Emergence of high-mass stars in complex fiber networks (EMERGE) : I. Early ALMA Survey: Observations and massive data reduction
(Abridged) Recent molecular surveys have revealed a rich gas organization of sonic-like fibers in all kind of environments prior to the formation of low- and high-mass stars. This paper introduces the EMERGE project aiming to investigate whether complex fiber arrangements could explain the origin of high-mass stars and clusters. We analyzed the EMERGE Early ALMA Survey including 7 star-forming regions in Orion (OMC-1/2/3/4 South, L1641N, NGC2023, and Flame Nebula) homogeneously surveyed in both molecular lines (N$_2$H$^+$ J=1-0, HNC J=1-0, plus HC3N J=10-9) and 3mm-continuum using a combination of interferometric ALMA mosaics and IRAM-30m single-dish (SD) maps. Based on our low-resolution (SD) observations, we describe the global properties of our sample covering a wide range of physical conditions including low-, intermediate, and high-mass star-forming regions in different evolutionary stages. Their comparison with ancillary YSO catalogs denotes N$_2$H$^+$ as the best proxy for the dense, star-forming gas in our targets showing a constant star formation efficiency and a fast time evolution of
Item Type | Article |
---|---|
Uncontrolled Keywords | astro-ph.GA; astro-ph.SR |
Date Deposited | 14 Nov 2024 11:04 |
Last Modified | 14 Nov 2024 11:04 |