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Abstract. The Kaspar robot has been used with great success to work
as an education and social mediator with children with autism spectrum
disorder. Enabling the robot to automatically generate causal explana-
tions is key to enrich the interaction scenarios for children and promote
trust in the robot. We present a theory of causal explanation to be em-
bedded in Kaspar. Based on this theory, we build a causal model and
an analysis method to calculate causal explanations. We implement our
method in Java with inputs provided by a human operator. This model
automatically generates the causal explanation that are then spoken by
Kaspar. We validate our explanations for user satisfaction in an empirical
evaluation.

1 Introduction

Causality has intrigued philosophers since ancient times. Modern theories of
causality were put forward by philosophers such as Hume and Lewis, and they
found applications in engineering, particularly in explaining the results of testing
and verification [1].

A formal logical theory that has been proved useful in engineering practice is
the theory of actual causality by Halpern and Pearl [7]. This theory specifies the
environment as a set of variables and a set of structural equations that describe
the relation between them. Then, given a logical effect (represented as a Boolean
predicate on the variables), a potential cause (also a Boolean predicate) through
analysing counter-factuals in the causal model, i.e., parallel worlds in which the
cause and effect may or may not have occurred.

This theory of causality has been proven useful both in analysing the results
of testing and verification [2], as well as in providing explanations for complex
systems such as neural networks [5]. In this paper, we apply Halpern and Pearl’s
theory of actual causality to provide explanations in educational scenarios for
children in the autistic spectrum disorder. In particular, we equip Kaspar, which
is a state-of-the-art humanoid robot primed for interaction with children with
autism spectrum disorder (ASD) [15], with causal explanations. Enabling Kaspar
to generate causal explanations is considered a key to enrich the interaction
scenarios for children and thereby could promote additional trust in the robot.

As the main contribution of this work, we implement a tool that automat-
ically builds a causal model and conducts a causal analysis to provide expla-
nations behind certain events during interaction between children and Kaspar.
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We implement our method in a Java implementation that, given inputs from a
human operator, automatically generates the causal explanation that are spo-
ken by Kaspar. Finally, we validate our explanations for user satisfaction in an
empirical evaluation with healthy adults.

The rest of this paper is structured as follows. In Section 2, we discuss related
work. In Section 3, we present an overview of Kaspar and the approach to its
interaction with children. In Section 4, we present the discrete theory of actual
causality by Halpern and Pearl. In Sections 5 and 6, we apply the theory to our
context and present the mechanisation of our strategy, respectively. In Section 7,
we present the explanations provided by Kaspar and our validation experiment.
Lastly, in Section 8, we provide our conclusions and discuss future work.

2 Related Work

Our context is the theory of actual causality [7], where, in a given scenario
leading to an outcome, the events are analysed in order to find causes. This
is in contrast with type-level causality where general causal rules governing a
system are sought. To our knowledge, no theory of causality has been applied to
interactions with robots. Baier et al. [1] have conducted a survey on published
approaches that utilise Halpern’s notion of causality. We summarise some of the
most prominent related work below.

Leitner-Fischer and Leue [11] define a theory of causality that considers the
temporal order as well as the non-occurrence of events. They also provide a
search-based on-the-fly causality assessment that does not require the counterex-
amples to be generated in advance. In our work however, the order of events does
not play a role: whether a particular event occurred before or after other events
does not impact on what we consider cause.

Beer et al. [2] use causal analysis to explain counterexamples in hardware
verification. The proposed algorithm is implemented in the IBM RuleBase PE
tool. Also, Chockler, Grumberg, and Yadgar [3] employ a notion of responsibil-
ity (degree of causality) [4] to improve the quality of abstraction refinement by
producing mode efficient counterexamples. Besides the continuous aspects, our
approach incorporates the modelling of platform (hardware), controllers (soft-
ware) and environment into a single model that considers a high-level abstraction
of the system. Considering a notion of responsibility is one of the directions for
our future work to rank the explanations provided.

3 Application domain: Kaspar

The Kaspar robot [13] has been used to work with children with autism to
help break their social isolation by acting as a social mediator with great suc-
cess. A skill that children with ASD often struggle with is visual perspective
taking (VPT), which is the ability to see the world from another person’s view-
point, making use of both spatial and social information [8]. Robot-mediated
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intervention has already been shown to be efficient in teaching autistic chil-
dren perspective-taking skills [10]. Enabling the robot to automatically generate
causal explanations in such scenarios could be key to enrich the interaction
scenarios for autistic children [14] and thereby promote additional trust in the
education medium. This may in turn make the robot-mediation more successful.

With this purpose in mind, we designed 4 VPT interactive games for the
children to play with Kaspar (discussed in Section 5.1). In these games, Kaspar
asks the child to show a particular interactive object. In each of the scenarios,
when Kaspar cannot see the animal that he has requested, he explains the reason
why he cannot see it; for example: “I cannot see it because you are holding it
too high” or “this is not the animal I have asked to see.” By doing that, we
expect the children to understand Kaspar’s point of view and show the animals
to Kaspar in the correct way.

4 Theory of Causal Explanation

In this section, we present Halpern and Pearl’s theory of actual causality [7] and
demonstrate its application through the following running example; the example
is to illustrate the theory and the actual VPT games will follow.

Example 1. Consider a simple scenario where the Kaspar robot and a picture of
a lion are sitting on a table. The picture is in Kaspar’s line of sight. However,
two things prevent Kaspar from actually seeing the lion: (i) Kaspar’s eyes are
shut (due to the press of a button by the teacher) and (ii) the picture falls off the
table (due to the wind blowing from an open window). In this simple scenario,
if Kaspar’s eyes are closed then this is a cause for Kaspar not seeing the lion.
Analogously, if the picture has fallen off the table, that is also a cause.

Mathematical assessments of causality require formal modelling. As a precon-
dition to a model, a signature provides the set of variables and their admissible
valuations. The formal definitions in this section are taken from those by Chock-
ler and Halpern [4].

Definition 1 (Signature). A signature is a tuple

S = (U ,V,R),

where U is a finite set of exogenous variables, V is a finite set of endogenous
variables, and R associates with every variable Y ∈ U ∪V a finite and nonempty
set R(Y ) of possible values for Y .

Exogenous variables are determined by factors outside of the model while
endogenous variables are affected by exogenous ones and also by other endoge-
nous variables. For instance, going back to the example, the state of Kaspar’s
eyes and the state of the picture can be seen as endogenous variables, but the
presence of lighting that allows for Kaspar to see at all, whether the button was
pressed, and whether the window is open are exogenous variable.
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Example 2. A signature of our running example has the following variables. Be-
low, we describe the variables for each set (U and V) and their possible values
that form R.

In the exogenous set U , we have that:

– ub represents the button: 0 if it is not pressed and 1 if it is.

– uw represents the window: 0 it is closed and 1 if it is open.

As for the endogenous set V, we have:

– KE for Kaspar’s eyes: 0 if they are open, and 1 if they are shut.

– PS for the picture: 0 if it is on the table and 1 if it has fallen off.

– KS for Kaspar’s sight: 1 if Kaspar can see the lion and 0 if it cannot.

Definition 2 (Causal Model). A causal model over a signature S is a tuple

M = (S,F),

where F associates with each variable X ∈ V a function denoted by FX , such
that:

FX : (×U∈UR(U))× (×Y ∈V\{X}R(Y ))→ R(X)

FX describes how the value of the endogenous variable X is determined
by the values of all other variables in U ∪ V. The indexed Cartesian products
×U∈UR(U) and ×Y ∈V\{X}R(Y ) consider each possible values of the variables
in U and V\{X}, respectively.

As mentioned, the set U of exogenous variables includes things we need to
assume so as to render all relationships deterministic (such as the presence of
light, wind conditions and whether someone has pressed the button). We denote
u⃗ (i.e., a set of valuations in R(U)) as the context behind a cause. That is, the
context is a mapping of exogenous values to their variables that induce the value
of the endogenous variables. Typically, the context can define the value of certain
endogenous variables, which, in conjunction with the functions in F , are used to
determine the value of the remaining endogenous variables.

Consider that, in our example, the context comprises the unmodelled vari-
ables uw ∈ U and ub ∈ U . They represent whether the window is open and
whether someone has pressed the button that control Kaspar’s eyes, respectively.
These variables can be seen as inputs that are not controlled by the system.

Example 3. Given the signature of our running example (see Example 2), a
causal model for this system can be defined with the following structural equa-
tions F .

– FKE(u⃗, PS,KS) = ub

– FPS(u⃗,KE,PS) = uw

– FKS(u⃗,KE,PS) = 1−max(KE,PS)
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In summary, the context affects whether Kaspar’s eyes are shut or whether
the picture is still on the table (i.e., KE and PS, respectively). Then, these
variables affect whether Kaspar can see the lion (KS). As defined in the functions
(F) above, Kaspar can only see the lion if both KE and PS are 0.

Finally, to make the definition of cause precise, we first need a syntax for
causal events. Given a signature S = (U ,V,R), a formula of the form X = x,
for X ∈ V and x ∈ R(X), is called a primitive event.

Definition 3 (Causal Formula). A causal formula is of the form

[X1 ← x1, ..., Xk ← xk]Φ,where

– X1, ..., Xk are distinct variables in V.
– xi ∈ R(Xi). And,
– Φ is a Boolean combination of primitive events.

The formula [X1 ← x1, ..., Xk ← xk]Φ states that Φ holds in a system where

Xi is set to xi for i = 1, ..., k. Such a formula can be abbreviated as [X⃗ ← x⃗]Φ.
An assignment of the type X ← x (called an intervention by Halpern) can be
interpreted as an update in F where the function for X is set just to x. In our
Kaspar example, a valid causal formula is [KE ← 1](KS = 0). This says that if
Kaspar’s eyes have been shut, then Kaspar cannot see the picture.

Thus, given a context u⃗ ∈ R(U), we write (M, u⃗) |= [X⃗ ← x⃗](Y = y) if
the variable Y ∈ V has the value y in a causal model M where Xi is set to
xi for i = 1, ..., k. The notation can also be used in the presence of a Boolean
combination of primitive events: (M, u⃗) |= [X⃗ ← x⃗]Φ. Furthermore, in the special
case where k = 0, we write (M, u⃗) |= (Y = y) if the variable Y ∈ V has the value
y given the context u⃗ ∈ R(U) and the causal model M . This notation can also be
used in the presence of a Boolean combination of primitive events: (M, u⃗) |= Φ.

The types of events that are allowed as causes are of the form (X1 = x1 ∧
...∧Xk = xk), that is, a conjunction of primitive events that can be abbreviated

as X⃗ = x⃗. Then, cause is formally defined as follows.

Definition 4 (Cause). We say that X⃗ = x⃗ is a cause of Φ in (M, u⃗) if the
following three conditions hold:

– AC1. (M, u⃗) |= (X⃗ = x⃗) ∧ Φ

– AC2. There exists a partition (Z⃗, W⃗ ) of V with X⃗ ⊆ Z⃗ and some setting

(x⃗′, w⃗′) of the variables in (X⃗, W⃗ ), such that

• a) (M, u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗′]¬Φ and,

• b) (M, u⃗) |= [X⃗ ← x⃗, W⃗ ′ ← w⃗′]Φ for all subsets W⃗ ′ of W⃗ .

– AC3. (X⃗ = x⃗) is minimal, that is, no subset of X⃗ satisfies AC2.

Statement AC1 checks whether X and Φ are true at the same time, i.e., the
cause has actually led to the effect; AC2 examines counterfactual dependence,
i.e., given contingencies, changing other variables while keeping X intact brings
about Φ and vice versa, changing X removes the effect, and AC3 checks whether
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everything in X is actually necessary for Φ to be true (that is, whether X is
minimal). An important aspect of this definition, which is also relevant to our
application, is that the set of endogenous variables is split in two disjoint sets
W⃗ and Z⃗, where X⃗ ⊆ Z⃗. The variables in the set W⃗ allow for the cause to
be tested under certain circumstances (called structural contingencies [4]) where

the variables in W⃗ are set to w⃗′. The set Z⃗, however, comprises the variables
that mediate the situation that makes Φ hold, when X⃗ ← x⃗. That is, changing
the values of variables in X⃗ might result in changing the values of other variables
(i.e., Z⃗ − X⃗), which then leads to Φ.

Example 4. Consider the scenario in our Kaspar example where KE = 1, PS =
1,KS = 0. We would like to assess whether the fact that the picture has fallen
off (PS = 1) is the cause of Kaspar not seeing the lion (KS = 0).

AC1 states that (X⃗ = x⃗) cannot be a cause of Φ, unless both the primitive

causal events (X⃗ = x⃗) and the effect Φ are true in the causal model M, given the
context u⃗. That is, it states that for PS = 1 to be the cause of KS = 0, then
both need to be true in (M, u⃗); thus, in this scenario, AC1 holds. Conversely, if
we were trying to assess whether KE = 0 is the cause of KS = 0 then, AC1
could not be satisfied, as KE = 0 is not true in (M, u⃗) and, therefore, it could
not be considered a cause.

AC2 is the most complex clause and is divided into two parts. AC2(a) says

that for (X⃗ = x⃗) to be a cause of Φ, there must be a setting (X⃗ ← x⃗′) where

Φ does not hold (under the contingency W⃗ ← w⃗′). Contingencies are necessary
since, for instance, Kaspar still cannot see the lion (KS = 0) even if we apply the
intervention where the picture is still on the table (PS ← 0) because Kaspar’s
eye would have been shut anyway (KE = 0). We can see that (M, u⃗) |= [PS ←
0]¬(KS = 0) does not hold whilst (M, u⃗) |= [PS ← 0,KE ← 0]¬(KS = 0) does.

Clearly, the contingency where KE ← 0 (represented by W⃗ ← w⃗ in Definiton 4)
is necessary.

AC2(b) exists to counteract some of the “permissiveness” of AC(a) by ruling
out variables in the contingency as part of the actual cause. It states that the
contingency W⃗ ← w⃗′ should have no effect on Φ as long as we have the assign-
ment X⃗ ← x⃗. In our example, the contingency (KE ← 0) alone has no effect
on Φ: Kaspar still cannot see the lion. The definition states that this should be
true for all subsets W ′ of W⃗ , including the empty set3.

Finally, AC3 asserts that the identified cause is minimal. In our scenario, it
prevents (PS = 1 ∧ KE = 1) from being a cause, since (PS = 1) suffices to
satisfy AC2. Thus, AC3 also holds and we can say that, in (M, u⃗), (PS = 1) is a
cause of (KS = 0). A similar explanation can be made to show that (KE = 1)
is also a cause of (KS = 0).

3 There’s a slight abuse of notation since w′ might not be the same size as W ′.
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5 Causal Explanation for Kaspar

To analyse actual causality, we need to define a causal model for Kaspar. The
model comprises variables, a state space (with all possible variable valuations),
and a set of equations that describe the interaction between variables. In this sec-
tion, we first explain the context of Kaspar interactive games and subsequently
define our model of Kaspar’s interaction with its surroundings during the said
games. This representation (i.e., our causal model) allows us to find the actual
causes for an effect by modifying variable values and observing whether the effect
persists.

5.1 Interactive games

In the experiments, children and Kaspar interact with each other during games
that have been found to require explanations regarding the robot’s visual per-
spective [6]. The goal of each game is to assess whether a child can put themselves
in Kaspar’s shoes; we ask if they realise whether Kaspar can or cannot see some-
thing. For instance, we cover Kaspar’s eyes with a blindfold and then ask the
child if Kaspar can or cannot see a picture of a lion that sits in front of the robot.
The correct is answer is that Kaspar cannot see the lion. If the child answer that
Kaspar can see the lion, then we’d like to automatically generate an explanation
as to why this is incorrect; in that case, it is because of the blindfold.

Explanations can be generated by building a causal model of the game, defin-
ing the Φ (that states, for example, that Kaspar cannot see the chosen animal)
and determining causes for it. There are four distinct games that can be played:
(i) Picture game: Several pictures of different animals are spread around the
room. Kaspar chooses an animal and asks the child to show him its picture. (ii)
Head game: Several pictures of different animals are spread around the room.
Kaspar chooses an animal and asks the child to move the robot’s head in the
direction of the chosen animal. (iii) Rotate game: Different pictures of animals
are spread around a turntable. Walls are put in between animals such that Kas-
par can only see one animal at a time. The robot chooses an animal and asks
the child to spin the table so that the correct animal is visible. (iv) Cube game:
A cube that contains pictures of different animal on each facet is given to the
child. Kaspar chooses an animal depicted in the cube and asks the child to show
the correct animal.

In all of these four games, a button can be pressed by a human which causes
Kaspar to fall asleep (by closing his eyes). Furthermore, a blindfold can also be
used to cover Kaspar’s eyes. After the child has acted on Kaspar’s instruction, a
human asks the child two questions: “Is Kaspar seeing or not seeing any animal?”
and “Is Kaspar seeing or not seeing the chosen animal”. The first questions
assesses whether the child realises that Kaspar cannot see the animal because,
for example, he’s asleep or he’s wearing a blindfold. The second checks whether
the child realises that Kaspar is not seeing the chosen animal, since for instance
the picture of the animal is too far away or to the left of Kaspar’s field of vision.
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If the child answers the questions correctly Kaspar plays a sound of the chosen
animal as a reward. Otherwise, an explanation is given to the child.

5.2 Causal model

We can cover all of the four games above with a single causal model. Table 1
shows the variables in our model. During the games where Kaspar asks the child
to show a picture of a certain animal, there may be multiple pictures of different
animals and even other objects placed around the room. However, in our model
we are only interested in asking questions about one particular object, i.e., the
chosen animal. Given the situation where the child picks up an object, our model
captures whether the chosen object is the correct animal. Further, we also make
note of its position relative to Kaspar’s line of sight (to the left or right, above or
below, too far or too close), and whether the animal is in the correct orientation
(e.g., not upside down).

Fig. 1: Causal Network

Variables Possible Values

chosenAnimal correct | wrong
chosenAnimalPosition correct | left | right
chosenAnimalRotation correct | wrong
chosenAnimalHeight correct | high | low
chosenAnimalDistance correct | far | close
isKasparAwake correct | asleep
areKasparsEyesClear correct | covered
isKasparsViewClear correct | obstructed
canKasparSee true | false
canKasparSeeChosenAnimal true | false

Table 1: Model variables

Furthermore, Kaspar’s eyes can be covered by a blindfold, or Kaspar can be
asleep (eyes closed), or there can be wall blocking Kaspar from seeing an animal.
Any of these situations can prevent Kaspar from seeing the chosen animal. We
assume that Kaspar can only see the chosen animal, if Kaspar’s line of sight is
clear and the animal is correctly aligned in all four senses (position, rotation,
height, and distance).

A causal network is a graphical representation that displays variable depen-
dency. In this work, we can only determine cause for acyclic models. That is, if
the value of variable A depends on the value of variable B, then the opposite
must not be true. Figure 1 depicts the causal network of our system. Further-
more, the structural equations that define values of the variables in the model
can be seen below.

– FcanKasparSee() == isKasparAwake = correct ∧
areKasparsEyesClear = correct ∧
isKasparsV iewClear = correct
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– FcanKasparSeeChosenAnimal() = canKasparSee ∧
chosenAnimal = correct ∧
chosenAnimalPosition = correct ∧
chosenAnimalRotation = correct ∧
chosenAnimalHeight = correct ∧
chosenAnimalDistance = correct

In our model, we have that the variable canKasparSee is true if, and only
if, isKasparAwake, areKasparsEyesClear, and isKasparV iewClear are all
set to correct. The value of the variable canKasparseeChosenAnimal is true if,
and only if, canKasparSee is true and the chosen animal is correctly positioned.

As for effects, to put it simply, in Halpern and Pearl’s theory, they are repre-
sented via a Boolean combination of variable values. In this work, we are partic-
ularly interested in the effects that describe instances of Kaspar not seeing the
chosen animal. This directly correlates to the two questions that can be asked to
the children: “Is Kaspar seeing or not seeing any animal?” and “Is Kaspar see-
ing or not seeing the chosen animal”. The effects we are interested in observing
are (i) “Kaspar is not able to see any animal” and (ii) “Kaspar is not seeing the
chosen animal”. Their mathematical representation in our causal analysis syntax
is: (i) canKasparSee = false and (ii) canKasparSeeChosenAnimal = false,
respectively.

Example 5 (Covered Eyes). Consider the scenario where the chosen animal is
positioned correctly, however, Kaspar’s eyes are covered (see Table 2). In this
case, we have that our effect is canKasparSee = false.

We then ask the child “Is Kaspar seeing or not seeing any animal?”. If the
child answers the question incorrectly (in this case, by saying that Kaspar is able
to see them), then we provide the explanation of why this is incorrect.

An actual cause of the type (X⃗ ← x⃗) can only be determined if the three
clauses hold. For this example, the only possible cause is (areKasparsEyesClear
= covered). AC1 and AC3 are trivially satisfied. The former, because both
the cause (areKasparsEyesClear = covered) and the effect (canKasparSee =
false) are true in our model. The latter, because the causal explanation is mini-
mal as there is only one variable involved. The remaining clause, AC2, is satisfied
because if the value of the variable areKasparsEyesClear is changed to correct
(areKasparsEyesClear ← correct), we have that ¬(canKasparSee = false),
thus AC2. No contingency is necessary for this example.

Example 6 (Animal out of sight and Kaspar is asleep). Now, consider a second
scenario. This time, Kaspar is asleep and the chosen animal is too far away.
Table 3 depicts the variables and their values in this causal model. We then
ask the child “Is Kaspar seeing or not seeing the lion?”. The correct answer
to this questions is “Kaspar is not seeing the lion”, and, thus, our effect is
“canKasparseeChosenAnimal = false”. We now present the cause behind it.

Similarly to the previous example, the actual cause needs to satisfy the three
clauses. This time, there are two separate causes: (isKasparAwake = asleep)
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Table 2: Example 1

Variables Value

chosenAnimal correct

chosenAnimalPosition correct

chosenAnimalRotation correct

chosenAnimalHeight correct

chosenAnimalDistance correct

isKasparAwake correct

areKasparsEyesClear covered

isKasparsViewClear correct

canKasparSee false

canKasparSeeChosenAnimal false

Table 3: Example 2

Variables Value

chosenAnimal correct

chosenAnimalPosition correct

chosenAnimalRotation correct

chosenAnimalHeight correct

chosenAnimalDistance far

isKasparAwake asleep

areKasparsEyesClear correct

isKasparsViewClear correct

canKasparSee false

canKasparSeeChosenAnimal false

and (chosenAnimalDistance = far). The explanations for both cases are simi-
lar and, thus, we’ll only focus on explaining the latter case. The first clause, AC1,
is satisfied because both the cause (chosenAnimalDistance = far) and the ef-
fect (canKasparseeChosenAnimal = false) are true in our model. The third
clause, AC3, is also satisfied since (chosenAnimalDistance = far) is minimal.

Finally, AC2 is satisfied with the use of the contingencies. We apply the in-
tervention where (isKasparAwake ← correct) as a contingency and we assess
the parts a and b of clause AC2. The AC2(a) clause, which checks whether
changes to the cause negates the effect, is satisfied since the causal formula
(M, u⃗) |= [chosenAnimalDistance ← correct, isKasparAwake ← correct]
¬(canKasparseeChosenAnimal = false) holds. Similarly, AC2(b), which checks
whether the contingencies applied in AC2(a) do not negate the effect, is satisfied
since, for instance, (M, u⃗) |= [chosenAnimalDistance← far, isKasparAwake←
correct](canKasparseeChosenAnimal = false) also holds.

6 Mechanisation

We mechanise the process of causal analysis using an automated rule based
system that produces a proof of causality. Our approach is advantageous over a
search-based approach for causal analysis, because the latter involves building
the state-space of all counterfactuals and searching through them. The process
for determining causes is represented in Figure 2.

The user running the experiment selects the values of the variables in the
user interface. This is done via specific key presses on a keyboard which are
fed into our JAVA program (available at: https://bit.ly/ke-vs1-code). Then, a
form that contains the values for the variables in the causal model is generated.
The program builds a causal model, and evaluates whether the two effects hold
(i.e., whether Kaspar is able to see and whether it is currently seeing the chosen
animal). In case either of them hold, we determine the causes, which are then
fed back into the user interface and mapped to the voice-based explanations
played by Kaspar to the child. Even though multiple causes can be determined
(e.g., the picture is both too far away and the wrong way around), during the
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Fig. 2: Kaspar causally explains process

games, only one explanation is provided to the child to avoid overwhelming the
participant. The chosen explanation is decided using an internal ranking system
decided by experts; that is, in case there are multiple explanations, only the top
ranked one is provided. Then, the child has a chance to correct the behaviour
and the explanations are determined again, if necessary.

The rule-based system for causal analysis is proven correct for the four Kaspar
games; however, it can be extend to additional games, if required. The proofs of
soundness are omitted due to space limitation and are included in an extended
version available online: https://bit.ly/KasparCausallyExplains

7 Explanations and their validation

We carried out an initial survey to be able to assess explanations generated by the
presented system in terms of their general usefulness. For that purpose, we asked
20 adult participants (10 PhD students or staff members from research groups
based at King’s College London and 10 PhD students or staff members from the
University of Hertfordshire) to watch videos of Kaspar providing an explanation
and then rate each explanation using the explanation satisfaction (ES) scale [9].
This survey is based on several key attributes of explanations such as whether
they are understandable, satisfying, sufficiently detailed, complete, informative
about the interaction, useful, accurate, and trustworthy. These attributes are
used to assess suitability of an explanation provided by an autonomous system.
We used “what Kaspar can see” as the construct for the ES scale, which were
shown to the participants for each video (cf. Table 4).

We have additionally employed the Negative Attitude towards Robots Scale
(NARS) [12] to calibrate the obtained results against potential biases against
robots. That allows us to later compare the current study with future studies
targeting different user groups such as children. No other data has been col-
lected and the study has been approved by the University of Hertfordshire’s
ethics committee for studies involving human participants, protocol number:
SPECS/SF/UH/04944. Participants were provided with an information sheet
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Table 4: Adapted ES scale that was shown to study participants for each video.

# Question

1 From the explanation, I understand what Kaspar can see.
2 This explanation of what Kaspar can see is satisfying.
3 This explanation of what Kaspar can see has sufficient detail.
4 This explanation of what Kaspar can see seems complete.
5 This explanation of what Kaspar can see tells me how to interact with it.
6 This explanation of what Kaspar can see is useful to my goals.
7 This explanation of what Kaspar can see shows me how accurate it is.
8 This explanation lets me judge when I should trust and not trust Kaspar.

describing the study. Implied consent was obtained at the beginning of the sur-
vey, giving participants the option to withdraw from the study at any time.

In total, we have shown 16 videos (available at: https://bit.ly/ke-vs1-videos)
to participants that contain all possible explanations for the variables of the
causal network (Table 1) of the games identified in [6] and described in Sec-
tion 5.1. Table 5 provides an overview of the videos and describes the utterance
that Kaspar uses, which may be accompanied by disambiguation gestures.

Because participant ratings were not normally distributed, we used the non-
parametric one-sample Wilcoxon rank-sum test [16] to test whether ratings on
the Explanation Satisfaction (ES) scale were greater than the mean value. Re-
sults attest that, when averaging across all the videos, each of the explanation is
rated significantly above the neutral value (all p < 0.001), cf. Fig. 3a. Likewise,
rating across the explanations are rated above neutral for each of the videos (all
p < 0.001) as shown in Fig. 3b. Participant ratings on NARS attested a low

Table 5: Video recordings of explanations for the variables of the causal network
that have been shown to the participants. In this table, “...” at beginning of
utterances stands for “I cannot see the animal, because”.

# Variables Game Utterance

1 chosenAnimal: wrong Picture That is not the animal I have asked to see

12 chosenAnimal: wrong Rotate That is not the animal I have asked to see

14 chosenAnimal: wrong Cube That is not the animal I have asked to see

2 chosenAnimalPosition: left Cube ...you are holding it too far left

5 chosenAnimalPosition: right Cube ...you are holding it too far right

10 chosenAnimalPosition: left Head ...my head is too far right

7 chosenAnimalPosition: right Head ...my head is too far left

9 chosenAnimalDistance: far Picture ...you are holding it too far

13 chosenAnimalDistance: close Picture ...you are holding it too close

4 chosenAnimalHeight: low Picture ...you are holding it too low

15 chosenAnimalHeight: high Picture ...you are holding it too high

6 chosenAnimalRotation: wrong Cube ...you are holding it the wrong way around

3 isKasparsViewClear: obstructed Rotate ...the wall is in front of it

11 isKasparsViewClear: obstructed Cube ...there is something in the way

8 areKasparsEyesClear: covered Cube ...my eyes are covered

16 canKasparSeeAnimal: false Cube ...you are not holding it in front of my eyes
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negative attitude towards robots with mean values for S1 ≈ 1.78 (interaction
subscale), S2 ≈ 2.7 (social subscale), and S3 ≈ 1.48 (emotion subscale). S1 and
S3 are rated significantly below the neutral value (both p < 0.001) whereas S2
can not be reliably distinguished from neutral (p ≈ 0.053).

These results confirm that, with healthy adults, the explanations that the
system can generate are beneficial to relate cause and effect. Participants con-
sistently rate them as accurate, complete, sufficiently detailed, satisfying, un-
derstandable, useful to their goals, and informative about the interaction. They
further help to determine when to trust the robot. Knowing that adults find the
generated explanations useful gives us an estimate whether the generated expla-
nations have a potential to help autistic children in our future experiments.

8 Conclusions

We employ causal analysis as the key ingredient in providing explanations during
interaction between the Kaspar robot and children. To that end, we make use
of the theory of actual causation by Halpern and Pearl; outline the scenarios in
which Kaspar interacts with the children; and build a causal model that covers
these scenarios. We mechanised the strategy as a Java program to automatically
generate causal explanations that are provided by Kaspar in order to enrich the
interactions and improve trust. We validated the explanations via a controlled
survey to show that they clarify and enhance the games.

For more complex interactions, we believe alternative causal explanations
can be automatically ranked, e.g., in terms of their brevity. Developing theo-
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Fig. 3: Results of the ES scale (5-point Likert scale) grouped by explanation
property (3a) as highlighted in Table 4 and grouped by video number (3b) as
listed in Table 5. Coloured points indicate the mean values of the other dimen-
sion. Asterisks mark items significantly greater than the average value.
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ries of ranked explanations and empirically evaluating them in this context are
worthwhile avenues of future work. Moreover, we are currently preparing exten-
sive user studies at our partner schools to further evaluate our results for user
groups involving children with ASD. Subsequently, we plan to perform iterative
experiments to measure the effectiveness of explanations in improving VPT.
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