Making Sense of the Sensory Data — Coordinate
Systems by Hierarchical Decomposition

Attila Egri-Nagy and Chrystopher L. Nehaniv

BioComputation Research Group
School of Computer Science
University of Hertfordshire
College Lane, Hatfield, Hertfordshire AL10 9AB, United Kingdom
{A.Egri-Nagy, C.L.Nehaniv}@herts.ac.uk

Abstract. Having the right sensory channels is an important ingredient
for building an autonomous agent, but we still have the problem of mak-
ing sense of the sensory data for the agent. This is the basic problem of
artificial intelligence. Here we propose an algebraic method for generat-
ing abstract coordinate system representations of the environment based
on the agent’s actions. These internal representations can be refined and
regenerated during the lifespan of the agent.

1 Introduction

According to the so-called Good Old-Fashioned Artificial Intelligence approach
we have to build a system with a reasonably accurate representation of its envi-
ronment to make it behave intelligently. But this just does not work. The hard-
wired model is rigid, even cannot cope with small changes of the environment,
or it the representation should contain all details with all the possible changes,
thus combinatorial explosions pop up. Moreover, the basic assumption itself that
we have complete knowledge about the environment beforehand can hardly be
defended. Therefore the Artificial Intelligent (AI) community has come up with
the counterintuitive idea that we do it better without any representation [1].
Clearly, this is a fruitful method showing that one can have complex behavior
without complex inner structure. But it is also clear that we cannot get too far
without representations [2].

Here we adopt the viewpoint that we often need representations of the envi-
ronment in order to realize artificial intelligence, but the representation should
be flexible and dynamically changing over time and obtained by the artificial sys-
tem on its own by recognizing regularities of the real world around. We propose
an algebraic method for generating abstract coordinate system representations of
the environment based on the agent’s actions. Sampling the transitions through
the sensory channels after the actions of the agent allows us to build a finite
state automaton description, from which we can generate abstract coordinate
systems using the algebraic hierarchical decomposition of finite state automata.

The general ideas of applying automata decompositions as formal models
of understanding were proposed several times [3, 4], but now they are closer to

fulfilment. The mathematical theory behind this is the algebraic hierarchical de-
composition of finite state automata, the so-called Krohn-Rhodes Theory. For
forty years there was no computational implementation for the hierarchical de-
composition of automata. However, in the electronic circuit industry there are
many different decomposition methods and implementations, but they are not
hierarchical since there are several physical constraints on circuit design and the
cascaded composition appears not to be the most efficient in terms of power con-
sumption, area and delay minimization [5]. Though it may be very appropriate
for understanding such systems [3]. Recently the authors have implemented two
methods for the holonomy decompositions [6-8].

2 Hierarchical Decomposition: The Krohn-Rhodes
Theory

Here we present the very basic underlying ideas of algebraic hierarchical decom-
position of finite state automata. We use the minimum amount of mathematical
notation here. For precise definitions see [9, 4].

2.1 Reversible and Irreversible Processes

Roughly speaking, we have two different kinds of computational operations: re-
versible and irreversible ones. For instance, if we move some content of the
memory to another empty location, that is reversible, since we can move it back.
But if we overwrite a nonempty part of the memory, then it is irreversible, since
there is no way to restore the previously stored data. Closer to a formal defini-
tion we can say that irreversible processes reduce the size of the set of possible
future states, while reversible ones do not. A map f: A — A of a set A is called
a permutation (reversible) if it is a bijection, otherwise it does collapse elements
(a € A is an image of more than one element), therefore it is irreversible.
Algebraically the distinction is more immediate. A permutation group is a
set G of bijective mappings together with the state set A on which the mappings
act. A transformation semigroup (A, S) has a similar structure, but S consists of
general functions, not only bijective maps. Roughly speaking we consider finite
automata as transformation semigroups. The elements of the semigroup are the
transformations of the state set induced by the input symbols. This way the
problems in automata theory are transfered into the algebraic domain.

2.2 The Prime Decomposition Metaphor

For explaining the Krohn-Rhodes Theory, the best way is to present it by a
metaphor. Basically we do the same as the prime decomposition for integers,
but instead of numbers we do it for more complicated structures, namely finite
state automata (considered as transformation semigroups). The similarities can
be summarized the following way:

Integers Automata
Factors Primes Flip-flop Automaton
Permutation Automata
CompositionMultiplication Wreath Product
Precision Equality Division, Emulation

The basic building blocks are the simple! permutation groups (for the reversible
computation) and only one component for the irreversible computation, the so-
called flip-flop automaton. It is like a one-bit sized memory.

The way of putting together the components, the so-called cascaded or wreath
product, is hierarchical and no feedback is allowed from deeper levels to upper
levels (see Fig. 1). The reason, why we choose this special way of composition, is
that the following special properties of hierarchy render the composed structure
more comprehensible.

— Information flow between levels is restricted enabling modularity (also within
one level with parallel components).

— Generalization and specialization are natural operations realized by taking
subsets of levels in either direction up or down the hierarchy

Note that we allow parallel components on one hierarchical level.

I I
f1€851 ——+ (A1, S1) — b1 € Ay

| |

| |

: a1 €A :

| |

! N (Ao, S — by €A
foiAL—Ss : (2, 2) : 2 € A2

| l? |

: a1 az € As :

I I

I I

|

|

f3:A2><A1—>Sg

Fig. 1. State transition in the wreath product (As, S3) ! (A2, S2) (A1, S1). An input
determines a transformation (fs, f2, f1) which maps the state (a3, a2,a1) yielding the
new state (bs,b2,b1) = (as - f3(az2,a1),a2 - f2(a1),a1 - f1). The black bars denote the
applications of functions f2, f3 according to hierarchical dependence. Note that the ap-
plications of these functions happen exactly at the same moment since their arguments
are the previous states of other components, therefore there is no need to wait for the
other components to calculate the new states. We use the state as the output of the au-
tomaton. It is often misunderstood to have some time delay during the state transition.
This is not the case, the state transition in the wreath product is instantaneous.

! This has a well defined meaning in group theory.

2.3 Coordinates, Hierarchical Dependence

Hierarchical decompositions provide a coordinate system for the original phe-
nomenon described as an automaton. For each coordinate position we have trans-
formation semigroup components and their state sets are the possible values for
that position. Due to its hierarchical nature the order of the coordinates does
matter. What happens on deeper levels is determined by the states of the levels
above. The simplest example to describe hierarchical dependence is a bidirec-
tional counter. Imagine a device which keeps track how many times you press a
button, and you have two other buttons set the operating mode. You start from
zero in adding mode then as a check whether the resulting number is the correct
value, you switch to subtracting mode and count again, but this time downwards,
until you reach zero again. For instance to count the number of passengers on an
airplane while walking along the aisle. The operation of this device can be rep-
resented with the following simple coordinate system: (n, mode), where modes
are + and — corresponding to adding and subtracting. The mode coordinate is
the top level of the hierarchy. There are three operations: counting ¢, switching
to adding mode m_, and switching to subtracting mode m_. For instance

(9,4) - ¢ = (10,+)

(9,+) -m—=(9,-)
(9,4) -my = (9,+)
(9’ _) = (8’ _)

Hierarchical dependence: the counting operation does different things depending
on the top level coordinate.

2.4 Computational Implementations

Now we have available implementations for Krohn-Rhodes Theory [7] and we
can start exploring the vast space of the decomposition of computational struc-
tures including actions and sensory activity of agents. However before applying
the method to large-scale problems we need to solve some scalability issues.
Currently we are working on a new incremental version of the algorithm, which
starts at the top level and goes down to decompose further levels when they
are feasible. This way we get some information about the hierarchical structure
immediately, instead of trying to calculate the first phase of the whole decom-
position, which may fail due to combinatorial complexity.

3 Building Coordinate Systems from Sensory Data Based
On Actions

For acting meaningfully in a complex environment an agent may need a represen-
tation, a model of that environment. The model is used to predict the outcome

of certain actions. But where does this representation come from? The widely
accepted answers are evolution or learning, since having a predefined and fixed
representation often exhibits very unintelligent behaviour. If we want to make
representation hardwired, we might not have complete knowledge (if we have
any at all) about the environment, and also the environment can be changing.
Moreover, the most important thing is that the agent needs a model from its
viewpoint (not from our viewpoint), i.e. that is appropriate for its ‘Umwelt’ (cf.
[10]). Therefore we can conclude that agent should build its representation of
the environment primarily based on the data coming through the sensors.

3.1 Experimenting with the Environment

In order to apply hierarchical decompositions, first we need to build a finite state
automata description. The state set of the automaton consists of the possible
states of the environment from the viewpoint of the agent, i.e. the perception,
the data coming from the sensory channel. The accurate definition of the state
depends on the actual hardware setup of the sensors. The input symbols are the
actions of the agent. That is why we say that the automaton model is built from
the agent’s perspective. The agent carries out basic experiments: first it deter-
mines the current sensory state, next it carries out an action, then determines
the resulting sensory state again. This elementary experiment is recorded as one
state transition in the finite state automata being built.

After finite many repeats of the basic experiments, we have a sequence

perception—action—perception—action—perception—
. —action—perception.

This sequence is usually called the perception-action loop, and can be stud-
ied by using information theoretical tools [11]. The state transitions define the
automaton, and we can do the decomposition.

Let’s suppose we have a perception-action automaton and we do not really
know what it is doing (though by knowing its generators we fully describe it
implicitly), as in Fig. 2. Is it doing some complex computation? Calculating
its holonomy decomposition we find that it can be emulated by a cascaded
automaton with two levels (for details and visualisation see Figures 3-4). Now
if we ask the question, ‘What is the automaton doing roughly?’, then we can
answer very easily just by looking at the top level (Fig. 4). We have three states
there and the component is not a reversible one, which means that there are
actions of the agent that induce decisive changes in the environment, and those
changes cannot be undone. Going further down to the second level we find that
depending on the state above we either have a reversible component or another
irreversible change. The actual reversible component is a permutation of two
states of the original automaton, corresponding to actions that can be repeated.
This illustrates the idea of having a coordinate system for understanding.

Fig. 2. An example perception-action automaton A for an agent with two actions = and
y showing the transitions these actions induce on sensory states. The actions determine

the state transformations z = (12342), y=(32343).

3.2 Integrating Sensory Channels

Depending on the granularity level on which we define states, we can either have
composite states by somehow integrating sensory channels, or we can build the
hierarchical model for each channel. The latter seems to be more interesting since
we have different models for different modalities and we have the possibility of
comparing the different coordinate systems.

3.3 Hidden States

It may be very well possible that starting from a state a the same action x applied
many times yields different results. That is the indication that the sensor does
not capture some important aspects of the process in the environment. There
are some “hidden states”, that the agent cannot see. This clearly complicates
the finite state automata description by making it nondeterministic? and may
be converted into a deterministic one (with the cost of introducing more states,
for instance the states that are not detected by the sensors). As an extreme
case we can consider an agent only with one action, the observation. For this
problem of hidden states we have more sophisticated approaches, like the e-
machine reconstruction [12], where the state transitions of the automaton are
based on histories, not just on single states of the environment.

3.4 Stochasticity

Our basic assumptions is that the environment of the agent can be described by
finite state automata. It is debatable whether our assumption holds for agent

2 Nondeterminism in the context of automata theory means only that in a given
state the same action may have several outcomes, whereas stochasticity concerns
the assignment of probabilities to such transitions.

EEm ®)E)

Fig. 3. The structure of the holonomy decomposition of A. The numbers on the right
denote the hierarchical levels (the level 0 is present just to show the states of the compo-
nents on the first level, it does not appear as a hierarchical level in the decomposition).
The nodes are subsets of the state set, rectangular nodes represent the components of
the decomposition. Shaded components denote the existence of some reversible com-
putation. The arrows going into the component come from the component’s states. On
the first level we have parallel components.

put into real world situations, or by using discrete non-stochastic models we
abstract away important layers of the real processes. However, our approach is
justified by the very idea of a model, which should be simpler than the modeled
phenomenon.

4 Future Work and Discussion

We presented a framework for using sensory channels to build models of the envi-
ronment on the fly. We did not mention many difficult issues that are expected to
come up for real experiments (e.g. with physically built robots). The difficulties
can be the definition of state for each sensory channels, the resolution of time for
actions and perceptions, the number of actions needed for building the model,
etc., these should be solved by future attempts. The next steps are to automate
the construction of perception-action automata and the related e-machines aris-
ing from real-world examples. By having a computational implementation we
are getting closer to those very promising and possibly successful applications.

References

1. Brooks, R.A.: Cambrian Intelligence: The Early History of the New AI. MIT Press
(A Bradford Book) (1999)

2. Steels, L.: Intelligence with representation. Philosophical Transactions: Mathe-
matical, Physical and Engineering Sciences 361(1811) (2003) 2381-2395

3. Rhodes, J.L.: Applications of Automata Theory and Algebra via the Mathematical
Theory of Complexity to Finite-State Physics, Biology, Philosophy, Games, and
Codes. World Scientific Press (to appear 2007) Foreword by Morris W. Hirsch,
edited by Chrystopher L. Nehaniv (Original version: University of California at
Berkeley, Mathematics Library, 1971).

Fig. 4. The states of the top (level 2) component of the decomposition of A are over-
lapping subsets of the state set of the transformation semigroup being decomposed (on
the left). The identified reversible computation at the second level of the decomposition
of A (on the right).

10.

11.

12.

Nehaniv, C.L., Rhodes, J.L.: The evolution and understanding of hierarchical
complexity in biology from an algebraic perspective. Artificial Life 6 (2000) 45-67
Devadas, S., Newton, A.R.: Decomposition and factorization of sequential finite
state machinces. IEEE Transactions on Computer-Aided Design 8(11) (1989)
1206-1217

Egri-Nagy, A., Nehaniv, C.L.: Algebraic hierarchical decomposition of finite state
automata: Comparison of implementations for Krohn-Rhodes Theory. Conference
on Implementations and Applications of Automata CIAA 2004, Lecture Notes in
Computer Science 3317 (2004) 315-316

Egri-Nagy, A., Nehaniv, C.L.: GrasperMachine, Computational Semigroup Theory
for Formal Models of Understanding. (http://graspermachine.sf.net). (2003)
Egri-Nagy, A.: Algebraic Hierarchical Decomposition of Finite State Automata —
A Computational Approach. PhD thesis, University of Hertfordshire, School of
Computer Science, United Kingdom (2005)

Krohn, K., Rhodes, J.L., Tilson, B.R.: The prime decomposition theorem of the
algebraic theory of machines. In Arbib, M.A., ed.: Algebraic Theory of Machines,
Languages, and Semigroups. Academic Press (1968) 81-125

von Uexkiill, J.: Environment [Umwelt] and inner world of animals. In Burghardst,
G.M., ed.: Foundations of Comparative Ethology. Van Nostrand Reinhold, New
York (1985) 222-245

Klyubin, A.S., Polani, D., Nehaniv, C.L.: Organization of the information flow
in the perception-action loop of evolved agents. In Zebulum, R.S., Gwaltney,
D., Hornby, G., Keymeulen, D., Lohn, J., Stoica, A., eds.: Proceedings of 2004
NASA /DoD Conference on Evolvable Hardware, IEEE Computer Society (2004)
177-180

Crutchfield, J.P.: The calculi of emergence: Computation, dynamics, and induction.
Physica D 75 (1994) 11-54

