Sensor materials for the detection of proteases

Stair, Jacqueline L., Watkinson, Michael and Krause, Steffi (2009) Sensor materials for the detection of proteases. pp. 2113-2118. ISSN 0956-5663
Copy

The concept of generic and tunable sensor materials for the detection of proteases based on the thin film degradation of peptide cross-linked dextran hydrogels was explored. Hydrogel cross-links were formed via simple imine linkages between aldehyde groups in oxidized dextran and a peptide sequence susceptible to protease cleavage. Degradation of the hydrogel films was monitored in this study using a quartz crystal microbalance (QCM). The sensor material was developed using the protease/peptide pair of human neutrophil elastase (FINE) and Ala-Ala-Pro-Val-Ala-Ala-Lys (AAPVAAK). A direct relationship between the hydrogel degradation rate and protease activity was observed; HNE activities from 2.5 to 30 U ml(-1) were detected using 25% cross-linked films. Film degradation was rapid and was complete in less than 10 min for HNE activities >10 U ml(-1). An increase in the rate of degradation by a factor of 3.5 was achieved by increasing the cross-linking density from 25% to 75%. QCM admittance data fitted with a BVD equivalent circuit showed increases in film viscoelasticity upon enzyme addition. A second protease/peptide pair of cathepsin G and Ala-Ala-Pro-Phe-Phe-Lys (AAPFFK) was tested where 25% AAPFFK cross-linked hydrogels demonstrated a rapid response at 100 mU ml(-1). Swapping the protease/peptide pairs to HNE/AAPFFK and cathepsin G/AAPVAAK showed low levels of cross-sensitivity further demonstrating the specificity of film degradation. (C) 2008 Elsevier B.V. All rights reserved.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads