Cache Access Time: This is average amount of time spent per cache
reference (assuming it to be a hit) to retrieve the requisite instruction
from it. In the following equations, this is represented as ATFC for the
filter cache and ATL1 for the L1 cache.

• Cache Access Energy: This is average amount of energy spent per cache
reference (assuming it to be a hit) to retrieve the requisite instruction from
it. In the following equations, this is represented as AEFC for the filter
cache and AEL1 for the L1 cache.

• Cache Miss Rate: This is the application wide miss rate for a given cache
size. In the following equations, it is represented as MRFC for the filter
cache and MRL1 for the L1 cache.

• Average Memory Access Time: An ideal predictor can identify if a refer-
ence will be a miss in the filter cache and direct it to the L1 bypassing the
filter cache altogether. This way, when the instruction can be a hit in the
filter cache, we get the latency of the filter cache and when it will be a miss
in the filter cache, we get the latency of the L1 cache. In a predictorless
filter cache hierarchy, the latency on a miss would be the access time of
the filter cache plus the access time of the L1 cache. The average memory
access time for the filter cache and the L1 cache is calculated as shown in
equation 1 and 2. In these set of equations, AMATFC is average memory
access time for the filter cache and AMATL1 is the average memory access
time for the L1 cache. HRFC is the application-wide hit rate for the filter
cache.

AMATFC = HRFC × ATFC

+ MRFC
× AMATL1 (1)

AMATL1 = ATL1 + MRL1 × ATL2 (2)

• Average Memory Access Energy: The case for average memory access
energy calculation in a predictor based filter cache hierarchy is different
from that of the average memory access time calculations. When an in-
struction is accessed from the L1 cache, the line is transferred to the filter
cache and subsequent accesses from the same line are made from the filter
cache. So, for every access to the L1 cache, the filter cache is also accessed
once. The average memory access energy for the filter cache and the L1
cache is calculated as shown in equations 3 and 4. In these set of equa-
tions, AMAEFC is average memory access energy for the filter cache and
AMAEL1 is the average memory access energy for the L1 cache.

AMAEFC = AEFC + MRFC × AMAEL1 (3)

AMAEL1 = AEL1 + MRL1 × AEL2 (4)
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• Energy-Delay Product: The energy-delay product is just the product of
the average memory access time and the average memory access energy
and is calculated as shown in equations 5 and 6

EDPFC = AMAEFC × AMATFC (5)

EDPL1 = AMAEL1 × AMATL1 (6)

In our exploration algorithm, we first find the L1 cache size that gives us the
lowest energy delay product or min(EDPL1) in the set of L1 cache sizes that
we explore. Once we know the optimal (lowest EDP) L1 cache size, we know
the values for AMAEL1 and AMATL1. Then, we repeat the same process to
find the optimal filter cache size.

4 Analysis of program execution in multitasking

applications

In this section, we analyze the nature of control flow in multitasking systems.
We start off by examining the execution footprint of a typical multitasking
application. Then, we make deductions on the level of determinism in control
flow of multitasking applications.

4.1 Execution footprint of a multitasking application

There are inherent differences in the way a task is executed in a single-task based
system and a multi-task based system. In single task systems, the system has
to do perform only one task and therefore, the lone task runs on the processor
all the time. There is no other task to pre-empt the execution of the single-
task based application. On the other hand, in multitasking systems, there
are multiple tasks being serviced by the processor. They compete with each
other for resources like the processor, memory, etc. This creates a complicated
situation where there is a need for task arbitration to decides which task gets
to execute and a task is often required to be pre-empted before it can finish
execution. Such arbitrations to allocate system resources are usually peformed
by an operating system.

A typical execution footprint of a multitasking system is shown in figure
4. As can be seen, execution of task A is divided into four sections - A1, A2,
A3 and A4. There could be many reasons due to which the control flow may
shift to the RTOS or other tasks. The suspension of execution of the tasks
could be because it may request to perform a priveleged action which is usually
achieved through system calls. In this example, task A may request to read
from a file through system call SA1 and the request is serviced by the RTOS.
The suspension of task A could also be because of the occurence of a trap or
interrupt which needs urgent servicing from the RTOS. An example of such
an interrupt due to which the execution of task A needed to be suspended is
IT3. Another reason for the suspension of the execution of a task could be
because it has already run for a while and the RTOS feels that it should yield
the processor to other tasks with higher priorities which are waiting to execute.
The RTOS ensures that each task gets a fair share of processor time by keep
tabs on the amount of time a process executes. A process is allowed to execute
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Figure 4: Execution footprint of a multitasking application

one time-quantum at a time called a timeslice. After expiration of a timeslice,
the scheduler in the RTOS picks the task with the highest priority that is ready
to run. The scheduler is also responsible for putting processes to sleep if they
request a resource currently held by a higher priority task and also to wake up
tasks if a resource that they requested becomes available. In figure 4, the RTOS
switches to the higher priority task B after the expiration of the timeslice for A
at the end of A2.

4.2 Pseudo-random control flow

When an application executes in a single-task based system, the sequence of
execution within the application can be analyzed. It is possible to know what
are possible sequences of basic blocks that can be executed during the execution
of the task based on analysis of the control flow and data flow in the task. For
example for task A in 4 , the executions of segments A1, A2, A3, A4 and the
system call SA1 are all part of a possible sequence of execution for task A which
can be captured using compile time analysis of task A.

Commenting on the sequence of execution in multi-task based systems is
however trickier and not always possible. It has already been discussed that
in a multitasking system, the execution of individual tasks is interspersed with
the execution of other tasks. The order in which the execution is interspersed
depends on circumstances which can only be determined at runtime. The pat-
tern of switching amongst tasks is therefore difficult to predict inducing a sense
on non-determinism in the execution sequence. A good example of such non-
determinism would be the occasional execution of interrupt or trap service rou-
tines or switching to other user tasks. The execution of these interrupt or trap
service routines is not specified explicitly but they need to be executed every
once in a while because they are critical to the execution of the multitasking
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system. For example, IT3 and IT5 could very well be critical interrupts that
require immediate servicing by the RTOS and therefore require that the current
task be abandoned and the interrupt be serviced.

This element of non-determinism conbined with the level of confidence about
the expected flow of control in individual tasks makes the execution sequence in
multitasking systems pseudo-random. Any technique for analysis of multitask-
ing systems must therefore be sensitive to the pseudo-random nature of control
flow in multitasking systems.

5 Impact of pseudo-random control flow on cache

accesses

Execution of any application as a single-task based system is very different from
its execution in a multitasking system. While a task is executed without inter-
ruptions in a single-task based system, its deterministic control flow is some-
times suspended in a multitasking system. This could be because of a plethora
of reasons over which the task may or may not have any control. These reasons
could be the unavailability of a system resource, competition for processor time
with a task having a higher priority, processing of an asynchronous event like an
interrupt, trap, etc by the operating system. In the case the task execution is
suspended, the multitasking application takes a non-deterministic control path
and switches to another task or interrupt service routine. Both deterministic
and random control paths in multi-tasking applications have implications on the
cache behaviour of the application. The nature and impact of this implication
is discussed in this section.

5.1 Intrinsic and extrinisic code interference

Corresponding to the two different types of control flow in multitasking systems,
there are two ways in which a cache line could be evicted out of the cache
resulting in a cache miss for future references to the same location. We discuss
these two kinds misses named as intrinsic misses and extrinsic misses below.
Intrinsic interference is the competition amongst the instructions of the same
task to occupy the cache. For example, in figure 5, it is possible that BB1
and BB5 occupy the same cache line. In such a case, the contents of BB1 will
be evicted from the cache by BB5. This will result in a cache miss the next
time BB1 is referenced. Such misses are categorized as missed due to intrinsic
interference.

Extrinsic interference on the other hand is the competition amongst different
tasks and interrupt service routines to fill the cache with their own instructions.
Extrinsic interference is a direct result of the interspersed execution of the tasks
in multitasking systems. To explain the cause for extrinsic interference, take
the case of figure 5 as an example. In this case, it is likely that some instruction
of BB1 that are already present in the cache may be evicted out of the cache
if task ’X’ is executed. This may lead to cache misses when those instructions
are executed again. Such misses are categorized as misses due to extrinsic
interference and are in addition to the misses due to intrinsic interference that
the application may suffer.
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Figure 5: Flow of control in multitasking systems

5.2 Empirical evaluation of cache misses due to code in-

terference

To evaluate the relative frequency of intrinsic and extrinsic misses, we simulated
a few multitasking applications and measured the miss rates. In our experimen-
tal setup, shown in 6, we connected dedicated cache for each task and house-
keeping functions that the RTOS may perform. The number of misses incurred
in each of these cache memories is the number of intrinsic misses incurred by the
corresponding task or ISR/TSR. If these misses are added up, we can obtain the
total number of intrinsic misses incurred if these elements are run together in
a multitasking system. We connected the same simulation of the multitasking
system to a global cache as well as shown in 6. The number of misses resulting
from this cache will include both the intrinsic and extrinsic misses. The extrinsic
misses in this case will be the result of cache line evictions due to interference
amongst tasks and other RTOS housekeeping functions. As expected, there was
a decrease in the number of misses as compared to the first experiment since
the second experiment ignored the case of extrinsic interference. Due to the
lowered number of misses, the energy delay product for the second experiment
was also found to be lower as compared to the first experiment.

Figure 7 shows the miss rate curve and the energy delay for two of eight
multitasking programs tested. The difference in the miss rates and hence the
energy delay product because of extrinsic interference, however, is found to be
insignificantly low. This conclusion is further validated in table 1. The average
difference in instruction cache miss rate is only 0.02% to 0.08% of all instructions
executed. Consequently, as shown in table 1, the difference in energy delay
product is also found to be negligible.
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Figure 6: Evaluation of intrinsic and extrinsic interference

Multitasking benchmark MR increase % EDP increase %
dijk + patr + sha 0.08 0.37

rawd + cjpeg + sha 0.02 1.01
epic + unepic + rawc 0.02 0.90
djpeg + rawc + sha 0.02 0.96
sha + cjpeg + rawc 0.02 1.03

rawc + rawd + cjpeg + djpeg 0.02 0.86
patr + dijk + rawc + sha 0.02 0.34
dijk + sha + rawc + rawd 0.02 0.70

Table 1: Average increase in miss rate and energy delay product
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(a) Fall in miss rate for dijkstra + patri-
cia + sha

(b) Fall in EDP for dijkstra + patricia +
sha

(c) Fall in miss rate for epic + unepic +
rawcaudio

(d) Fall in edp for epic + unepic + raw-
caudio

Figure 7: Difference between effects of standalone task/interrupt simulation
added together and the actual multitasking system 7(a), 7(b), 7(c) and 7(d)

5.3 Theoretical explanation of empirical observations

The results obtained can be explained based on the observation that misses due
to extrinsic interference happen once in a while as compared to missed due to
intrinsic interference. They happen only when the thread of execution switches
from one task to another or the other hosekeeping functions that the RTOS may
perform like servicing interrupts, traps, etc. As the execution proceeds after the
switch, these transient misses incurred become negligible as compared to the
rest of the misses incurred due to intrinsic interference or cache line conflicts.

To gauge the relative impact of extrinsic interference as compared to intrinsic
interference, consider the example shown in figure 8. Here, the cache contents
are shown to contain a loop consisting of four basic blocks - BB1, BB2, BB3 and
BB4. However, during the execution of the loop, it is pre-empted by ’X’ which
could be a another task or an interrupt service routine. When the loop resumes
execution after ’X’ has finished executing, some of the instructions belonging
to the loop would have been evicted. But, after just one iteration, the cache
is filled up again with insructions of the loop and subsequent accessess to the
instructions of the loops are hits.

Intrinsic interference in the example shown in figure 8 depends on the fre-
quency of the loop shown in figure 8 which is significantly higher than the
number of pre-emptions that might happen during the lifetime of the loop. It
is therefore expected that the number of misses due to pre-emption or extrinsic
interference will be much lesser as compared to the number of misses due to
intrinsic interference. Considering that embedded applications spend a signifi-
cant amount of time in such loops, it can be safely assumed that the frequency
of these loops will be very high as compared to the misses due to the occa-
sional pre-emptions of those loops as shown in this subsection. Consequently,
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Figure 8: Effect of extrinsic interference

the damage done by intrinsic interference is much higher as compared to ex-
trinsic interference and therefore, intrinsic interferenceforms can be treated as
the main driving force behind choosing an appropriate cache for the application
using the cache tuning heuristics.

6 Proposed technique for cache tuning for mul-

titasking systems

In the previous section, we discussed the relative impact of extrinsic interference
and intrinsic interference on the total cache hit/miss rate. We showed that
misses due to extrinsic interference to be significantly lesser than those due
to intrinsic interference. In this section, we develop ideas for a cache tuning
framework for multitasking systems based on these observations.

As a task executes in a multitasking environment, the instructions of the
loops would be flushed once in a while by intervening tasks or interrupts. How-
ever, the loops themselves will execute to completion regardless of the number
of times they are pre-empted. The pre-emption might result in a few additional
misses as shown in the preceeding section but it should not affect the optimal
cache size for the application provided all the loops and their relative frequencies
are taken into account in choosing the cache size.

To make this point clear, consider a two task system as an example. Task
1 (T1) has a loop of size 1kB which executes an aggregate of 1000 times. Lets
assume that its execution is interspersed with another task 2 (T2) which does
not have any loops in it. In this case, an ideal cache size for the application
would be 1kB because it can hold the loop in T1 and mitigate any unnecessary
cache misses. However, if there is another loop in T2 which has a size of 4kB
and a significant frequency, then the optimal cache size for the system would
be between 1kB and 4kB. The exact size of the optimal cache would depend on
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Figure 9: Cache tuning methodology for multitasking systems

the frequency of the loop in T2. If the frequency is too low, then a cache size
of 1kB mght be just right for the application. On the other hand, if it is too
high, it would be wise to choode a cache size of 4kB. The choice of the optimal
cache would be independent of how the execution of T1 and T2 is interspersed
with each other because regardless of how many times T1 and T2 pre-empt each
other, the loops in them would execute to completion.

Regardless of the order in which the tasks execute in a multitasking envi-
ronment, the sole factor that determines the optimal cache size is the size and
frequency of all the loops inherent in the tasks. In the following subsections, we
present the broad methodology of our approach to profiling multitasking systems
for cache tuning and the cache tuning framework itself. Our techniques rely on
simulating the multitasking application to obtain information about the loops
using loop profiling techniques discussed earlier. For all purposes, we ignore the
order in which tasks execute and just focus on obtaining relative frequencies of
the loops in the multitasking application.
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6.1 Loop profiling of user tasks

In a multitasking environment, the operating system is responsible for process,
memory and I/O management. This is different from the execution of a stan-
dalone task wherein the task has absolute control over memory and I/O and
can read and write to and from these entities as and when it wishes. Take as
an example, the case of writing to memory. In the case of a standalone task,
this operation proceeds without any checks on whether the task is permitted to
write to the memory location or whether the memory resource is free in the first
place. However, in a multitasking environment running under the control of an
operating system, the tasks can write to a memory only through a system call
by invoking the operating system. In a system call, the control is handed over
to the operating system which follows a pre-defined set of checks and protocols
before it allows the write to proceed.

Such system calls are often invoked from within loops in user tasks. Any
technique for loop profiling of user level tasks must take into account any system
call that the loop may invoke. The size of the system call(s) added to the size
of the loop gives an accurate indication of the size of the cache required to hold
the loop. For this reason, we profile user level tasks by taking into account any
system calls that they might invoke. Take the example of figure 9, as task A
executes, it makes system call SA1. This system call could very well be invoked
from within a loop. Therefore, it is imperative to consider system calls as a part
of loops in user tasks.

To identify the nature of loops user task, we simulate the multitasking ap-
plication but profile individual tasks as if they were the only task running on
top of a RTOS as shown in 9. Thereby, we ignore any pre-emptions that it
might suffer from other tasks or other RTOS house-keeping functions like task
management and interrupt/trap handling but ensure that the system calls are
taken into account while calculating loop sizes for the task. This technique will
gives us an indication of the intrinsic misses that the multitasking application
is likely to incur because of this task. If there are multiple tasks running on the
system, this exercise can be repeated for every task executing on the system.

6.2 Loop profiling of the RTOS

Taking the tasks into consideration alone is not enough. Locality analysis for
cache tuning must also take into account any loops that are executed by the
operating system for house-keeping purposes. In a RTOS based multitasking
system, the RTOS is the manager of processes, memory, I/O, etc. When exe-
cuting multiple tasks, there are bound to be overheads in executing the RTOS
code that is responsible arbitrating multiple tasks competing for resources. For
example, one of these tasks is to maintain timers to monitor how long a task
has been running. For this, it has to respond to interrupts from the hardware
timer periodically to update process times. Once a task exceeds the timeslice
allocated to it, the RTOS is reponsible for putting it to sleep and selecting a
new process to run based on a scheduling algorithm. Task switching in this case
would involve saving the context of the current task and loading the context of
a new task.

Another one of such tasks performed by the RTOS would be to respond to
page faults. In multiasking systems, because the memory is shared by several
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tasks, every task is given the impression that it is working with large, contiguous
sections of memory. In reality, each process’ memory may be dispersed across
different areas of main memory, or to secondary storage. When a process re-
quests access to its memory, virtual addresses are mapped to physical addresses
through a page table. Sometimes it so happens that a physical memory frame
may not have been allocated for the virtual address. In such a case, there will
be a page fault and the operating system is responsible for dealing with it. The
handler for the page fault allocates a physical memory frame to the virtual page
and create a page table entery and the memory access will continue.

It is evident from the above that the RTOS needs to do a lot of house-
keeping functions when multitasking applications run on it because all system
resources are shared by multiple tasks. Therefore, for tuning the cache for
multitasking systems, it is imperative to consider the loops in the house-keeping
functions that the RTOS performs. These loops will be in addition to any user
task level loops or loops in system calls. To identify these loops, we simulate
the multitasking application and profile the RTOS components responsible for
performing these functions independent to profiling the tasks. This approach is
shown in figure 9 wherein IT1 to IT6 are profiled as being part of the RTOS
housekeeping functions.

6.3 Overview of the tuning framework

The overall framework for tuning the cache for multitasking system is shown
in figure 10. The framework is divided into three major components. In the
first stage, we simulate the multitasking system to obtain the call graph and
control flow graphs of the individual tasks, the associated system calls and other
house-keeping functions that the RTOS may perform for the execution of the
multitasking application. After obtaining the call graph and the control flow
graphs, we profile them on a task by task basis to obtain the nature of the loops
inherent in them. We also profile the RTOS for obtaining the loops in all the
house-keeping functions that it may perform. After obtaining information about
all loops, we use this information to estimate the hit rates for multiple cache
sizes in one go. In the final stage, we feed the estimated hit rates to a tuning
engine which performs cache tuning based upon a predefined set of heuristics.
Because we perform energy-centric cache tuning of the predictor based filter
cache hierarchy in this work, this module also uses the cache energy per access
obtained from the CACTI models. The final output of the framework is the
optimal filter cache and optimal L1 cache size i.e. the cache sizes which results
in the lowest energy delay product for the application.

7 Experimental results

In this section, we present our results on cache tuning for multitasking applica-
tions. We first discuss our experimental setup and then go on to compare design
space exploration using our proposed techniques with design space exploration
using exhaustive simulation.

20



Figure 10: Cache tuning framework for multitasking systems
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Cache parameter Value or range
FC size range 256B to L1 Size
FC block size 16B

FC associativity 1
FC access time 1 cycle
L1 size range 1kB to 32kB
L1 block size 32B

L1 associativity 4-way
L1 access time 1 cycle

L2 size 512kB
L2 block size 32B

L2 associativity 4-way
L2 access time 6 cycle

Table 2: Instruction cache parameters for design space exploration

7.1 Experimental Setup

We ran the benchmark programs from the Mibench [13] and the Mediabench
[17] benchmark suite on the M5 simulator [5]. The M5 simulator simulated
a single issue processor with the Alpha Dec instruction set. The operating
system running on the simulator was Linux. We assumed a unified L2 cache of
512kB with a 32B block size and 4-way set associativity. The selection space
for the design space exploration and the instruction cache parameters used are
shown in table 2. The measurements of access energy for the different cache
configurations were obtained using the CACTI tool [36].

7.2 Comparison of proposed techniques with exhaustive

simulation

The proposed EDP estimation techniques closely follow the results obtained
through exhaustive simulation of the instruction cache hierarchy. Table 3 shows
the filter cache and L1 cache sizes chosen through exhaustive simulation (sim)
and through the estimation heuristics (est). The exhaustive simulation approach
is always able to identify the optimal configuration - the one with the least EDP
- because it resorts to brute force search. However, our estimation heuristics are
also able to identify the optimal configuration or a near-optimal one in all cases.
The EDP of the configurations chosen by the two techniques is shown (in figure
11) next to the EDP of a base 32kB, 4-way set associative and 32B line size L1
cache which is the norm in many processors. As is evident from the figure, the
EDP of the configuration obtained through the estimation techniques is optimal
in almost all cases and near-optimal for the rest.

While the estimation technique has been shown to identify optimal or near-
optimal cache configurations in almost all cases, the real value of the proposition
comes through in the runtime of the algorithm and its scalability.

Table 4 shows the time that was required to run the estimation algorithms
as compared to an exhaustive simulation. As can be seen, a significant amount
of time is saved if the design space exploration is done using the estimation
heuristics. For some of the multitasking programs, the estimation techniques
are able to achieve a speedup of upto an order of magnitude.
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Multitasking benchmark Config(est) Config(sim)
dijk + patr + sha (1kB,32kB) (1kB,32KB)

rawd + cjpeg + sha (512b,4kB) (512B,4kB)
epic + unepic + rawc (256B,1kB) (512B,1kB)
djpeg + rawc + sha (512B,4kB) (1kB,4kB)
sha + cjpeg + rawc (512B,4kB) (512B,4kB)

rawc + rawd + cjpeg + djpeg (1kB,4kB) (1kB,4kB)
patr + dijk + rawc + sha (1kB,32kB) (1kB,32kb)
dijk + sha + rawc + rawd (256B,4kB) (512B,4kB)

Table 3: Filter cache and L1 cache sizes chosen by the estimation algorithm and
the exhaustive simulation

Figure 11: Savings in EDP achieved by estimation algorithm vs. exhaustive
simulation

Multitasking benchmark Time(est) Time(sim) Savings
dijk + patr + sha 6m 29s 35m 17s 82%

rawd + cjpeg + sha 4m 15s 11m 18s 62%
epic + unepic + rawc 2m 44s 23m 50s 89%
djpeg + rawc + sha 1m 56s 9m 30s 80%
sha + cjpeg + rawc 1m 56s 13m 13s 85%

rawc + rawd + cjpeg + djpeg 3m 35s 13m 17s 73%
patr + dijk + rawc + sha 11m 56s 39m 39s 70%
dijk + sha + rawc + rawd 5m 59s 18m 1s 67%

Table 4: Comparison of the average runtime for the estimation algorithm and
exhaustion simulation techniques
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Another huge advantage of such an approach is its scalability. The time
complexity of the exhaustive simulation techniques is O(n) where n is the num-
ber of configurations tested. On the other hand, the time complexity of the
estimation heuristics is constant irrespective of the number of cache sizes that
the estimation is required for. This constant time is the time taken to simulate
the application, build its call graph and control flow graph and to estimate the
EDP for different cache sizes through a one-time loop profiling.

8 Estimation of misses due to extrinsic interfer-

ence

While the number of misses due to extrinsic interference or code mixing have
been shown to be nominal in the preceeding section. It is useful to have a way
to estimate the number of such misses. In this section, we describe a technique
to estimate the number of misses due to code mixing. Our approach is based
on estimating the worst-case and best-case misses due to code mixing and then
taking the average of the best and the worst case as the estimate. In the
subsequent part of this section, we first describe how to obtain the worst-case
estimate, then we discuss what is the best-case estimate and finally conclude
the section by show that the average-case estimate follows the actual number of
misses incurred due to code mixing closely.

We start off the estimation process by estimating a worst-case estimate for
the number of misses that could happen due to code mixing. We assume the
following for our worst-case estimate. Firstly, we assume that when interrupts
or context switches occur, they flush out useful cache lines that could have been
potentially been reused at a later time. Secondly, the number of lines that
are flushed out is equal to the number of cache lines that the interrupt service
routine occupies in the cache if the size of the interrupt service routine is smaller
than the cache size. Otherwise, we assume that the number of cache lines flushed
out is the total number of cache lines in the cache. This information is shown in
equation 7. For the case of context switches, we assume that the cache context
is completely flushed out as shown in 8.

A value for the worst-case estimate of misses due to extrinsic interference
can thus be obtained using equation 9.

damageintr = max(intr lines, cache lines) (7)

damagectxsw = cache lines (8)

missesei−wc =
∑

freqintr × damageintr

+
∑

freqctxsw × damagectxsw (9)

This is a worst-case estimate because the actual number of misses for will be
lesser than this. This could be because of two factors - the size of the cache and
the timing of the interrupts. If the cache is large enough, the amount of flushing
would be lesser than what has been assumed because a large cache would be
able to accommodate the instructions of the interrupt service routine without
flushing out other cache lines. Also, if interrupts happen in close succession
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(a) Code mixing misses for dijkstra + patri-
cia + sha

(b) Code mixing misses for epic + unepic +
rawcaudio

(c) Code mixing misses for rawcaudio +
cjpeg + sha

(d) Code mixing misses for rawcaudio +
djpeg + sha

Figure 12: Estimated and actual misses due to extrinsic interference shown in
sub-figures 12(a), 12(b), 12(c) and 12(d)

then there is also a chance that the cache lines will be reused instead of being
flushed out.

In the best case, it is assumed that every cache line will be fully reused before
being flushed out due to any intervening interrupt or context switch. Therefore,
there would be no misses due to code mixing. The only misses that are incurred
would be a one-time penalty of bringing in the cache lines into the cache and
misses due to intrinsic interference. These misses are already captured in the
estimated number of misses obtained through standalone task profiling.

As can be seen from figure 12, our average case estimate for the number of
misses due to code mixing follow the measured number of misses due to code
mixing quite closely. Therefore, the proposed techniques can be relied upon to
estimate the number of extrinsic misses in a multitasking application.

9 Conclusion

In this paper, we analyzed the control flow in embedded multitasking systems
for the purpose of loop profiling and subsequent cache tuning. We showed that
although the nature of control flow in multitasking system is pseudo-random, for
cache tuning purposes the interspersed execution of user tasks can be ignored
and they can be profiled in isolation to obtain information about the nature
of the loops in them. This information about the loops could then be used to
identify the optimal cache size for an application. We validated the proposed
technique by applying it to tune the cache hierarchy for embedded multitasking
applications composed of commonly used embedded benchmarks programs. We
divided the system execution into the execution of user-tasks/system-calls and
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other housekeeping function that the RTOS may perform. We profiled these
components in isolation, obtained information about all the loops that were
executed and were able to identify optimal or near-optimal L1 and filter cache
size for all multitasking applications considered. Our proposed framework was
shown to achieve significant speed-up as compared to exhaustive cache simula-
tions was well. The proposed techniques was shown to be highly scalable as well
because it was be relied upon to estimate the energy delay product estimates
for any range of cache size after a one time profiling.
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