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INTRODUCTION
Sensory information is crucial for the successful interaction of an
agent with its outside world. How sensory stimuli are optimally
encoded remains an open research question. Neuro-inspired cod-
ing strategies have been successfully applied to many tasks deal-
ing with vision, auditory perception, touch and vibration sensing
[3, 6, 11, 17]. For the sense of olfaction, there still exists a large
performance gap between artificial and biological systems [5]. This
is particularly evident if one considers the fast-changing odour
distribution caused by air turbulences. The fluctuation frequencies
in an odour plume are governed by a power law [13] and can carry
essential information about the odour source [15].

Whilemammals can discriminate temporal correlations of rapidly
fluctuating odours at frequencies of up to 40 Hz [1], metal-oxide
(MOx) gas sensor based olfactory systems usually have response
times that are several orders of magnitude slower [14]. Methods
for improving the response time have been investigated [8, 9].
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Latest-generation MOx gas sensors actively modify the sensing
site using temperature modulation cycles, which decreases the
integration time and increases the class discriminability [20]. Yet it
remains unclear how much information is present in one cycle’s
sensor response and how to efficiently sample it. Here, contrary to a
top-down approach from biological olfaction to neuromorphics [10],
we propose a data-driven asynchronous event-sampling strategy
for state-of-the-art gas sensors, and investigate the effectiveness of
different event encoding schemes for solving an inference problem.
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Figure 1: a) Portable multichannel e-nose. b) GPS track of
the recording. c) MOx sensor data, showing the sensor con-
ductances at the end of the high-temperature step. d) Zoom-
ing in reveals structure on a timescale of seconds tominutes.
e) Cyclic heater power modulation (top) drives sub-second
oscillations in heater temperature (middle, shown as heater
resistance) and sensor conductance (bottom).
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METHODS
We constructed a portable electronic nose equipped with four differ-
ent MOx gas sensors (SGX Sensortech MiCS5914 & MiCS4514 dual
sensor, ScioSense CCS801) and recorded the natural olfactory scenes
encountered during a walk through the city of Lisbon, Portugal, di-
viding the dataset into six geographical locations (hereafter labelled
’Taxi’, ’Supermarket’, ’Graça’, ’Baixa’, ’Seashore’, and ’Santos’). We
sampled the conductance of the gas sensing elements at 1 kHz while
modulating the heater power with a period of 140 ms, each heater
cycle consisting of a high-power step followed by a low-power
step. This causes the sensor conductance to oscillate in a way that
depends on the heater temperature, the environmental conditions,
and the gases present in the sensor cavity (fig. 1).

We then investigated whether we could recover the geographical
label from the time course of the sensor conductance during a single
140 ms heater cycle. Crucially, each cycle was normalised to the
same minimum and maximum values (fig. 2a), thus getting rid of
the baseline drift that often compromises gas sensor datasets [7,
21], leaving only the intra-cycle variations to distinguish between
different locations. For each normalised cycle, we construct a signal
that highlights these intra-cycle variations by subtracting a sensor-
specific model curve, which, in our case, is the ensemble average of
the normalised cycles across a subset of the data (fig. 2b). We apply
an algorithm based on send-on-delta sampling [12, 19] to generate
up- and down-events when the signal changes, exploring a range
of spike (event) thresholds. These events are then used to compute
four different features: the channel-wise event rate (rate code), the
channel-wise time-to-first-spike (latency code, [18]), the channel
order of first spikes (rank code, [16]), and a signal reconstruction
using the reverse send-on-delta sampling algorithm (fig. 2c). The
representations resulting from each of the four encoding strategies
are divided into training and test sets with a ratio of 75% to 25%, by
sampling a total of 2000 cycles per class from time-separated bulks
as described in [2]. For each spiking threshold and each encoding
strategy, a linear-kernel Support-Vector-Machine (SVM) [4] was
fitted to the training set and validated on the test set.

RESULTS AND DISCUSSION
All four encoding strategies perform better than chance levels (fig.
2e). The signal reconstructed from events performs as well as the
original intra-cycle signal when the event count is high (82.5±1.0%
vs. 84.2±1.2%). Accuracy then decreases as the event threshold in-
creases (fewer events, see fig. 2d). While latency code, rank code
and rate code representations provide a high signal compression
(one value per up- and down channel for each sensor), they are out-
performed by the reconstructed curve, until the number of events
was reduced to 1% of the original signal’s sample count.

Our findings indicate that various olfactory scenes can be distin-
guished based on the differential time course of sensor conductance
during individual sub-second heater cycles, despite a normalisation
procedure that removes information about absolute sensor con-
ductance. Furthermore, the full temporal pattern of events within
each cycle seems to matter for scene recognition. This hints at a
phasic component in the sensor response to a temperature step that
contributes to the classification accuracy. Whether this phasic com-
ponent stems from the temperature-specific reactivity of various

Figure 2: a) The normalised sensor conductance oscillates
between fixedminima andmaxima. b) After subtracting the
mean, intra-cycle variations reveal distinct patterns across
geographical locations. Solid lines and shading correspond
to mean and one standard deviation. c) Example event gen-
eration and reconstruction (Sensor 1, location: taxi) d) The
average number of events per cycle decreases with increas-
ing spiking threshold, but varies across locations (data for
Sensor 1). e) Classification accuracy for different encoding
schemes vs. spiking threshold (mean and standard deviation
for twelve train/test splits).

gases or from other influences not excluded by our normalisation
procedure remains to be investigated.

CONCLUSION
We propose an event-based sampling scheme to represent cyclic
heater-modulated electronic nose data. Asynchronous sampling
captured the signal’s temporal dynamics better than rate-, rank-
or latency-codes, while recognition accuracy degraded gracefully
for reduced event counts. Our work paves the way for event-based
recognition of natural odor scenes in uncontrolled environments,
breaking new ground in neuromorphic gas sensing.
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