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Abstract—The increasing demand for green wireless communi-
cations and the benefits of the promising cell-free (CF) massive
multiple-input-multiple-output (mMIMO) systems towards their
optimal energy efficiency (EE) are the focal points of this work.
Specifically, despite previous works assuming a uniform placement
for the access points (APs), we consider that their locations
follow a Poisson point process (PPP) which approaches their
opportunistic spatial randomness. Based on stochastic geometry,
we derive a lower bound on the average spectral efficiency, and
under a realistic power consumption model for CF mMIMO
systems, we formulate an EE maximization problem achieving
to obtain in closed form the optimal EE per unit area in terms
of the pilot reuse factor and the AP density. Note that we have
defined the EE per unit area and not just the EE to characterize
the energy in systems with multi-point transmission. Thus, we
provide important design insights for energy-efficient CF mMIMO
systems.

Index Terms—Cell-free massive MIMO systems, energy effi-
ciency, stochastic geometry, small cell networks, 5G and beyond
MIMO systems.

I. INTRODUCTION

Recently, cell-free (CF) massive multiple-input-multiple-
output (mMIMO) systems has emerged as a promising tech-
nology for fifth-generation (5G) networks and beyond [1].
In particular, CF mMIMO systems take advantage of both
conventional mMIMO [2] and network MIMO system [3] by
assuming that a large number of access points (APs), distributed
over a coverage area and coordinated by a central processing
unit, serve coherently a smaller number of users in the same
time-frequency resources [1]. However, we manage to enjoy
the benefits of channel hardening and favorable propagation
under certain conditions including multiple antenna APs and
low path-losses [4].

Despite the increasing power consumption of CF mMIMO
systems as the size of the network increases, only few prior
works have studied their energy efficiency (EE) but not in closed-
forms but by simulations [5]–[7]. For example, [7] investigated
the EE in a user-centric approach with millimeter waves. In
parallel, the inevitable irregularity of CF mMIMO systems as
they become denser by increasing the number of APs has not

been described by a practical model describing the APs spatial
randomness except the work in [4] that focused only on the
effects of channel hardening and favorable propagation and not
in the derivation of the achievable rate, and the work in [8],
which relied on a large number of APs to apply deterministic
equivalents and derive the coverage probability.

In this work, we address the EE per unit area of CF mMIMO
systems, being of paramount importance for future networks,
and contrary to existing works [5], [6], we provide closed-
form expressions while we account for the spatial randomness
of the APs during the analysis. Specifically, we present a
novel analytical model for the downlink performance of CF
mMIMO systems with Poisson point process (PPP) distributed
multiple-antenna APs. Moreover, we derive a lower bound on
the downlink average spectral efficiency (SE) by means of
stochastic geometry and under a realistic power consumption
CF mMIMO systems, we develop an EE maximization problem.
Thus, we obtain the optimal EE per unit area with respect to
the pilot reuse factor and AP density while we shed light on
the impact of the main system parameters.

The remainder of this paper is structured as follows. Section
II provides the system model of a CF massive MIMO system
with multiple antennas APs that are PPP distributed. Section III
presents the uplink training phase, and Section IV describes the
downlink transmission phase. Section V provides the analysis
regarding the EE per unit area and Section VI describes the
optimization of the EE per unit area in terms of system
parameters. The numerical results are given in Section VII,
and Section VIII concludes the paper.

II. SYSTEM MODEL

We consider a CF massive MIMO system with N ≥ 1

antennas per AP. Most importantly, we assume that the AP
locations follow a homogeneous PPP ΦAP with intensity λAP[
AP/km2

]
. Let M be the number of APs found in a region A

of size S(A) in a random realization of the PPP ΦAP. Then,
M is a Poisson random variable with mean value

E [M ] = λAPS(A) . (1)978-1-7281-4490-0/20/$31.00 c© 2020 IEEE



Hence, W = MN , denoting the total number of antennas in A,
is a Poisson random variable with mean E [W] = NλAPS(A).

Based on the network MIMO concept, all the APs, connected
via a perfect fronthaul network to a central processing unit for
coding and decoding of the data signals, serve simultaneously all
the single-antenna users on the same time-frequency resource.
In particular, we assume that in a given ΦAP, the number
of users, selected at random from a large set based on some
scheduling algorithm, is given by K while their locations follow
an independent stationary point process [9]. Note that the choice
of densities should fulfill the condition W � K [4].

Slivnyak’s theorem allows the consideration of a typical user,
selected at random among the users to analyze the network
performance [10]. Especially, for the sake of exposition, we
assume that the typical user, indexed by k, is located at the
origin.

A. Channel Model

Let a given realization of the PPP ΦAP with M APs, the
N ×1 channel vector hmk between the mth AP and the typical
user is expressed as

hmk = l
1/2
mkgmk, (2)

where lmk = min
(
1, r−αmk

)
and gmk represent independent path-

loss and small-scale fading. The expression of the path-loss
describes a non-singular bounded model, where α > 0 is the
path-loss exponent and rmk is the distance between the mth
AP and the kth user [11]. The selection of this path-loss model
is justified based on its suitability to describe short distances
as in CF mMIMO systems [4]. Moreover, we assume that the
distances between the mth AP located at xm in R2 and the
various users in A\{xm ∈ A} follow the uniform distribution
and are independent. In addition, gmk consists of identically
distributed (i.i.d.) CN (0, 1) random elements, i.e., we assume
independent Rayleigh fading [1].

Let a narrowband channel that consists of coherence blocks
with duration Tc in s and bandwidth Bc in Hz, i.e., we have
τc = BcTc samples while independent channel realizations
appear in every block [12]. We consider the time-division-
duplex (TDD) protocol with an uplink training phase of τtr
samples and two data transmission phases of τd (downlink) and
τup (uplink) samples, respectively. Thus, τc = τtr + τup + τd.
This work focuses on the downlink data transmission phase with
duration that can be expressed by τd = ξ (τc − τtr) with ξ ≤ 1

expressing the downlink payload fraction transmission [13].

III. UPLINK CHANNEL ESTIMATION

We assume K � τtr and we introduce the reuse factor
ζ = K/τtr, where ζ is assumed an optimization variable.
The physical meaning is that E [ζ] users share the same pilot
sequences on the average.

The received N × τtr channel vector by the mth AP is given
by

ỹtr
m=

K∑
i=1

√
τtrρtrl

1/2
mi gmiψ

H

i +ntr
m, (3)

where ρtr is the average transmit power and ψk ∈ Cτtr×1 with
‖ψk‖2 = 1 is the normalized pilot sequence transmitted by user
k while ntr

m is the N × τtr additive noise vector at the mth AP
consisted of i.i.d. CN (0, 1) random variables.

According to [14] and given the distance statistics, the
minimum mean-squared error (MMSE) estimate of the channel
is given by ĥmk=E[hmkỹ

H

mk]E−1[ỹmkỹ
H

mk]ỹmk which results
in

ĥmk =
lmk∑K

i=1 |ψiψH

k|2lmi + 1
τtrρtr

ỹmk, (4)

where ỹmk is obtained by projecting ỹtr
mk onto 1√

τtrρtr
ψk.

The estimation error vector ẽmk = hmk − ĥmk is inde-
pendent of ĥmk. Moreover, it follows that hmk ∈ CN×1 ∼
CN (0, lmkIN ), ĥmk ∈ CN×1 ∼ CN

(
0, σ2

mkIN
)

and ẽk ∈
CN×1 ∼ CN

(
0, σ̃2

mkIN
)
, where σ2

mk =
l2mk

dm
and σ̃2

mk =

lmk

(
1− lmk

dm

)
with dm =

(∑K
i=1 |ψH

iψk|2lmi+ 1
τtrρtr

)
. To

summarize, we have hmk ∈ CN×1 ∼ CN (0, lmkIN ), ĥmk ∈
CN×1 ∼ CN

(
0, σ2

mkIN
)

and ẽk ∈ CN×1 ∼ CN
(
0, σ̃2

mkIN
)
.

IV. DOWNLINK TRANSMISSION

The received signal by the typical user is described equiva-
lently by the following two expressions

yd
k =
√
ρd

∑
i∈ΦAP

h̃H

i si + zd
k (5)

=
√
ρd

M∑
m=1

hH

mksm + zd
k , (6)

where, in the first expression, the vector h̃i expresses the channel
between the ith AP located at xi ∈ R2 and the typical user,
ρd > 0 denotes the corresponding transmit power, and si is the
transmit signal from the ith AP while zd

k ∼ CN (0, 1) is the
additive white Gaussian noise at the kth user. Since a realization
of the system includes M APs, the signal model described by (5)
can be written as in (6). The second expression includes the
vector hmk expressing the channel between the mth AP and
the typical user while sm is the transmit signal from the mth
AP, which is given as

sm =

K∑
k=1

√
ηmkfmkqk, (7)

with qk ∈ C being the normalized transmit data symbol for
user k satisfying E

[
|qk|2

]
= 1 and the vector fmk ∈ CN

describing the linear precoder. Especially, we assume conjugate
beamforming given by fmk = ĥmk. We denote ηmk = µσ−4

mk,
where the parameter µ is obtained by means of the constraint of



the transmit power E
[
ρd
K smsH

m

]
= ρd. This selection regarding

ηmk, corresponds to a statistical channel inversion power-
control policy, which aims at easing the following algebraic
manipulations [9]. It allows each AP to allocate more power to
the most distant users and less power to the closest ones. Notably,
the scaling does not result in any loss in the performance since
the parameter µ is changed accordingly.

Henceforth, for the sake of algebraic manipulations,
we denote hk = [hT1k · · ·hTMk] ∼ CN (0,Lk), ĥk =

[ĥT1k · · · ĥTMk] ∼ CN (0,Φk) and ẽk ∈ CW×1 ∼
CN (0,Lk −Φk). The matrices Lk ∈ CW×W , Φk =

L2
kD
−1 ∈ CW×W , and D ∈ CW×W are block diagonal

matrices with elements given by the matrices [Lk]ww = lmkIN ,
[Φk]ww = σ2

mkIN , [D]ww = dmIN , and [D]ww = dmIN ,
respectivetly, for w = 1, . . . ,W and W = MN . We also
define Ck = Φ−1

k with [Ck]ww = cmkIN , where cmk = σ−2
mk.

The received signal by the typical user is given by means of (6)
and (7) as

yd
k=
√
ρd

(
E

[
M∑
m=1

η
1/2
mkhH

mkĥmk

]
qk+

M∑
m=1

η
1/2
mkhH

mkĥmkqk

−E

[
M∑
m=1

η
1/2
mkhH

mkĥmk

]
qk+

K∑
i6=k

M∑
m=1

η
1/2
mi hH

mkĥmiqi

)
+zd

k , (8)

where we have also followed the approach in [15] to derive
below the SINR1. By treating the unknown terms as uncorrelated
additive noise, we derive the effective SINR of the downlink
transmission from all the multi-antenna APs to the typical user,
conditioned on the number of APs and their distances from the
users as

γk =

∣∣∣E [hH

kCkĥk

] ∣∣∣2∑K
i=1 E

[∣∣∣hH

kCiĥi

∣∣∣2]− ∣∣∣E [hH

kCkĥk

] ∣∣∣2 + 1
µpd

. (9)

Proposition 1: Given a realization of the network with M APs
and K users, the effective SINR of the downlink transmission
from the PPP distributed N antennas APs to the typical user in
a CF massive MIMO system, accounting for pilot contamination
and conjugate beamforming, is given by (10) at the top of the
next page.

Proof: Herein, we shall omit the proof of Proposition 1,
which is provided in [16] due to limited space.

We observe that the factor N in the numerator results due to
the array gain from the coherent transmission of the N antennas
per AP. Also, the increase in the number of users K decreases
the SINR since K appears in the denominator in terms of the
summations.

1This approach exploits channel hardening, which in general does not hold
in CF massive MIMO systems with single-antenna APs. However, we assume
that certain conditions are met that guarantee channel hardening [4].

V. EE ANALYSIS

Reasonably, the increasing number of APs in CF massive
MIMO systems is expected to increase power consumption.
Hence, it is necessary to study the corresponding EE per
unit area. Notably, the following definition is novel and also
necessary to model CF massive MIMO systems, and in general,
architectures with CoMP.

Definition 1: The EE per unit area expresses the amount of
reliably transmitted information per unit of energy and area,
which is defined mathematically as

EE
[
bit/Joule/km2

]
=

Throughput [bit/s]

Area power consumption
[
W/km2

]
=
Bw [Hz] · TSE [bit/s/Hz]

APC
[
W/km2

] , (11)

where Bw, TSE, and APC describe the transmission bandwidth,
the total SE (TSE), and the area power consumption (APC),
respectively.

A. Total Spectral Efficiency

The TSE, describing the total SE, is expressed as

TSE = KR [bit/s/Hz] , (12)

where R = Rk is the average SE per user over the channel
realizations and AP locations since our analysis relies on user k,
being statistical equivalent with any other user in the network.
Note that K corresponds to the sum SE of all users.

Given that the downlink capacity for this network is not
known, we present the following tractable lower bound as
in [2], [17], [18], which holds for any given realization of ΦAP.

Lemma 1 ( [19]): A lower bound on the downlink ergodic
channel capacity of the typical user k in a CF massive MIMO
system with conjugate beamforming and PPP distributed APs
for any given realization of ΦAP is provided by

Rk =

(
1− K

ζτc

)
log2 (1 + γk) b/s/Hz, (13)

where K is the number of users, ζ is the pilot reuse factor,
and τc is the channel coherence interval in number of samples
while γk is given by (10).

The average SE per user is derived below by applying the
expectation at (13) over the APs locations.

Theorem 1: A lower bound on the downlink average SE per
user with conjugate beamforming precoding in a CF massive
MIMO system with multi-antenna APs is obtained by

Řk =

(
1− K

ζτc

)
log2 (1 + γ̄k) , (14)

where γ̄k = 1/γ̌k with γ̌k given by

γ̌k=

K∑
j=1

|ψjψH

k|2
(
α−2

απNpd
+K−1

)
+

ζ

απKρtr

(
(K−1) (α−2)+

(α− 1)

Npd

)
+λAP(K−1). (15)



γk =
M2N∑K

i=1 tr
(
Ci

(
NLk + 1

Kpd
IM

))
+N

∑K
i 6=k tr2

(
LkL

−1
i

)
−N tr

(
DL−1

k

)
+M

. (10)

TABLE I
SYSTEM PARAMETERS VALUES

Parameter Value
Fixed power PFP 5 W

Power for AP local oscillator PLO 0.1 W
Power per AP antenna PAP 0.2 W
Power per UE antenna PUE 0.1 W

Power for data coding PCOD 0.01 W/ (Gbit/s)
Power for data decoding PDEC 0.08 W/ (Gbit/s)
Power for backhaul traffic PBT 0.025 W/ (Gbit/s)

AP computational efficiency LAP 750 Gflops/W
Power amplifier efficiency αeff 0.5

Proof: Herein, we shall omit the proof of Theorem 1, which
is provided in [16] due to limited space.

B. Area Power Consumption

Similar to the approach in [13], [17] but with certain
modifications concerning CF massive systems, we have

APC = λAP

(
1

αeff
PTX + PCPC

)
, (16)

where αeff ∈ (0, 1] is the power amplifier efficiency while
PTX and PCPC are the power usage during the transmission
and the circuitry of the system, respectively. In particular,
PTX includes both the average powers for the uplink pilot
and downlink payload transmissions while PCPC includes the
circuitry dissipation in terms of cooling, power supply, etc.

Proposition 2: A generic realistic model for the downlink
APC of CF massive MIMO systems is given by

APC(θ) = λAP ( C0 + C1K + C2K
2 +D0N +D1NK

−D2NK
2 +ABwTSE ) , (17)

where C0 = PFP +PLO, C1 = Bw

7LAPτc
− ξρd

αeffζτc
+PUE, C2 =

1
αeffζρtrτc

, D0 = PAP, D1 = 3Bw

LAP
+ 3Bw

LAPτc
, D2 = 3Bw(ξ−1)

LAPζτc
,

and A = (PCOD + PDEC + PBT).
Proof: See Appendix A.

The circuit power parameters, taken from [12], are listed in
Table I.

VI. EE MAXIMIZATION

This section presents the maximization of the constrained
EE per unit area under generic hardware and transmission
characteristics. Specifically, we focus on θ = (ζ, λAP) that
obeys to the problem

θ? = arg max
θ∈Θ

EE(θ) =
BwTSE(θ)

APC(θ)

subject to γ̄k(θ) = γ0,

(18)

where TSE(θ) is given by (16) with Řk given by Theorem 1,
APC(θ) is provided by Proposition 2, γ̄k is obtained by
Theorem 1 while γo > 0 is a design parameter. The constraint
in (18) does not allow an unacceptable achievable rate under
these parameters. Also, λAP ≥ 0, ζ ≥ 1,K/ζ ≤ τc. The
superscript ? represents the optimal values. Note that the
maximization with respect to K, N takes place in the journal
version.

A. Feasibility

The optimization problem in (18) is feasible for a certain
range of values of γo because of the multiuser interference.

Lemma 2: The feasibility range of values of γo, obtained from
the maximization problem for CF massive MIMO systems (18),
is provided by

γo <
1

λAP
. (19)

Proof: We simplify the expression of the SINR, which
is the inverse of (15) by observing that it is a monotonically
increasing function of N . Thus, we derive its limit as N →∞
as

lim
N→∞

γ̄k=
απρtrK

G
, (20)

where G = απK
(∑K

j=1 |ψjψH

k|2 (K−1)+KλAP

)
ρtr +

(α−2) (K−1) ζ. Given that the upper limit is a decreasing
function of the optimizable variable ζ, we use the constraint
ζ = K/τtr, take its minimal value when K = 1, and, thus, we
result in the feasible γo.

Based on this lemma, the upper limit of the SINR depends
only on the AP density λAP as N → ∞. The typical
value regarding the number of APs in CF massive MIMO
systems is 100 − 200 [1], being equivalent to a density
λAP ≈ 10−4 m−2. Hence, the average SE per user is
log2 (1 + 100) ≈ 13.29 b/s/Hz, which is larger than the SE of
currently applied systems [20], i.e., (18) is feasible for practical
systems.

B. Optimal Pilot Reuse Factor

Herein, we present of the optimal pilot reuse factor ζ? while
the rest of the parameters are fixed.

Theorem 2: Let any set of {λAP,K,N} resulting in the
feasibility of the maximization of EE per unit area given by (18).
The optimal pilot reuse factor, satisfying the SINR constraint,
is obtained by

ζ? =
απKNρtrρd − γoQ1

γoQ2
. (21)



Proof: We consider the constraint and we group the terms
including ζ in the SINR γ̄k = 1/γ̌k, which results in

γo =
απNρtrρd

Q1 − ζQ2
, (22)

where

Q1 = Kρtr

(
(α− 2)

K∑
j=1

|ψjψH

k|2

+ απNρd (K − 1)

 K∑
j=1

|ψjψH

k|2 + λAP

),
Q2 = (α− 1 +Nρd (α− 2) (K − 1))/K, (23)

and we solve (22) with respect to ζ.
Theorem 2 describes the dependence of ζ? on the rest

of the system parameters. In particular, a smaller ζ?, being
equivalent to a larger training phase, denotes more precise
channel estimation, and subsequently, higher SE, which agrees
with (21).

C. Optimal APs Density

After inserting (21) into (18), the optimization problem is
expressed as

EE(ζ?,K,N) =
BwASE(ζ?,K,N)

APC(ζ?,K,N)

subject to 1 ≤ απNρtrρd − γoQ1

γoQ2
≤ K

τc
.

(24)

Theorem 3: Let any set of {K,N} keeping the optimization
problem (24) feasible. For fixed K and N , the EE per unit area
is maximized by

λ?AP = min (max (λAP0
, λAP1

) , λAP2
) , (25)

where

λAP0
=

(a1 + a3)G+
√
a2a3a4 (a1 + a3)G

a2a4G
(26)

with

G = a2 (a4 + a5 + a6K log (1 + γ0)) (27)

while λAP1
= a3−a1

a2
, λAP2

= τc/(Ka3)+a1
a2

, and the parameters
{ai} are provided in Table II.

Proof: We observe that TSE and APC include the term
ζ?τc/K, which can be rewritten as ζ?τc/K = a2λAP−a1

a3
. By

subistituting this term into the objective funtion of (24), we
obtain (28). Following the approach in [17, Lem. 3], it can be
shown that (28) is a quasi-concave function of λAP. Thus, (26)
is obtained by taking the first derivative of (28) and equating
to zero. Given that the constraint in (24) depends on λAP, we
obtain λAP1

and λAP2
.

VII. NUMERICAL RESULTS

Let a sufficiently large squared area of 1 km2, where the AP
locations follow a PPP ΦAP with density λAP = 100 APs/km2

based on a wraparound topology to keep the translation invari-
ance. Also, let the transmission bandwidth be Bw = 20 MHz

and that each coherence block includes τc = 200 samples.
In addition, we assume that N = 20 antennas per AP and
K = 10 users in total while ζ = 4. Moreover, we assume that
ρtr = 100 mW, ρd = 200 mW, α = 4, and ξ = 1/3. Note
that we consider these values unless otherwise stated.

In Fig. 1, we evaluate the EE by varying the pilot reuse
factor ζ and AP density λAP for a given pair of K, N based
on Theorems 2 and 3. In particular, it is shown that the EE
is a pseudo-concave function with respect to ζ with a unique
global maximum at ζ? = 3 while the corresponding optimal
EE is EE? = 5.92 Mbit/Joule. Also, EE is a quasi-concave
function with respect to λAP according to Theorem 3. Notably,
this figure depicts the optimal value of the AP density being
λAP = 25 APs/km2. For the sake of comparison, in Fig. 2,
we have illustrated a conventional “cellular” massive MIMO
scenario, where an AP with N = 20 antennas is located per
cell and K = 10 users are served in total based on the work
in [9]. Notably, we observe that CF massive MIMO systems
present higher EE than conventional mMIMO systems while
the required AP density is much lower.

Fig. 1. Energy efficiency per unit area (Mbit/J/km2) of CF massive MIMO
systems versus the AP density λAP and pilot reuse factor ζ. The optimal EE
per unit area is star-marked and the corresponding parameters are provided.

Fig. 3 shows the effect of the SINR constraint γo on the
EE. Especially, we assume that γo ∈ {1, 3, 7} resulting
in an average SE equal to 1, 2, and 3, respectively. It is
shown the decrease of the EE with γo which notifies that
the achievable SE should stay at a satisfactory level according
to the specified requirements. Instead, we will end up in a
highly energy-efficient system that will be useless with concern
to the user experience because of low SE. Moreover, the gap
between the lower and upper bounds is small, which denotes the
tightness of the bound proposed by Theorem 1 and validates the
various approximations. Moreover, we observe again that the



EE(ζ?) =

Kξ
λAP

(
1− a3

a2λAP−a1

)
log2 (1 + γ)

a4 + a5
a3

a2λAP−a1 + a6Kξ
(

1− a3
a2λAP−a1

)
log2 (1 + γ)

(28)

TABLE II
OPTIMIZATION PARAMETERS FOR OPTIMAL AP DENSITY λAP

Parameter Value

a1 ρtrτcK
(
απNρd − ((α− 2) + απNρd) γ

∑K
j=1 |ψjψH

k|
2
)

a2 απγρdρtrτcKN (K − 1)
a3 γKNρd (α− 1 + (K − 1) (α− 2))
a4 C0 + C11K +N (D0 +D1K)

a5
1
αeff

((ξ − 1) ρd +Kρtr)− 3BKNξ
LAP

a6 PCOD + PDEC + PBT

Fig. 2. Energy efficiency per unit area (Mbit/J/km2) of “cellular” mMIMO
systems versus the AP density λAP and pilot reuse factor ζ. The optimal EE
is star-marked and the corresponding parameters are provided.

EE increases with λAP, and then, it decreases after a specific
value of the AP density around λAP = 30 APs/km2 which is
equivalent to a reasonable distance for practical deployments
among the APs being 103 m approximately.

VIII. CONCLUSION

We investigated the EE per unit area in CF mMIMO systems
with multiple-antenna APs by accounting for their irregular
spatial randomness. In particular, we considered that the APs
are PPP distributed, and we introduced a realistic power
consumption model for this architecture. Notably, we derived a
closed-form lower bound on the ASE and achieved to obtain
closed-form expressions regarding the optimal EE per unit area
in terms of system variables being the pilot reuse factor and APs
density. Hence, we provided valuable fundamental conclusions
regarding the impact of these parameters on the EE per unit
area.

Fig. 3. Energy efficiency per unit area (Mbit/J/km2) of CF mMIMO systems
versus the AP density λAP for different SINR constraints. “Solid-bullet” and
“dashed” lines correspond to the lower bound due to the Theorem 1 and upper
bound due to Monte Carlo simulation of the average SE.

APPENDIX A
PROOF OF PROPOSITION 2

The proof includes two parts It starts with the expression
of PTX by means of a lemma, and then continues with the
presentation of PCPC.

Lemma 3: The total average transmit power consumption due
to uplink pilot and downlink data transmissions of an arbitrary
AP is

PTX = K
K/ζρtr + τdρd

τc
, (29)

where τd = ξ (τc − τtr).
Proof: In each coherence block, each user transmits pilot

symbols for a fraction of τtr/τc with power ρtr, where τtr =

K/ζ, while each AP trasmits data symbols for a fraction of
τd/τc with power ρd.

Based on [13], the second part of (16), concerning the PCPC

of an arbitrary AP, is given by

PCPC = PFP + PTC + PC−BC + PCE + PLP, (30)



where these terms correspond to the power consumptions of
circuitry parts. Specifically, PFP expresses the power consumed
for site-cooling and control signaling and the traffic-independent
mixed power consumption of each backhaul, PTC for the
transceiver chain, PC−BC for coding and load-dependent back-
hauling cost, while PCE and PLP decribe the powers consumed
for the processes of channel estimation process and linear pro-
cessing. Actually, each term depends on the system parameters.
In particular, we have that PTC = NPAP + PLO + KPUE,
where PAP, PLO, and PUE are the powers per AP antenna, AP
local oscillator, and the power per user antenna. Furthermore,
we have PC−BC = BwASE (PCOD + PDEC + PBT), where
the terms from left to right denote the bandwidth, the powers
for data coding and decoding as well as well as the total power
for the backhaul traffic. Concerning the computation of PCE, we
have that the MMSE estimation involves Nτd and N operations
for the calculations of ψH

kỹ
tr
m and ĥmk. In total, the MMSE

estimation requires KN(τtr + 1) operations needing 3 flops
per operation with AP computational efficiency αeff . Since this
procedure takes Bw

τc
coherence blocks per second and τtr = K

ζ ,
we have

PCE =
3

LAP

Bw

τc
KN(

K

ζ
+ 1). (31)

The linear processing power PLP is a sum of the powers
consumed by precoding/transmitting the data and computation
of the precoder, i.e., PLPt and PLPp , respectively. Hence, we
have

PLP = PLPt
+ PLPp

, (32)

where PLPt = 3
LAP

Bw

τc
KNξ(τc − τtr) with τtr = K

ζ , and
the power consumed by the conjugate beamformer is given
by [12], [13] as PLPp = BwK

7τcLAP
. Substituting (29) and the

power expressions in (30) into (16), we conclude the proof.
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