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Abstract Numerical simulations are conducted using the Weather &®elseand Forecast
(WRF) numerical model to examine the effects of a marineraiusion (including a sea-
breeze front), in an easterly wind regime on 7 May 2008, orsth&ture of London’s urban
heat island (UHI). A sensitivity study is undertaken to asskBow the representation of
the urban area of London in the model, with a horizontal gesbiution of 1 km, affects
its performance characteristics for the near-surfaceeanperature, dewpoint depression,
and wind fields. No single simulation is found to provide tiverall best or worst perfor-
mance for all the near-surface fields considered. Using &laydr (rather than single layer
or bulk) urban canopy model does not clearly improve the iptiedh of the intensity of
the UHI but it does improve the prediction of its spatial pait Providing surface-cover
fractions leads to improved predictions of the UHI intepsithe advection of cooler air

from the North Sea reduces the intensity of the UHI in the wial suburbs and displaces
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2 C. Chemel, R. S. Sokhi

it several kilometres to the west, in good agreement witlenfadions. Frontal advection
across London effectively replaces the air in the urban. &eaults indicate that there is a
delicate balance between the effects of thermal advectidrugbanization on near-surface
fields, which depend, inter alia, on the parametrizatiorhefurban canopy and the urban

land-cover distribution.

Keywords Numerical simulations Sea breeze Sensitivity experiments Urban

parametrization scheme&Jrban heat island

1 Introduction

London is long known to develop a pronounced heat isl&tthQdler 1969 resulting pri-
marily from the storage of heat in the urban fabric duringdag and released during the
night, the differences in thermal and radiative properdethe surface between urban and
rural areas, and reduced evapotranspiration in urban éeeadOke 1982 Arnfield 2003.
Under calm, clear and dry weather conditions, the diffeeeénamear-surface air temperature
between a representative urban centre and rural locatiarg&en time, referred to as the
urban heat island (UHI) intensity hereafter, typicallyalees several K during the night and
can be negative during the day.

Although limited, several studies have reported obsesmatiof London’s heat island.
Analysis of differences in daily minimum and maximum air fgratures during 1959 be-
tween central London at Kensington and Wisley, a rural sitehe south-west outskirts,
indicated that values of minimum temperature most fredyetiffered by 0.8 K, with a me-
dian of 1.7 K and a maximum of 6.1 KChandler 1962 The area of highest temperatures
(referred to as the thermal centre) was found to usually diehreast of central London,

reflecting the density of urban development (see B).and the displacement of the heat
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Response of London’s urban heat island to a marine air iotmus an easterly wind regime 3

island by prevailing light south-westerly winda/atkins et al(2002 measured the London
UHI intensity for summer 1999, with the intensity reaching @n some days and averaged
2.8 Kiin August. The nighttime intensity tended to decreask tlie radial distance from the
thermal centre. This thermal centre was found to be locat¢ie City of London borough,
which is characterized by tall buildings and high anthragag heat release. This finding is
supported by the earlier surveys of London’s heat islan€hgndler(1962, which indi-
cated that the thermal centre is most frequently locatethreast of central London. While
its location is usually well defined for calm, clear and drghis, it can move by several kilo-
metres in relation to shifts in wind direction and the preseaf clouds (see, for instance,
Kolokotroni and Giridharan 200&iridharan and Kolokotroni 2009

As with the large majority of megacities in the world, Londisnlocated in a coastal
area. On certain occasions cooler marine air is advecteggtondon by a sea-breeze front
(SBF) from the North Sea or the English Channel. SBFs develogtly from late spring
through the summer, when the surface of the land heats up rapidly than that of the
sea. Their characteristics depend not only on the diffeakehéating but also on the large-
scale weather conditions (e.gstoque 1962Bechtold et al. 1991Arritt 1993; Zhong and
Takle 1993 Atkins and Wakimoto 1997 Anticyclonic conditions in the North Sea or Baltic
Sea regions, leading to easterly winds, are most favourabtee development of SBFs
around the English Channel and the southern North Seefier 197} Such anticyclonic
conditions tend to occur more frequently in spring than imswer when the sea surface is
cooler.

Marshall(1950 described a SBF that originated at the east coast, tralemsalon, and
penetrated 150 km inland under relatively weak (3 Th)®asterly winds. The SBFs that
develop on the south coast can penetrate to over 100 km freoidist, although such deep

penetration inland is not frequerBipson et al. 1977 Damato et al(2003 analyzed the
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occurence of SBFs around the English Channel and the sautteth Sea during the warm
season (between May and September) of 2000 and found thatléimel penetration was
usually in the range 20 — 40 km from the coast in southern Egldo SBF was observed to
cross the North Downs (see Fith). Hence, we may conclude that the arrival of such SBFs
in London is scarce. The analysis also revealed a higherecce of SBFs eastward along
the English Channel but with a lesser inland penetratioe.stiuth-westward retreat of these
SBFs was suggested to be the result of the convergence betine8 BFs originating from
the English Channel and the Thames Estuary. Similar casesnvErgence were reported
by Eastwood and Rid€961), Findlater(1964 andSimpson et al(1977).

Several studies have reported complex interactions betaeg®BF and UHI (see, for
instanceMiller et al. 2003 Crosman and Horel 20)0Interestingly, most of these studies
focused on the influence of urban areas on the evolution o8BI, whose characteristics
may be weakened or strengthened by interactions with the. WhH presence of the UHI
intensifies the SBF and delays its penetration inlafaslikado 19901992 Kusaka et al.
200Q Freitas et al. 2007Dandou et al. 2009 The speed of the SBF increases as the size
of the urban area increase8Hashi and Kida 2002 In addition, surrounding topographic
features and complex coastline geometries can lead to amated interactions between a
SBF and UHI Ohashi and Kida 20Q4.emonsu et al. 2006

Less attention has been paid to the modulation of the UHhsitg by the advection of
cooler marine air by the SBF and to the contribution of the S8 Boundary-layer venti-
lation in the urban are&edzelman et a{2003 analyzed surface weather observations in
the Greater New York City Metropolitan area for the years7188d 1998 and found that
SBFs typically delay the UHI of New York City for several hsuand displace it about
10 km inland during spring and summer. In a numerical madgliase study of a SBF in

the New York City areaThompson et al(2007) found that the SBF had a large impact on
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Response of London’s urban heat island to a marine air iotmus an easterly wind regime 5

the transport and diffusion of passive tracer plumes. Thdysshowed that the SBF not
only changed the direction of plume motion but also redisted the tracers in the vertical.
As the SBF passed a release location, upward motion at the fesulting in boundary-
layer ventilation, led to a decrease in near-surface trasecentration. After the passage
of the SBF, tracers were released and confined into the sha#la-breeze flow, increasing
near-surface tracer concentration.

Thompson et al(2007) also pointed out that the local effects of SBFs in an urban
environment are sensitive to the level of urbanization aided case studies of these effects
in urban areas with heterogenous land cover are essentiavestigate such sensitivity.
In the present study, we use numerical simulations to exartfia effects of a marine air
intrusion (including a sea-breeze front), in an easterlgdviegime on 7 May 2008, on
the structure of London’s UHI. The simulations are perfadméth the Weather Research
and Forecast (WRF) numerical mod&k@amarock et al. 2008or multiple nested domains
with the innermost domain covering London and its rural aumdings with a horizontal
grid resolution of 1 km. In order to evaluate the model perfance, we also investigate
the sensitivity of the simulated near-surface air tempeeatdewpoint depression and wind
fields to the representation of the urban area of London imthael. In the next section, we
detail the set-up of the model and the design of the numegiqagriments, with the model
evaluation presented in Se@t. The response of London’s UHI to the marine air intrusion

is analyzed in Sect and concluding remarks are given in Séxt.

2 Design of the numerical experiments

Numerical simulations are conducted for a case study of 7 208, which presents rele-

vant featuresohnenstengel et al. 20L1IThe synoptic-scale surface pressure distribution
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on this day exhibited a typical pattern for late spring, vethanticyclone located over north-
ern Europe and extending between the British Isles and thi B#ates. As indicated in the
Introduction, this situation is favourable to the develgminof SBFs around the English
Channel and the southern North S8aifner 197). The sky was clear over south-east Eng-

land.

The WRF model, version 3.2.1, was run on multiple grids using-way nesting with
the innermost domain covering London and its rural surrigglat a horizontal resolution
of 1 km. Tablel gives the spatial coverage and horizontal resolution oftisted grids used
for the simulations. The domain covering the UK and the Répuf Ireland using a 4-km
horizontal resolution (Domain 3) is displayed in Fig. The calculations were made on 53
vertical levels up to 50 hPa (about 20 km). The grid mesh wastcsted along the vertical
axis to accommodate a high vertical resolution close to tbergd surface (i.e., 15 layers

below 2000 m with the first layer approximately 5 m deep).

The simulations commenced on 6 May 2008 at 1200 UTC and weréru42 h (i.e.,
until 8 May 2008 at 0600 UTC). Initial and lateral boundaryditions of the outer domain
(Domain 1) were derived from the European Centre for MedRamge Weather Forecasts
(ECMWEF) gridded analyses available every 6 h with a horizbn¢solution of 0.5 on
operational pressure levels up to 50 hPa for verticallyritisted data, and surface and soil
levels for land-surface and deep-soil data. The sea-®utkEperature was prescribed at
the initial time using the Real-Time Global, SST High-Resion (RTG_SST_HR) analysis
available daily at a resolution of 1/4@emmill et al. 200Y. A grid nudging technique
(four-dimensional data assimilatioBtauffer and Seaman 199@as employed for the outer
domain during the first 6 h of simulation in order to spin-up thodel by constraining the

model towards the analyses. The first 6 h of simulation weseadded for the analysis.
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Response of London’s urban heat island to a marine air iotmus an easterly wind regime 7

Urban areas are no longer entirely subgrid-scale featunestheir horizontal extent is
much larger than that of a few model grid cells. This is theedasthe Greater London area
(see Fig1b), which covers an area of more than 1500*kin Domain 3 and Domain 4 using
horizontal resolutions of 4 and 1 km, respectively. Howggeen a horizontal resolution of
1 km is still too coarse to resolve the (thermo-) dynamicshefftow in the urban canopy.
Therefore, the urban canopy must be parametrized.

The urban canopy can be parametrized in numerical weatkdigion (NWP) models
and in general circulation models (GCMs) in a number of déffe ways fMasson 200p
Three urban parametrization schemes have been includegtiasin the WRF model
since version 3.1 (se€hen et al. 2011for a description of the integrated urban modelling
system coupled to the WRF model, its evaluation, and agits): (i) a bulk parametriza-
tion scheme described hyu et al.(20086), (ii) the single-layer urban canopy model (SLUCM)
developed byKusaka et al(2001) and Kusaka and Kimurg2004), and (iii) the multi-
layer urban canopy model developed Iartilli et al. (2002, called the building effect
parametrization (BEP). The building energy model (BEM)ed to BEP, developed by
Salamanca and Martil[R2010, is also available as an option from the WRF model version
3.2 onwards. A sensitivity study was undertaken to assesstte parametrization of the
urban canopy (i.e., the selection of one of the options roeatl above) and the catego-
rization of the urban land cover in the model affect its perfance characteristics for the
near-surface air temperature, dewpoint depression, amdl fieilds. Results of this sensitiv-
ity experiment are reported in Se8t.

The land-surface energy budget was calculated using thencoity Noah land-surface
model Chen and Dudhia 2001For a given grid cell, the sensible heat fleK is aggregated
(i.e., weighted by its areal coverage), so th&t= .%, 74, + . %, .74, where.#, and.7#,, and

ZFy and.74, are the fractional areas and sensible heat fluxes for ngtigalnon-urban) and
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urban surfaces, respectively, is calculated by the Noah land-surface model, affdis
calculated by the urban parametrization scheme. The lagst flux, longwave radiation
flux, albedo and emissivity are estimated in the same wayd{cawer types were assigned
to the grid cells for Domain 1 and Domain 2 using the modifie@imational Geosphere-
Biosphere Programme (IGBP)/M@ate resolutionrhaging_$ectroradiometer (MODIS)
20-category 1-km resolution land-cover dataset, provisigld the WRF preprocessing sys-
tem. This dataset contains a single urban land-cover aatefgo which the urban fraction
Zy was set to 95%C¢hen and Dudhia 2001

The bulk urban parametrization scheme uses only one urlpaiclaver category. For
this urban parametrization scheme, the IGBP/MODIS urbad-tzover category was also
used for Domain 3 and Domain 4. In the standard version of tiRFkhodel, the SLUCM,
BEP and BEP + BEM urban parametrization schemes can eitleea stngle urban land-
cover category or the three urban land-cover classes of 982 National Land Cover
Dataset (NLCD) for the United States, for which default paeger values for the schemes
are provided with the model. These classes are defined astensity residential, high-
intensity residential and commercial/industrial/tram$ation including infrastructure, for
which.%, is set in the WRF model to 0.5, 0.9 and 0.95, respectively e et al. 2011
for further details). The urban grid cells for Domain 3 anchitzon 4 were mapped onto these
three classes according to the fractional area that isbpilvithin each grid cell, which was
derived from the Landsat-based 2000 Centre for Ecology amidtogy (CEH) 25-m reso-
lution land-cover dataset. The land covers used for thelatioas (i.e., IGBP/MODIS and
CEH + IGBP/MODIS) are illustrated in Fi@, and a summary of the different simulations
that were performed is given in Talile

A ‘very’ high vertical resolution (say in the order of 5 m) ieessary in the urban

canopy in order to obtain full advantage of the multilayerPBiEodel because it requires
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several layers within the urban canop§drtilli et al. 20039). In contast to BEP, the bulk urban
parametrization scheme and SLUCM parametrize the urbaopgeas a whole. Hence, for
these two parametrization schemes, the first vertical ldgpth was set to about 20 m (i.e.,
above the mean building height).

We used the non-local boundary-layer parametrizationreetieveloped bf3ougeault
and Lacarréer€1989, which can be used with the three urban parametrizatioarsek. The
Monin-Obukhov surface-layer scheme was coupled to the aamiynNoah land-surface
model to provide surface forcing in terms of momentum, healt moisture fluxes. Other
physics options that we used include the Rapid Radiativesfea Model for GCMs (RRTMG)
radiation packagedcono et al. 2008 the two-moment bulk microphysics parametrization
scheme developed bylorrison et al.(2009 and the ensemble cumulus parametrization
scheme introduced b@rell and Dévény{2002 for the two grids with a horizontal resolu-
tion larger than 4 km (i.e., for Domain 1 and Domain 2). For fiher-resolved grids (i.e.,

for Domain 3 and Domain 4), convection was explicitly resalv

3 Model evaluation

3.1 Observations

The monitoring sites used for the model evaluation are tedan Fig.2. Site 1 (Westmin-
ster - Marylebone Road) is part of the London Air Quality Netkw(LAQN) while all the
other sites are part of the UK Met Office Integrated Data Arel$ystem (MIDAS) land-
surface stations, including surface SYN@PRbservation (SYNOP) and MEDbrological
Aviation Report (METAR) stations. The automated stations provida fat near-surface
(2-m) temperature, (2-m) dewpoint depression, and (10-mylwpeed and direction, ex-

cept the LAQN station that does not measure the dewpointe8yaic errors for the data
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from the UK Met Office MIDAS land-surface stations should é&deen accounted for by
a proper calibration of station instrumentatidok( Meteorological Office 2006 For the
LAQN station, air temperature, and wind speed and direci@routinely measured using
a Campbell CSAT3 sonic anemometer, maintained to qualgyrasce procedures. These

measurements are subjected to quality control beforeaaitiiin.

3.2 Near-surface fields

The predicted values for the near-surface fields (2-m teatpes, 2-m dewpoint depression,
10-m wind speed and 10-m wind direction) are compared to tisierved counterparts. For
the bulk and SLUCM urban parametrization schemes, the waaaopy is parametrized as
a whole and the values for the predicted near-surface fiedde imferred using the Monin-
Obukhov similarity theory (se&usaka et al. 2001Kusaka and Kimura 2004.iu et al.

2006. The multilayer BEP model includes several layers witthia tirban canopy, where
the Monin-Obukhov similarity theory is not valid (e.gRptach 1993 so that the values for
the near-surface fields were set equal to those of the lowedéhtevel (seéMartilli et al.

2002).

The mean biasMB), mean absolute erroMAE) and hit rate KIR) are calculated for
hourly mean near-surface fields for the simulations S1 toc8isidering all the sites, all
the urban sites only, and all the rural sites only (see Tapl&hese statistical metrics used
for model evaluation have been suggestedSiohlinzen and SokiR008. For a set ofN
predicted valueg?; of a variable?” with their counterpart observed valu€s wherei refers

to a given time and locatioéB, MAE andHR are defined as

N
zy%—@maMHR:

Zl -~

1N 1 s
MB= =Y (Z —G), MAE = = (1, |#— Gi| <DA),
N i; o N i; o
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whereDA is the desired accuracy for the variablé MB is used to describe the overall
overestimation or underestimation by the modelling systehile MAE gives information
on the average errad R quantifies the fraction of the predicted values that agrek their
counterpart observed values for a desired accuracy. Hergak use the values for desired
accuracy reported bgox et al.(1998, namely 2 K for air temperature and dewpoint de-
pression, 1 and 2.5 nT$ for wind speed less than and greater than 10f espectively,
and 30 for wind direction. These values were established by theddnStates Air Force
(USAF) and Defence Special Weapons Agency (DSWA) for medesoodel applications
over five very different regions of the world and during diffiat seasons of the year and,
therefore, are expected to be applicable to a wide rangepitations, including this one.
Since there are no universal model performance criteridifdy MAE, andHR, we set the

criteria as follows:

air temperatureflMB| < 0.5 K, MAE < 2 K, andHR > 90%

dewpoint depressionMB| < 1 K, MAE < 2 K, andHR > 70%

wind speed{MB| < 1 m s, MAE < 2ms!, andHR > 50%

wind direction:MB| < 10°, MAE < 30°, andHR > 70%

Table3indicates that no single simulation provides the overadt beworst performance
for all the near-surface fields considered in our work. Thidifig is consistent with that of
Grimmond et al(2010, which reports on an international effort to understareldbmplex-
ity required to model the surface energy balance in urbaasa@immond et al.(2010
compared 33 urban energy balance models with varying degfesomplexity against site
observations. One striking conclusion of this comparisahat, overall, the simpler models

perform as well as the more complex models.
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Generally, the simulations reproduce better 2-m temperaind dewpoint depression
than 10-m wind speed and direction, for the criteria that eteirs this work. The simpler
urban parametrization schemes perform as well as the mat@ssicated schemes when
considering all the statistical metrics, whether all thessiall the urban sites only, or all
the rural sites only are considered. The only significarfedéhce between the different
schemes that can be identified in TaBles for wind speed in urban areas, for which BEP
performs best. The wind speed in urban areas is overestimdten using the bulk urban
parametrization scheme and SLUCM while it is slightly uredgimated when using BEP. A
similar finding was reported b§alamanca et a[2011). This suggests that the drag effects of
buildings are better captured with a multilayer (rathentbiagle layer or bulk) urban canopy
model. Interestingly, the inclusion of building anthropoés fluxes in BEP + BEM does not
improve overall model performance compared with BEP. Thay tme due to inappropriate

default parameter values for BEM.

The categorization of the urban land cover, according tdrd@ional area that is built-
up within each grid cell, improves the overall performance SLUCM while it results in
similar performance for BEP. When considering the urbagsditr SLUCM,HR increases
by approximately 9, 9, and 13% for 2-m temperature, 2-m déwptepression, and 10-
m wind speed, respectively, while it decreases by less tBarfa2 10-m wind direction
(see Tabled). As part of the international urban energy balance modelparison,Grim-
mond et al(2011) also reported that providing surface-cover fractionsegelty results in
better performance, even though a poor choice of paramalges can affect dramatically

the performance of models that otherwise perform well.
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3.3 UHI intensity

The UHI intensity is calculated as the difference in 2-m terapure between Westminster -
Marylebone Road and Wisley (see sites 1 and 11 in&igt a given time. The site at West-
minster - Marylebone Road is located in central London inresdly built-up area, which is
categorized in the model as low-intensity residential @eet.2). As for the site at Wisley, it
is situated in a rural landscape, which is categorized imibdel as crop land. Times series
of observed and predicted UHI intensity are presented inJ;ighere the maximum ob-
served UHI intensity is in the range 3 — 5 K. This range of valisesimilar to that reported
for similar conditions and time of the year in LonddBohnenstengel et al. 20Land other
megacities, such as Paris, Fran8arkar and De Ridder 20L1The predicted UHI inten-
sity has a similar temporal variability for all the model silations (S1 to S7). Overall, the
model simulations reproduce reasonably well the increasieei UHI intensity after sunset
and its decrease before sunrise. There is no clear evideatading a multilayer or single
layer (rather than bulk) urban canopy model improves theesgmtation of the intensity of
the UHI. The categorization of the urban land cover, accydd the fractional area that is

built-up within each grid cell, leads to improved prediasoof the UHI intensity.

The UHI intensity is underpredicted by the model by 2 — 3 K fro890 to 0600 UTC
on 7 May 2008 for all the model simulations. The predicted Uhténsity peaks at the
same time as the observed UHI intensity. The predicted 2mpégature at the rural site
(Wisley) decreases by less than 1 K from 0300 to 0500 UTC entslobserved counterpart
decreases by more than 2 K (not shown). From the model pieaicand the limited ob-
servations available, there is no indication of any larg@esfeature that could be the cause
for this discrepancy. This positive 2-m temperature biatémodel during this period was

found for only a few sites in low-lying rural areas. For theges and during this period, the
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observations indicate that the 2-m dewpoint depressiomeasto zero (i.e, the near-surface
air was close to saturation). Since the sky was clear and ihe was light, it is probable
that ground fog had formed. The predicted 2-m dewpoint degioa was overestimated by
about 1 K when compared to its observed counterpart. Theegtiaocies for the predicted
2-m temperature and dewpoint depression are likely to beethdt of local subgrid-scale
topographic effects, in relation to soil type, vegetatippet and orography, that are not in-
cluded in the model. Having said that, we cannot rule out thesible impact of the initial

conditions for the soil moisture and temperature.

4 Effectsof themarineair intrusion on London’s UHI

A caveat is worth noting here. The model results discuss&eat.3 are inevitably limited

to particular times and sites. It is difficult to assess thgidy the generality of our results.
Even though using a multilayer (rather than single layerutk)ourban canopy model does
not clearly improve the prediction of the intensity of the Yk does improve the prediction
of its spatial pattern (i.e., similar performance for urkzrd rural sites) as can be seen
in Table 3. Since BEP + BEM does not significantly improve results comgao using
BEP alone, we focus our attention in the following to reswoitssimulation S6 (CEH +
IGBP/MODIS and BEP, see TabB®.

The time evolution of the spatial distribution of predictat observed 2-m temperature
in the subset of Domain 4 used for analysis of model resudis E$g.1b) for simulation S6
(CEH + IGBP/MODIS and BEP, see Tak# is presented on 7 May 2008 at 0900, 1200,
1500, 1800, and 2100 UTC in Fid. The signature of London’s UHI is clearly discernible,
and predicted near-surface temperatures are in good agn¢evith their observed coun-

terparts. Topographic influences are evident in Bjgvhere air is cooler above the higher
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orographic features than in the low-lying areas. Such thégradients induced by topo-
graphic effects in the London area were noteddiandler(1962. The advection of cooler
air from the North Sea reduces the intensity of the UHI in thiedward suburbs and dis-
places it 5 to 10 km to the west, in good agreement with obteng The cooling effect of
the marine air intrusion diminishes progressively overdberse of the night. The thermal
centre gradually shifts back toward the City of London bgtoshortly after midnight (not
shown). A similar effect was reported IBedzelman et a(2003 for the UHI of New York

City during strong sea breezes.

During this period of easterly winds, the airflow is chaneelthrough the Weald, the
North Downs and Medway Gap (see also Flf). During daytime, the air temperature
rises more over land than over the sea. A baroclinic zonentwgd as a SBF develops
at the transition between the continental and marine aisegadg-rom 0900 to 1200 UTC,
as the marine air penetrates inland toward the west-soat-sector, the SBF crosses the
North Downs east of Medway Gap and interacts with the soattegly flow, creating a
convergence zone (perpendicular to the flow direction)ctvpropagates westward. The air
is lifted along the convergence line. This convergencewas also noted bBohnenstengel

et al.(201) in a numerical simulation of London’s UHI on that day.

A (passive) tracer was released within the first model lapewa the ground surface to
investigate the impact of the marine air intrusion on tramspharacteristics above London’s
atmosphere. It was initialized at the beginning of the maaédulation with a zero mixing
ratio everywhere in the atmosphere, except within the fisteh layer, where its volume
mixing ratio was set to 1 ppbv. The time evolution of a wedte@rtical cross-section of
tracer volume mixing ratio across South London, just noftihhe North Downs (see Figb)

is shown on 7 May 2008 at 0900, 1200, 1500, 1800 and 2100 UT@)irbF
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At 0900 UTC, the tracer is mixed in the growing boundary layegr land. Over the sea,
it is confined near the surface into a shallow density currEné leading edge of the den-
sity current (i.e., the SBF) is clearly visible, with a tiltj of the isolines of virtual potential
temperature. At 1200 UTC, the SBF is well developed. Valdeb® gradient Richardson
number at the rear of the leading edge are less than theatrttue of 0.25, the condition
required for Kelvin-Helmoltz instabilities to developi@zin 1958. Even though the gradi-
ent Richardson number is required to be less than 0.25 faahilisies to develop, there is
evidence that turbulence can exist up to a gradient Ricbardamber in the order of unity
(e.g.,Galperin et al. 2007 Kelvin-Helmoltz billows (KHBs) form at the upper boungar
of the sea-breeze density current. Trailing KHBs are nabte at 1200, 1500 and 1800
UTC. The existence of well-developed KHBs in the presené cagdy is supported in the
observational study d®?lant and Keiti(2007), which indicates that the formation of distinct
KHBs is enhanced for propagation of the SBF with a tail wind for strong ambient wind
speeds.

The tracer is lifted by the SBF and vented out of the boundayer into the free tro-

posphere (see for instance Figl), where the tracer can be transported over long distances.

The tracer lifted up by the SBF is also mixed by the KHBs sed\lareby increasing tracer
volume mixing ratio above the sea-breeze density currestl &r advection across London
efficiently cleanses the urban area of tracer, increasaggtrconcentration downwind.

The above description of the marine air intrusion eventessiime for all the sensitivity
simulations (S1to S7). However, there are subtle diffezemelated to different parametriza-
tions of the urban canopy. As pointed out in S&the predicted 10-m wind speed in urban
areas tends to be overestimated, when compared to obsesdtr the simulations using
the bulk urban parametrization scheme and SLUCM, while geserally underestimated

for the simulations using BEP. Times series of observed asdigted 10-m wind speed and
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2-m temperature at London City (see site 22 in Bjgare presented in Fi@. The predicted
10-m wind speed is systematically underestimated at ttésveiien using BEP while it is
reasonably well captured when using the bulk urban par@agon scheme and SLUCM.
The understimation of the 10-m wind speed when using BEP i®mpmnounced during
the marine air intrusion event when it reaches about 3 f She differences in terms of
predicted 2-m temperature between the simulations usiifigreit urban parametrization
schemes, at this site, are not as marked as those for the liwinspeed. The predicted
2-m temperature is within 1 — 2 K of its observed counterpartafl the sensitivity simula-
tions. Interestingly, the agreement remains good duriegrthrine air intrusion event. This
indicates that there is a delicate balance between the®fiethermal advection and urban-
ization on near-surface fields, which depend, inter alighernparametrization of the urban
canopy and the urban land-cover distribution. A quantificabf these effects requires a
carefully designed idealized case study, which is kept imthfior future work. For instance,
in order to quantify the effects of thermal advection, oneld@onsider London as a series
of strips perpendicular to the wind direction, and investiigthe effects of sequentially re-
placing the strips at the upwind edge of the city by non-ursiaips until it consists of only

non-urban strips.

5 Concluding remarks

This modelling work documented the response of London’s ltHd marine air intrusion
(including a sea-breeze front), in an easterly wind regiimea case study of 7 May 2008.
Simulations were performed with the WRF model, version13.2n multiple grids using
one-way nesting with the innermost domain covering Londod igs rural surroundings

with a horizontal grid resolution of 1 km.
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A sensitivity study was undertaken to assess how the caregion of the urban land
cover and the parametrization of the urban canopy in the WRdetraffect its performance
characteristics for the near-surface air temperature pdew depression, and wind fields
(see Sect3). It was demonstrated that the WRF model is capable of repind those
fields with a horizontal grid resolution of 1 km, for this castedy and at the locations of
the considered monitoring sites. It was shown that no sisighellation provides the overall
best or worst performance for all the near-surface fieldsidened. The categorization of
the urban land cover, according to the fractional area thhtilt-up within each grid cell,
resulted in better performance for SLUCM and similar perfance for BEP. Using a mul-
tilayer (rather than single layer or bulk) urban canopy nhatieé not clearly improve the
prediction of the intensity of the UHI. Having said that, itldmprove the prediction of its
spatial pattern (i.e., similar performance for urban andlrsites) as can be seen in TaBle
Providing surface-cover fractions led to improved pradits of the UHI intensity.

From our results, we clearly saw evidence of the interaatfcthe marine air intrusion,
in an easterly wind regime, with London’s UHI (see Sé&}t.This is a two-way interaction
in the sense that the UHI acts to intensify the differentedting between the continental
and marine air masses and thus the SBF. The advection ofrciolitom the North Sea
reduced the intensity of the UHI in the windward suburbs aisgldced it 5 to 10 km to
the west, in good agreement with observations. Frontalaibreacross London effectively
replaced the air in the urban area as indicated by the traperienent. The redistribution of
the tracer in the vertical did have a significant impact orrseaface concentration. SBFs
may be an important contributor to boundary-layer venttatn the London area. Marine

air intrusions will also affect the behaviour of pollutadkswnwind, thereby impacting air

quality (see alsdiller et al. 2003. Results also indicated that there is a delicate balance

between the effects of thermal advection and urbanizatiomear-surface fields, which
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depend, inter alia, on the parametrization of the urban marmd the urban land-cover
distribution.

The UHI intensity varies seasonally, so it would be inténgsto evaluate whether the
model performs in a similar way for a contrasting winter casaly. Further work will
include a detailed comparison with field observations to diected in 2012, such as the

comparison by ee et al.(20117).
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4 used for analysis of model results (see Hig) for (a) the IGBP/MODIS

dataset an¢b) the CEH + IGBP/MODIS dataset. The monitoring sites used
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Tables

Table1 Spatial coverage and horizontal resolution of the gridsl deethe simulations

Domain Typical extent Grid points (E-W N-S) Grid size (km)
Domain1  North Atlantic, Europe, and North Africa 192128 48

Domain2  Europe 32% 257 12

Domain3 UK and Republic of Ireland 256 256 4

Domain4  South-east England 257257 1
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Table 2 Description of the simulations used for the sensitivity exments

Run Land-cover dataset Urban parametrization scheme
S1 IGBP/MODIS Bulk parametrization

S2 IGBP/MODIS SLUCM

S3 IGBP/MODIS BEP

S4 IGBP/MODIS BEP + BEM

S5 CEH + IGBP/MODIS SLUCM

S6 CEH + IGBP/MODIS BEP

S7 CEH + IGBP/MODIS BEP + BEM
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Table 3 Domain-wide statistics for hourly mean near-surface fi€ds temperature, 2-m dewpoint depres-
sion, 10-m wind speed, and 10-m wind direction), considgaii predicted/observed pairs of values from
the sites reported in Fi@ for the period from 6 May 2008 at 1800 UTC to 8 May 2008 at 060@CUThe
statistical metrics that are reported here, and definedeinietkt, namely mean bia8/B), mean absolute er-
ror (MAE) and hit rate KIR), are given for the simulations S1 to S7 (see text), consigeall the sites, all
the urban sites only, and all the rural sites only. The vathas are reported in bold font do not fulfill the
performance criteria set in Se&t2

2-m temperature

Run _MB(K) MAE (K) HR (%)
Al Urban Rural All Urban  Rural All Urban  Rural

S1 021 007 050 081 080 095 9397 9548 89.45
S2 —-0.39 -0.89 0.05 095 129 092 89.95 8342 87.94
S3 Q05 -0.37 037 080 091 090 9397 9246 9096
S4 Q07 -0.30 040 080 088 091 9397 9196 9096
S5 -0.29 —-0.43 017 093 106 095 89.95 9246 85.43
S6 Q19 020 044 081 081 094 9447 9447 89.45
S7 Q22 027 046 083 083 096 9347 9297 89.45

2-m dewpoint depression

RUN MB (K) MAE (K) HR (%)

All Urban Rural All Urban  Rural All Urban  Rural
S1 Q67 093 064 146 184 135 7387 6382 77.39
S2 —0.09 -0.84 014 122 162 117 8091 7085 7990
S3 Q45 -0.29 049 134 162 126 7688 7337 7839
S4 Q47 -0.19 051 136 163 128 7538 7286 7739
S5 Q04 -0.28 024 123 140 119 7990 7990 7889
S6 062 039 056 141 160 128 7487 7186 7940
S7 Q65 046 058 145 163 130 7387 7186 7889
10-m wind speed
RUN MB (K) MAE (K) HR (%)

All Urban Rural All Urban  Rural All Urban  Rural
S1 2.05 247 1.63 2.36 2.64 1.94 16.08 17.09 23.62
S2 1.76 1.82 154 212 212 1.90 2161 2261 2513
S3 1.28 -0.01 1.59 175 130 190 28.64 46.23 2563
S4 1.28 0.01 1.59 175 129 191 2814 4623 2513
S5 177 1.34 153 213 178 189 2211 3518 26.63
S6 111 -0.44 155 1.68 138 187 3317 4271 29.65
S7 112 -0.42 155 1.68 138 187 3266 4221 29.65

10-m wind direction

Run _MB(K) MAE (K) HR (%)
All Urban Rural All Urban  Rural All Urban  Rural

S1 —6.26 259 -11.62 27.64 2679 38.93 8442 8191 7638
S2 —4.06 199 —4.10 2633 2788 35.48 8442 7990 7588
S3 —-8.29 -021 -12.44 2731 2647 3857 84.42 7090 7638
S4 -8.19 008 —-12.37 27.30 2646 38.58 8442 7990 7638
S5 —2.26 —5.45 009 2518 35.80 2933 8543 7839 7688
S6 -852 1564 -1.67 2733 3847 3034 8442 7688 7688

S7 -840 —15.39 —164 2735 3847 3040 8493 7739 7688
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Figures
(a) Domain 3, terrain elevation (m a.m.s.l.) (b) Subset of Domain 4
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Fig. 1 (a) Orography of Domain 3 (see the text and TableThe solid and dashed polylines represent the
areas of Domain 4 and a subset of it (see plot b), respectifiglySubset of Domain 4 used for analysis
of model results. The polylines delineate the administeatireas. The red polyline represents the Greater
London area, which encompasses the City of London and theldroboroughs. Orographic features are
shown using contours with shaded patterns (hashed- anglesfified patterns for terrain elevation greater
than 100 and 150 m a.m.s.l., respectively)
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(a) Land cover — IGBP/MODIS
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Fig. 2 Spatial distribution of the dominant land-cover type in théset of Domain 4 used for analysis
of model results (see Figb) for (a) the IGBP/MODIS dataset an@) the CEH + IGBP/MODIS dataset.
The monitoring sites used for the model evaluation preseinteSect.3 are indicated by open circles: 1 —
Westminster - Marylebone Road, 2 — Woburn, 3 — Luton, 4 — Ro#ted, 5 — Stansted, 6 — Shoeburyness,
Landwick, 7 — Benson, 8 — St Jamess Park, 9 — Heathrow, 10 -holpri1 — Wisley, 12 — Kew (Royal Botanic
Gardens), 13 — Gatwick, 14 — Kenley Airfield, 15 — East Mallit§ — Lydd-Ashford Airport, 17 — Odiham,
18 — South Farnborough, 19 — Gravesend, Broadness, 20 — Highribe HQSTC, 21 — Biggin Hill, 22 —
London City, 23 — Southend Airport, 24 — London Weather Gen®5 — Andrewsfield, 26 — Charlwood,
27 — Eton Dorney, and 28 — Heathrow?2 (see text for detailsg. jidlylines delineate the administrative areas.
Orographic features are shown using contours with shadeerps (hashed- and stipple-filled patterns for
terrain elevation greater than 100 and 150 m a.m.s.|., ctisply)
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Fig. 3 Time series of observed (symbols) and
predicted (solid/dashed lines) urban heat island
(UHI) intensity, defined as the difference in 2-
m temperature between Westminster - Marylebone
Road and Wisley (see sites 1 and 11 in Flpgat

a given time, for the simulations S1 to S7 (see Ta-
ble 2) for the period from 6 May 2008 at 1800 UTC
to 8 May 2008 at 0600 UTC
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20080507, 2—m temperature (°C)
soon T e L@F 3 (:\6\;51-‘@ <—<— 26
Fg > -~ ; ~J(a) 0900 UTC
(\S‘&@S

s | W4
P R
PRPRPRPASEA

T e 22

P N

51°45'N PAPRPRIY 7 -
o
AT e 20
~Ye = k(«(o(/L/(/A/
< - gy 18
51°30"N RV 3 < 4T ST
= 8
= -
T 14
55 o s

51°15'N

i i sl
52°N < i ¥ < |(c) 1500 UTC[H

51°45'N

51°45'N

51°30'N

51°30'N

51°15'N

51°15'N

51°N
1oW 0°30'W 0° 0°30'E
SRC W= o= S
-
(d) 1800 UTC

52°N 52°N
51°45'N BT ¢ Yy 51°45'N B

51°30'N =Sy 51°30'N

51°15'N R & B 51°15'N I

51°N 51°N §

Fig. 4 Spatial distribution of the predicted 2-m temperature i@ slubset of Domain 4 used for analysis
of model results (see Fidb) for simulation S6 (CEH + IGBP/MODIS and BEP, see TaBjeon 7 May
2008 at(a) 0900 UTC,(b) 1200 UTC,(c) 1500 UTC,(d) 1800 UTC ande) 2100 UTC. The observed 2-m
temperatures from the monitoring sites used for the modalliation presented in Se@&.(see Fig.2) are
reported as filled circles. Predicted 10-m horizontal wiedtars are superimposed. The polylines delineate
the administrative areas. Orographic features are showg esntours with shaded patterns (hashed- and
stipple-filled patterns for terrain elevation greater th@0 and 150 m a.m.s.|., respectively)
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20080507, tracer volume mixing ratio (pptv)
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Fig. 5 West-east vertical cross-section of tracer volume mixatgracross South London, just north of the
North Downs (see Fidlb), for simulation S6 (CEH + IGBP/MODIS and BEP, see Ta})len 7 May 2008 at
(a) 0900 UTC,(b) 1200 UTC,(c) 1500 UTC,(d) 1800 UTC ande) 2100 UTC. Predicted two-dimensional
wind vectors in that vertical cross-section are superiragossolines of virtual potential temperature are
indicated as solid lines with 1 K interval contours. Rictsmd number values are shown using contours with
shaded patterns (hashed- and stipple-filled for valuesiésan 0.5 and 0.25, respectively). The black strip
along the ground surface indicates the urban area of London
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Fig. 6 Time series of observe@ gymbols) and predicted (solid/dashed lines) 10-m windd&eand 2-m
temperaturéb) at London City (see site 22 in Fig), for the simulations S1 to S7 (see TaB)dor the period
from 6 May 2008 at 1800 UTC to 8 May 2008 at 0600 UTC
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