
A two-dimensional search for a Gauss-Newton algorithm

A.B. Forbes
National Physical Laboratory, Teddington, United Kingdom

M.C. Bartholomew-Biggs
University of Hertfordshire, Hatfield, United Kingdom

Abstract
This paper describes a fall-back procedure for use with the Gauss-Newton method for non-
linear least-squares problems. While the basic Gauss-Newton algorithm is often success-
ful, it is well-known that it can sometimes generate poor search directions and exhibit slow
convergence. For dealing with such situations we suggest a new two-dimensional search
strategy. Numerical experiments indicate that the proposed technique can be effective.

1 Introduction

This report describes a method for non-linear least-squares calculations whose
main ideas are explained in detail in section 2 below. Basically it uses a stan-
dard Gauss-Newton algorithm with the additional distinctive feature that a two-
dimensional search procedure is used on any iteration when the Gauss-Newton
step proves unsatisfactory. The effectiveness of this fall-back 2D search strategy is
illustrated by numerical results presented in section 3.

The approach is implemented as a fortran90 codeGN_solver which is intended
to be suitable for a wide range of least-squares problems (such as those encoun-
tered on a day-to-day basis at the National Physical Laboratory). A convenient and
flexible user-interface is provided by means of aharnessroutine [1] which is not
prescriptive about the form of the function evaluation or the algebraic details of the
calculation of the Gauss-Newton search direction. Hence a user is free to exploit
special features of a particular problem such as sparsity or structure.

When an iterative algorithm is implemented in software intended for general use
an important issue is the robustness of the termination tests. It is desirable, as far
as possible, that the performance of the algorithm should be insensitive to changes
of scaling on the variables or the function (such as might occur due to a change
of physical units). The stopping rules inGN_solver are intended to fulfil this
requirement – although they do require some tolerance parameters to be specified
which reflect the user’s own insight into acceptable solution accuracy. Section 3.2
gives some experimental evidence about changes in behaviour ofGN_solver due
to rescaling of problems.

The concluding section outlines some further developments of the algorithmic
ideas inGN_solver with a view to future versions of the software.

1

2 GN solver

GN_solver is an implementation of a Gauss-Newton algorithm for nonlinear least-
squares problems of the form

Minimize F(x) =
m

∑
i=1

fi(x)2. (1)

GN_solver requires a user-supplied subroutine which, for any values of the opti-
mization variablesx1, ..,xn evaluates the subfunctionsf1, .., fm and also the Jaco-
bian matrixJ with elementsJi j = ∂ fi/∂x j .

The interface between the user-routine andGN_solver is aharnesssubroutine (as
described in [1]). This calls the user’s routine and – according to a flag set by
GN_solver – it returns either
(i) the values of the subfunctionsfi
or (ii) the valuesf1, .., fm and the elements of gradientg = 2JT f
or (iii) the valuesf1, .., fm, g1, ..,gn and (an approximation to) the Gauss-Newton
directionp = (JTJ)−1JT f .
The interface harness routine allowsp to be calculated in a way that is efficient and
appropriate to the features of a particular problem (see [1]).

The method implemented inGN_solver is basically a straightforward Gauss-Newton
algorithm. Thek-th iteration begins with a current solution estimatexk and calcu-
lates the Gauss-Newton directionp = (JT

k Jk)−1JT
k fk. A convergence test is then

performed which terminates the process if

|| fk||2 < mε (2)

or

||gk||2 <
n√
m

√
(ε|| fk||2) (3)

or
||p||2 < (τa + ε)(n+ ||xk||2) and ||gk||2 <

n
m

ε0.3(m+ || fk||2)

and |(|| fk−1||2−|| fk||2)|< mτ f . (4)

In these tests,ε denotes machine precision whileτa andτ f are small positive toler-
ances to be specified by the user. The tests are based on suggestions made by Gill
et al [2].

If convergence does not occur then a new pointxk+1 = xk +sp is usually obtained
by a line search. The case when this does not happen is when the calculated Gauss-
Newton direction does not satisfy a descent property

−pTgk <
√

ε||p||2||gk||2.

2

In this case, an alternative directionp is computed using a two-dimensional search
procedure outlined below in sections 2.3 and 2.4.

Two kinds of line search are available inGN_solver. The first is an Armijo-type
search which uses only function values while the second combines the Armijo
search with the secant method and involves calculating both the function and the
gradient at every trial point. The first alternative is aweaksearch which merely
ensures an acceptable decrease in the function value. The second method, however,
is capable of performing aperfectsearch to find the one-dimensional minimum of
F along the directionp. For a broader discussion of both types of line search see,
for instance, [2] or [3].

Both line search algorithms are given below in sections 2.1 and 2.2. For the mo-
ment we note that the algorithm can specify a valuesmin such that the search is
clearly successfulif

||xk+1−xk||2 ≥ smin||p||2
which implies that the change in the variables is not less than some chosen fraction
of the Gauss-Newton step. Similarly, a line search is isclearly unsuccessfulif the
relative change in the variables is comparable with machine precision – i.e.

||xk+1−xk||∞ < ε(||xk||∞ + ε).

After a clearly unsuccessful search the iterative process terminates while a clearly
successful search is followed by the start of a new iteration. If, however, the line
search yields a new point which lies between these alternatives, the algorithm has
the option of performing atwo-dimensional searchin the plane ofp andgk in order
to find a new point which is better thanxk+1. This search, and the conditions which
trigger it, are described in sections 2.3 and 2.4 below.

Some authors [4],[5] have suggested using a quasi-Newton search direction as a
fallback option when a Gauss-Newton step is unsuccessful. Our reason for not
using this option inGN_solver relates to the harness interface. Its purpose is
to allow a user to computep efficiently, taking into account any structure in the
Jacobian. Some nonlinear least-squares applications have thousands of parameters
but very exploitable structure in the Jacobian which can make the Gauss-Newton
direction quite cheap to compute. However it may be much less straightforward
for any quasi-Newton update to take advantage of the problem structure and this
could mean that the use of a quasi-Newton direction could be relatively inefficient.

2.1 A weak line search algorithm

The following is an Armijo algorithm for a weak line search to yield an acceptable
decrease in the functionF , defined by

ηpT∇F(xk)≤ F(xk+1)−F(xk)≤ (1−η)pT∇F(xk).

3

It is used inGN_solver for 0 < η≤ 0.25 and involves parametersc(< 1), C(> 1)
andε.

Givenxk, p, Fk = F(xk), ḡk = pT∇F(xk), s andη
Setsl = 0, Dl = 1, i f ail = 0
Start extrapolation loop:
Repeat
Set

x+ = xk +sp, F+ = F(x+), D =
(F+−Fk)

sḡk

If η≤ D≤ 1−η thensr = s and exit loop
If D < η thensr = s, Dr = D and exit loop
Set

sl = s, Dl = D, s= Min[Cs,
0.5s

(1−D)
]

end repeat
Start interpolation loop:
Repeat If η≤ D≤ 1−η thensr = s and exit loop
If D < η thensr = s, Dr = D
If D > 1−η thensl = s, Dl = D
Setslb = csr +(1−c)sl , sub = csl +(1−c)sr

Set

sq = sr +
(0.5−Dr)
(Dl −Dr)

(sl −sr), s= Min[sub,Max[slb, sq]]

Set

x+ = xk +sp, F+ = F(x+), D =
(F+−Fk)

sḡk

If ||x+−x||∞ < ε||x0||∞ + ε seti f ail = 1 and exit loop
end repeat
If i f ail = 0 thenxk+1 = x+, Fk+1 = F+; otherwise search has failed.

2.2 A perfect line search algorithm

The following is a combined Armijo/secant algorithm for a strong or perfect line
search to yield a decrease in the magnitude of the projected gradient, given by

|pT∇F(xk+1)| ≤ µ|pT∇F(xk)|.

This is used inGN_solver with µ= 1−2η and 0.25< η < 0.5.

Givenx0, p, F0 = F(x0), g0 = ∇F(x0), s andµ
Run the Armijo algorithm withη = 0.25 to obtain valuessl andsr = s

4

Setxl = xk +sl p, xr = xk +sr p
EvaluateFl = F(xl), gl = pT∇F(xl), Fr = F(xr), gr = pT∇F(xr)
If |gr | ≤ µ|ḡk| then returnsr ,xr , Fr

If gr ≤ ḡk then seti f ail = 1 and returnsr , xr , Fr (not a minimum)
Repeat
Set

s= sl −
gl sl

(gr −gl)
, x+ = xk +sp, F+ = F(x+), g+ = pT∇F(x+)

If |g+| ≤ µ|ḡk| then exit loop
If F+ > Fr then seti f ail = 1 and exit loop
If |gr |< |gl | then setsl = sr , Fl = Fr , gl = gr

Setsr = s+, Fr = F+, gr = g+

end repeat
If i f ail = 0 returnxk+1 = x+, Fk+1 = F+ as the line minimum
Otherwise returnxk+1 = x+, Fk+1 = F+ as an improved point (not a minimum).

2.3 The two-dimensional search algorithm

In the event that the Gauss-Newton step proves unsatisfactory for one of the reasons
specified in section 2.4,GN_solver seeks a new pointx+ by performing a two-
dimensional search in the plane spanned by the Gauss-Newton directionp and the
negative gradient−gk. Specifically, this search looks for the least value ofF on a
circular arc centred onxk with radiusρ and can be outlined as follows:

Given p andgk = ∇F(xk) (assumed not parallel) and a radiusρ(> 0)
Construct the unit vector ˆg = gk/||gk||2
Setu = p− ĝT pĝ (so that ˆgTu = 0) and set ˆu = u/||u||2.
Setθ̄ = cos−1[−pT ĝ/||p||2]
Find θ∗ to minimizeφ(θ) = F(xk− (ρcosθ)ĝ+(ρsinθ)û) for θ̄≥ θ≥ 0.
Returnx+ = xk− (ρcosθ∗)ĝ+(ρsinθ∗)û

In GN_solver the minimization ofφ(θ) is done by seven iterations of the bisection
method. This is chosen on the expectation thatθ̄ will be about 90o and so seven
iterations will locateθ∗ to a precision of less than 1o.

The next section shows how this 2D search is incorporated intoGN_solver.

2.4 Triggering a two-dimensional search

There are two situations in which a two-dimensional search may be needed.

(a) If a (weak or perfect) search alongp terminates with a step sizes< smin.

In this case, if the new pointxk+1 = xk +spandFk+1 = F(xk+1) then the following
procedure is used to determine whether a two-dimensional search is appropriate.

5

EvaluateD = (Fk+1−Fk)/(spT∇F(xk)).
If D < 1 ands/(1−D) < smin

EvaluateFs = F(xk +sminp). If Fs≥ Fk perform a 2D search withρ = s||p||2
If F+ < Fk+1 setxk+1 = x+

Start a new iteration fromxk+1.

The secondary test that must be satisfied before a 2D search is attempted is one
which suggests that the steplengthsmin would produce an increase inF . This test is
included because a weak line search sometimes accepts a point withs< smin even
though the Gauss-Newton step could have yielded a much better reduction. In this
situation the additional computing cost of a 2D search is not usually justified.

(b) If the search directionp gives insufficient descent.

If −pTg< ε||p||2||g||2 then a two dimensional search is used to find a better search
direction, as follows.

Perform a 2D search withρ = 0.001||p||2 and obtain a new pointx+

Perform a line search along the directionp = x+−x.

3 Numerical results

We quote some trial results obtained whenGN_solver is applied to the following
problems.

Problem 1is the Rosenbrock problem

F(x) = 100(x2−x2
1)

2 +(1−x−1)2

using the non-standard starting point(−7, 49).

Problem 2is the extended scaled Rosenbrock problem

F(x) =
4

∑
k=1

104(xk+1−xk)2 +(1−xk)2

starting atx = (−0.5, 0.25, 0.0625, 0.003906, 0.0000053)

Problem 3is

F(x) =
30

∑
i=1

s2
i where si = e−i/10+1−x1eix2−x3eix4

using the starting pointx = (0.5, 0.5, 0.5, 0.0)

Problem 4is

F(x) =
20

∑
i=1

s2
i where si = e−i/10+5+0.05i−x1eix2−x3eix4

6

using the starting pointx = (5.67, −0.0083, 0.283, 0.0782)

Problem 5is

F(x)=
41

∑
i=1

s2
i where si = x1+x2|i/8−x3|x4−(1.77−0.15|i/8+0.737|3.56)+(−0.1)i

using the starting pointx = (1.0, −1.0, 1.1, 1.1)

For all these problems the convergence tests (2) – (4) were used withε = 10−16

andτa = τ f = 10−5.

We now give some results which show the effect of using different values ofη and
smin. Choosingη = 0.1 implies that the line search is quite weak, with a new point
being accepted if it gives quite a modest reduction in the value ofF . Increasingη
causesxk+1 to be closer to a one-dimensional minimum along the directionp; and
the choiceη = 0.499 causes the line search to be very close to perfect. Increasing
smin away from zero raises the threshold for a Gauss-Newton step to beclearly
successfuland hence tends to increase the number of two-dimensional searches
that are performed.

The entries in the tables below give the numbers of iterations and function evalua-
tions needed to solve the test problems stated above. Whensmin > 0 the figure in
brackets shows how many two-dimensional searches were performed. The quoted
values ofsmin vary from problem to problem, according to the smallest value of the
trigger threshold which produces any change from basic thesmin = 0 case.

η 0.499 0.45 0.25 0.1
smin = 0.0 69 367 68 301 80 308 81 305
smin = 0.04 64(1) 377 64(1) 308 80(0) 308 81(0) 305
smin = 0.05 60(2) 384 61(2) 319 71(2) 317 77(1) 309

Table 1: Iterations and function calls forGN solver on Problem 1

η 0.499 0.45 0.25 0.1
smin = 0.0 158 905 158 739 203 789 203 786
smin = 0.03 144(2) 887 144(2) 723 198(1) 797 202(1) 805
smin = 0.04 135(6) 954 136(6) 787 174(4) 790 199(2) 815

Table 2: Iterations and function calls forGN solver on Problem 2

The way in which performance is affected by the choice ofηis shown most clearly
when smin = 0 so that there are no two-dimensional searches. The expectation
is that asη increases the number of iterations will decrease while the number of
function calls per iteration will increase. Results show that this is usually the case
(and remains so whensmin > 0).

7

η 0.499 0.45 0.25 0.1
smin = 0.0 119 662 124 617 119 580 212 1219
smin = 0.02 119(0) 662 114(3) 586 104(2) 444 61(2) 270
smin = 0.03 101(5) 686 85(8) 572 95(5) 478 74(4) 355

Table 3: Iterations and function calls forGN solver on Problem 3

η 0.499 0.45 0.25 0.1
smin = 0.0 173 879 175 847 168 787 173 802
smin = 0.01 132(4) 879 132(4) 717 137(5) 710 127(5) 624
smin = 0.015 110(15) 989 110(15 831 117(27) 1052 112(23) 928

Table 4: Iterations and function calls forGN solver on Problem 4

η 0.499 0.45 0.25 0.1
smin = 0.0 116 795 108 613 121 674 113 610
smin = 0.01 57(5) 439 56(5) 362 75(10) 508 69(10) 471
smin = 0.02 46(8) 446 47(8) 378 62(12) 486 66(11) 477

Table 5: Iterations and function calls forGN solver on Problem 5

For all five problems there is evidence that it can be beneficial to use two-dimensional
searches when the basic line search takes a step less thansmin. In Problems 1 and
2 we see modest reductions in iteration count accompanied by small increases in
numbers of function calls. In Problems 3 and 4, for smaller values ofη, a few two-
dimensional searches produce a substantial decrease in both iteration count and
numbers of function evaluations. For Problem 5 there are appreciable improve-
ments in iteration count and function evaluations for all values ofη.

The choice ofsmin, the threshold for triggering two-dimensional searches, seems,
unfortunately, to be rather problem-dependent. Below a certain level it will, of
course, have no effect; but as it becomes large enough to cause a small number of
2D searches to occur then the consequences are initially quite beneficial. However,
assmin increases further, some sort of law of diminishing returns seems to operate.
Thus it appears that the standard line search should not be superseded too readily
by the 2D alternative.

3.1 The cost of the two-dimensional search

In order to assess the efficiency of the two-dimesnional search procedure we need
to look more closely at what is meant by afunction callin the results in Tables 1 – 5.
The quoted figures simply record the number of times the harness routine is called.

8

A two-dimensional search involves seven iterations of the bisection method which
employ 17 calls to the harness routineeach requiring only the evaluation of the
subfunctions fi . For every Gauss-Newton iteration that is saved, however, we also
save a harness-routine call involving the additional and expensive calculation of a
Gauss-Newton direction. Properly to evaluate the benefits of the two-dimensional
searches, therefore, we need to keep distinct counts of numbers of evaluations of
residualsf , gradientg and search directionp. As a specific example, consider
Problem 3 withη = 0.499. Whensmin = 0 there are 119 ”expensive” calls to the
harness routine to calculatef , g and the Gauss-Newton directionp. In addition
there are 543 ”medium-cost” calls to the harness routine to supply onlyf andg.
In contrast, whensmin = 0.03, the five two-dimensional searches take 85 of the
cheapest harness evaluations yielding values off only. The consequent reductions
in numbers of high- and medium-cost harness calls are, respectively, 18 and 43.

In order to quantify savings in arithmetic effort whenm >> n we can make the
following estimates. We can sssume that a function and gradient call costs roughly
n times a function-only call and that a function, gradient and search direction call
costs roughlyn2 times a function-only call. Therefore the two-dimensional search
is beneficial if

ρ2D =
extraCF

n2(decrease inCFgp)+n(decrease inCFg)
< 1

For problem 3, withn = 4, ρ2D = 85/(16×18+ 4×43) ≈ 0.185 indicating that
there is an overall saving of effort. The following tables showρ2D for each test
problem and they the 2D search is beneficial in about 90% of the tests. The best
values ofρ2D are not necessarily in the places where we intuitively put them based
on counts of iterations and function calls.

η 0.499 0.45 0.25 0.1
smin = 0.04 0.7 0.61 1 1
smin = 0.05 0.65 0.74 0.5 0.5

Table 6: Performance gainρ2D for Problem 1

η 0.499 0.45 0.25 0.1
smin = 0.03 0.06 0.06 0.012 1.7
smin = 0.04 0.14 0.14 0.07 0.32

Table 7: Performance gainρ2D for Problem 2

9

η 0.499 0.45 0.25 0.1
smin = 0.02 1 0.11 0.04 0.006
smin = 0.03 0.18 0.11 0.08 0.013

Table 8: Performance gainρ2D for Problem 3

η 0.499 0.45 0.25 0.1
smin = 0.01 0.09 0.05 0.08 0.05
smin = 0.015 0.19 0.14 0.33 0.22

Table 9: Performance gainρ2D for Problem 4

η 0.499 0.45 0.25 0.1
smin = 0.01 0.03 0.04 0.09 0.1
smin = 0.02 0.05 0.06 0.09 0.1

Table 10: Performance gainρ2D for Problem 5

3.2 Invariance to scaling

An important issue with regard to general purpose software likeGN_solver is that
behaviour should be relatively insensitive to scaling of the function or variables
(which might depend on a user’s choice of units, for example). The tests (2) –
(4) are intended to be fairly robust and to ensure that, so long as a user makes
reasonable choices ofε, τa and τ f , the algorithm will neither terminate a long
way from a solution nor waste many iterations making trivial improvements in
the vicinity of a solution. The next two tables show that the 2D search is fairly
insensitive to scaling.

Table 11 shows that the behaviour ofGN_solver does not change significantly
when the functionF is scaled by a constantσ. Comparison of these results with
those in the previous section shows that the changes in numbers of iterations and
function evaluations is relatively insensitive to such scaling on the objective func-
tion. Table 12 gives a similar set of results showing performance ofGN_solver
when the variables in the problem are scaled by a factorσ. Once again the varia-
tions in numbers of function calls and iterations are very small.

The results in this section suggest that the convergence tests (2) – (4) are quite
robust. It is also noteworthy that the fall-back two-dimensional search strategy
does not appear to be affected by scaling on the function or the variables, since the
number of special iterations is the same for the scaled and unscaled versions of the
problems in our experiments.

10

Problem 1
σ η = 0.499, smin = 0.0 η = 0.25, smin = 0.04 η = 0.1, smin = 0.05

1000 69(0) 367 80(0) 308 77(1) 309
0.001 69(0) 367 79(0) 306 76(1) 307

Problem 2
σ η = 0.499, smin = 0.0 η = 0.25, smin = 0.03 η = 0.1, smin = 0.04

1000 159(0) 907 198(1) 797 199(2) 815
0.001 158(0) 905 198(1) 797 199(2) 815

Problem 3
σ η = 0.499, smin = 0.0 η = 0.25, smin = 0.02 η = 0.1, smin = 0.03

1000 120(0) 664 105(2) 446 74(4) 355
0.001 118(0) 660 103(2) 442 73(4) 353

Problem 4
σ η = 0.499, smin = 0.0 η = 0.25, smin = 0.01 η = 0.1, smin = 0.015

1000 173(0) 879 137(5) 710 112(23) 928
0.001 172(0) 877 136(5) 708 111(23) 926

Problem 5
σ η = 0.499, smin = 0.0 η = 0.25, smin = 0.01 η = 0.1, smin = 0.02

1000 116(0) 795 75(10) 511 66(11) 480
0.001 115(0) 793 75(10) 508 66(11) 477

Table 11: Performance ofGN solver when function is scaled

4 Discussion and further work

We have described a robust version of the Gaiss-Newton method which includes
a two-dimensional search to prevent slow convergence or premature termination.
This has been implemented as the algorithmGN_solver and results quoted in
the previous section indicate that it fulfills its purpose of being a reliable general-
purpose code for solving non-linear least-squares problems. We have paid particu-
lar attention to testing the robustness of its convergence tests and the effectiveness
of the fall-back two-dimensional search to be used if the Gauss-Newton direction
proves unsatisfactory.

The current version of the program allows a user to specify parametersη andsmin

which control the accuracy of the line search and the threshold steplength which
triggers the two-dimensional search. The test results do not suggest hard and fast
guidelines for choosing parameter values to give the ”best” performance on any
particular problem. However it seems safe to use 0.5> η > 0.1 and 0.02> smin≥ 0.
Fine-tuning of the parameters is probably worthwhile only for users who routinely
solve data-fitting problems involving one type of highly nonlinear model.

We conclude by mentioning some further possible refinements toGN_solver.

11

Problem 1
σ η = 0.499, smin = 0.0 η = 0.25, smin = 0.04 η = 0.1, smin = 0.05

1000 69(0) 367 79(0) 306 76(1) 307
0.001 69(0) 367 80(0) 308 76(1) 307

Problem 2
σ η = 0.499, smin = 0.0 η = 0.25, smin = 0.03 η = 0.1, smin = 0.04

1000 158(0) 905 198(1) 797 199(2) 815
0.001 158(0) 905 198(1) 797 199(2) 815

Problem 3
σ η = 0.499, smin = 0.0 η = 0.25, smin = 0.02 η = 0.1, smin = 0.03

1000 119(0) 662 104(2) 444 74(4) 355
0.001 120(0) 664 105(2) 446 74(4) 355

Problem 4
σ η = 0.499, smin = 0.0 η = 0.25, smin = 0.01 η = 0.1, smin = 0.015

1000 172(0) 877 137(5) 710 112(23) 928
0.001 173(0) 879 137(5) 710 111(23) 926

Problem 5
σ η = 0.499, smin = 0.0 η = 0.25, smin = 0.01 η = 0.1, smin = 0.02

1000 115(0) 793 75(10) 508 66(11) 477
0.001 116(0) 795 75(10) 510 66(11) 480

Table 12: Performance ofGN solver when variables are scaled

4.1 Replacing the bisection method in the 2D search

Although the bisection method has worked quite well as a method of finding a new
point in thep,g-plane, the algorithm in section 2.3 may not be the most efficient
approach that could be taken. It could prove more economical in terms of func-
tion evaluations to combine bisection with quadratic searching. As soon as bisec-
tion locates a range in which the least function value is at the midpoint we know
that a quadratic fitted polynomial will have a minimum within the range and we
can expect to estimate the true minimum more quickly and accurately by repeated
quadratic interpolation than by continuing with bisection.

4.2 Combining extrapolation with the 2D search

Suppose two-dimensional search in case(a) of section 2.4 yields a pointx= such
that F(x+) < F(x(k+1)), wherex(k+1) is the point reached by the standard line
search alongp. Then, instead of simply settingx(k+1) = x+ it might be beneficial
to extrapolate by means of a line search along the new direction ˜p= x+−x(k) (as is
done in case(b) of section 2.4). A suitable trigger for doing such an extrapolation

12

could be based on evaluating

D =
F(x+)−F(x(k))
g(k)T(x+−x(k))

.

If D > 0.75 (say) then a larger step to (at least)x(k) +2p̃ would probably produce
a significant further decrease onF .

4.3 Using the latest gradient in the 2D search

In case(a) of section 2.4 the two-dimensional search is in the plane defined byp
and−g(k), the steepest descent direction at the start of the current iteration. How-
ever, a reason for a line search alongp to terminate with a small steps< smin may
be that the gradient vector is changing rapidly. If this is so, then it may be more
effective to perform a two-dimensional search in the plane defined byp and some
combination ofg(k) andg(k+1) where−g(k+1), the steepest descent direction at the
stopping point of the line search.

References

[1] Cox, M.G., A.B. Forbes, P.M. Fossati, P.M. Harris and I.M. Smith, Tech-
niques for the efficient solution of large-scale calibration problems, Technical
Report CMSC 25/03, National Physical Laboratory, Teddington, U.K., 2003.

[2] Gill P.E., Murray, W., and Wright, M.H., Practical Optimization, Academic
Press, London, New York, 1981

[3] Bartholomew-Biggs M.C., Nonlinear Optimization with Engineering Appli-
cations, Springer 2008

[4] Bartholomew-Biggs M.C. , The estimation of the Hessian matrix in nonlinear
least squares problems with nonzero residuals, Math. Prog., 12:67–80, 1977.

[5] Al-Baali M. and Fletcher R., Variational methods for non-linear least squares.
J. Oper. Res. Soc., 36:405–421, 1985.

13

