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Abstract. A hybrid automaton is a finite state machine combined with
some k real-valued continuous variables, where k determines the number
of the automaton dimensions. This formalism is widely used for modelling
safety-critical systems, and verification tasks for such systems can often
be expressed as the reachability problem for hybrid automata.
Asarin, Mysore, Pnueli and Schneider defined classes of hybrid automata
lying on the boundary between decidability and undecidability in their
seminal paper ‘Low dimensional hybrid systems - decidable, undecidable,
don’t know’ [9]. They proved that certain decidable classes become unde-
cidable when given a little additional computational power, and showed
that the reachability question remains unsolved for some 2-dimensional
systems.
Piecewise Constant Derivative Systems on 2-dimensional manifolds (or
PCD2m) constitute a class of hybrid automata for which decidability of
the reachability problem is unknown. In this paper we show that the
reachability problem becomes decidable for PCD2m if we slightly limit
their dynamics, and thus we partially answer the open question of Asarin,
Mysore, Pnueli and Schneider posed in [9].
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1 Introduction

A hybrid automaton is a formalism used to model dynamic systems that com-
prise both digital and analog components. Formally, it is a finite state machine
combined with some k real-valued continuous variables, where k determines the
number of the automaton dimensions. Examples of such systems can be found
among others in avionics, robotics and bioinformatics, and most of them are
safety-critical.

Verifying safety properties typically consists of construction of a set of reach-
able states and checking whether this set intersects with a set of unsafe states.
Therefore, one of the most fundamental problems in the analysis of hybrid au-
tomata is the reachability problem. Formally, it is stated as follows: for a given
automaton determine if there is a trajectory from some initial state to a target
state.
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Undecidability of reachability is usually proved by the simulation of a Turing
machine or any other Turing-complete abstraction on the given hybrid automa-
ton (see [9, 3] for examples). This way, the existence of an algorithm deciding
the reachability problem would solve the halting problem, which is a contra-
diction. On the other hand, decidability of reachability is typically shown by
providing an algorithm which solves it, or by showing that the system admits
finite bisimulation [13, 14].

The reachability problem is undecidable even for simple classes of hybrid
automata such as linear hybrid automata [1]. Nevertheless, there are classes of
hybrid systems for which it is decidable. Examples of decidable systems include
o-minimal systems [13] and initialized rectangular automata [11].

Despite the increasing interest in discovering new decidability results for
hybrid automata, there is still no clear boundary between what is decidable and
what is not for such systems [9].

Asarin et al. and Henzinger et al. presented hybrid automata that span the
boundary between decidability and undecidability for the reachability problem
in [9] and [11] respectively. Asarin et al. observed that certain decidable classes
become undecidable, when given a little additional computational power. Thus,
decidable 2-dimensional Piecewise Constant Derivative Systems (PCDs) become
undecidable for three dimensions or higher [3, 15].

Asarin and Schneider considered 2-dimensional Hierarchical Piecewise Con-
stant Derivative Systems (HPCDs), an intermediate class lying between decid-
able 2-dimensional and undecidable 3-dimensional PCDs [4]. They proved that
2-dimensional HPCDs are equivalent to 1-dimensional Piecewise Affine Maps
(PAMs), a class of dynamical systems for which reachability is a well-known
open problem [8]. A 1-dimensional PAM is a piecewise function which is applied
to the 1-dimensional real line, and the function within each interval of the real
line is affine. They are proven to be equivalent to a 2-dimensional system called
a planar pseudo-billiard system, also known as a ‘strange billiards’ model in
bifurcation and chaos theory [12].

Variants of HPCDs called Restricted HPCDs (RHPCDs), have been consid-
ered in [7]. This class of systems has similarities with many well-known models
such as rectangular automata and stopwatch automata. The authors show that
3-dimensional RHPCDs are undecidable by encoding a Minsky machine.

Mysore and Pnueli raised the following question [17]: Is there any class, sim-
pler than 2-dimensional HPCDs, which is equivalent to 1-dimensional PAMs?
Asarin et al. came up with further classes of hybrid automata, including PCDs
on 2-dimensional manifolds (PCD2m), which are equivalent to 1-dimensional
PAMs [9].

We consider PCD2m with slightly limited dynamics by forbidding colliding
and branching trajectories. We call such systems Regular PCD2m (PCDr2m) and
show that the reachability problem is decidable in this case.

As ‘reference systems’ we use dynamical systems on the closed orientable
surfaces and rely on the topological properties of their trajectories [16]. Further-
more, we study the properties of the language generated by the trajectories of
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a PCDr2m by associating all generated words with a sequence of graphs, called
Rauzy graphs or factor graphs [18].

The remainder of the paper is organised as follows. In Section 2 we recall the
notion of 2-dimensional PCDs, and in Section 3 we extend it to manifolds. Section
4 provides properties of dynamical systems on the closed orientable surfaces.

In Section 5 we introduce the language of PCDr2m, and in Section 6 we show
that the reachability problem can be solved for PCDr2m is decidable. Section 7
contains concluding remarks.

2 Preliminaries

A Piecewise Constant Derivative System (PCD) can be viewed as a finite set
of regions, where each region is associated with a vector field which determines
the rate of change of the continuous variables. In this section we formally define
them including the reachability problem for such systems.

2.1 Piecewise Constant Derivative Systems on a Plane

In this paper we deal with a 2-dimensional Euclidean space X = R2. An open
half-space in X is the set of all points x ∈ X satisfying a · x + b < 0 for some
rational a and b. A convex open polygonal set q is an intersection of a finite
number of half-spaces, and cl(q) denotes the closure of q.

A finite polygonal partition of X is a set Q = {q1, . . . , qk} of polygonal sets,
called regions, such that: (1) qi 6= ∅ for all 1 ≤ i ≤ k; (2) qi ∩ qj = ∅ for all

1 ≤ i, j ≤ k such that i 6= j; (3)
⋃k
i=1 cl(qi) = X

The boundary of each region q ∈ Q is bd(q) = cl(q)\q. The interior int(X ′)
of X ′ ⊆ X is the set of points x ∈ X ′ such that for some ε > 0 there exists an
ε-neighbourhood Nε(x) ⊆ X ′ of x. If X ′ is 1-dimensional then ε-neighbourhood
is assumed 1-dimensional too.

We use E(Q) to denote the set of edges of Q of the form e = int(cl(qi)∩cl(qj)),
where qi, qj ∈ Q, i 6= j, and int(cl(qi) ∩ cl(qj)) 6= ∅. Similarly, V(Q) denotes the
set of vertices of Q of the form v = cl(ei)∩ cl(ej), where ei, ej ∈ E(Q), i 6= j, and
cl(ei) ∩ cl(ej) 6= ∅.

We say that Bd(Q) = E(Q) ∪ V(Q) is a set of border elements. Now the set
Q ∪ Bd(Q) forms a partition of X. We define the border elements of a region
q ∈ Q as Bd(q) = {b | b ⊆ cl(q)} ∩ Bd(Q).

Definition 1 (2-PCD). A 2-dimensional Piecewise Constant Derivative Sys-
tem (or 2-PCD) is a pair H = (Q,F) with Q = {qi}i∈I a finite polygonal partition
of R2 and F = {vi}i∈I a set of vectors from R2. The dynamics is determined by
the equation ẋ = vi for x ∈ qi.

We can also define a 2-PCD on a convex subset S ⊂ X and assume that the
dynamics on the rest of R2 is defined as a constant flow going in or out from our
2-PCD, depending on the flow of the boundary of S.

The set Bd(q) consists of all boundary elements of a region q ∈ Q – edges
and vertices. Now we define the input and output boundary elements of q.
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(a) (b)

Fig. 1. (a) An example of a 2-PCD; (b) an example of a trajectory segment.

Definition 2 (Input and output edges). Assume q ∈ Q with dynamics v,
and an edge e ∈ Bd(q). We say that e in an input edge for q if for any x ∈ e
there is t > 0 such that x+vt ∈ q; and e in an output edge for q if for any x ∈ e
there is t < 0 such that x+ vt ∈ q.

By Definition 1, for every vertex x ∈ bd(q) with q ∈ Q there are exactly two
edges e, e′ ⊆ bd(q) such that x ∈ cl(e) ∩ cl(e′).

Definition 3 (Input and output vertices). We say that x is an input vertex
for q if both e and e′ are input edges; x is an output vertex for q if both e and e′

are output edges; and x is neutral with respect to q if e is an input edge and e′

is an output edge.

We denote by In(q) ⊆ Bd(q) and Out(q) ⊆ Bd(q) the sets of input and output
border elements (edges and vertices) of some region q respectively. In the rest of
the paper and similar to [5] we assume that In(q) ∩ Out(q) = ∅.

2.2 Trajectories

In this section we define the notions of a trajectory, its discrete abstraction called
an edge signature, and successor functions similar to [5, 6]1.

Definition 4 (Trajectory). A trajectory segment of H = (Q,F) with the
starting point x0 is a continuous and almost-everywhere (except on finitely many
points) derivable function τ : [0, T ] → R2 such that τ(0) = x0 and for any
t ∈ [0, T ], if τ(t) ∈ qi then τ̇(t) = vi. If T =∞ then τ is called a trajectory.

In the following we consider the discrete abstraction of a trajectory called an
edge signature.

Definition 5 (Edge signature). The edge signature of a trajectory τ is the
sequence σ(τ) = e0e1e2 . . . of edges traversed by τ .

1 A PCD can be seen as a special case of polygonal differential inclusion systems.



Deciding Reachability for PCDs on Orientable Manifolds 5

The edge signature of any trajectory segment τ can be represented in the
following form:

Sig(τ) = r1s
k1
1 r2s

k2
2 . . . rns

kn
n rn+1,

where skii denotes the cycles si of edges repeated ki times, and ri denotes the
paths (sequence of edges) between cycles (see Theorem 4.1 in [6]). Cycles si are
simple, that is, an edge can not appear twice in the cycle.

Definition 6 (Signature type). The signature type of an edge signature
Sig(τ) = r1s

k1
1 r2 . . . rns

kn
n rn+1 is the sequence type(τ) = r1s1r2 . . . rnsnrn+1.

The following theorem defines the set of signature types which has to be
examined to compute reachable states for a given 2-PCD.

Theorem 1 (Asarin, Schneider, Yovine, [6]). Only those signature types
having disjoint paths ri and unique (as sets of edges) cycles si, could correspond
to a trajectory starting in initial set S and ending in final set F . There are only
finite number of such signature types on any given 2-PCD.

For computing the successive interval images, it is convenient to introduce a
one-dimensional coordinate system on each edge e, with zero (0) denoting one
chosen vertex v0 of e and one (1) denoting the other vertex v1. Now each point
has the coordinate vλ = λv0 + (1 − λ)v1 with 0 < λ < 1. Then, a series of
successor functions on edges of the 2-PCD can be defined.

– Let x ∈ e for some e ∈ In(q). The successor Succ(x, q) of x is a point x′ ∈ e′
for some e′ ∈ Out(q) such that there is a trajectory segment that starts in
x, ends in x′ and goes only through q.

– Let (x1, x2) ⊆ e for some e ∈ In(q). The successor SuccInt(x1, x2, e
′, q) of

(x1, x2) on the interval e′ ∈ Out(q) is (x′1, x
′
2) ⊆ e′ defined as follows:

x′1 = min(1,Succ(x1, q), x
′
2 = max(0,Succ(x2, q))

If x′1 > x′2, then the interval successor is the empty set. In other words, the
successor of an interval (x1, x2) of an input edge e is the maximal interval
(x′1, x

′
2) of an output edge e′ reachable under the region’s dynamics.

2.3 Reachability problem

Reachability for PCD-like systems can typically be formulated as either point-to-
point or edge-to-edge reachability. In this paper we are interested in edge-to-edge
reachability.

Definition 7 (Point-to-point reachability). Let H = (Q,F) be a PCD. Then
a point b ∈ Bd(Q) is reachable from a point a ∈ Bd(Q) if there is a trajectory
segment that starts at a and ends at b.

Definition 8 (Edge-to-edge reachability). Let H = (Q,F) be a PCD. Then
an edge ef ∈ E(Q) is reachable from an edge es ∈ E(Q) if there are points as ∈ es
and bf ∈ ef such that there is a trajectory segment that starts at as and ends at
bf .
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Fig. 2. Different representations of a torus: (a) A surface in R3; (b) A triangulated
surface with identified edges.

3 Piecewise Constant Derivative Systems on Manifolds

All the definitions in this section are similar to the respective definitions in [9]
and follow the combinatorial approach in [10].

Definition 9 (Triangulable space). A topological space is triangulable if it is
obtained from a set of triangles by the identification of edges and vertices, where
any two triangles are identified either along a single edge or at a vertex, or are
completely disjoint. The identification is done via an affine bijection.

By a closed surface we mean a compact surface without boundary, and it is
formally defined below.

Definition 10 (Closed surface). A closed surface (or a 2-dimensional mani-
fold) S is a compact triangulable space for which in addition the following holds:

(1) Each edge is identified with exactly one other edge;
(2) The triangles identified at each vertex can always be arranged in a cycle

T1, T2, . . . , Tk, T1 so that adjacent triangles are identified along an edge.

Examples of closed surfaces include a sphere, a torus (see Figure 2) and
projective planes. In the rest of the paper we only deal with orientable surfaces
(a sphere and a connected sum of tori) even though we do not always state it
explicitly.

Definition 11 (PCD2m). We define a PCD on a 2-dimensional manifold (or
PCD2m) H = (Q,F) as a 2-PCD on a closed orientable surface S.

Below we introduce the subclass of PCD2m which we will prove to be de-
cidable. We define a Regular PCD2m by imposing additional restrictions on the
dynamics (the flow vectors do not collide or diverge on edges and vertices) to
guarantee that any point of the trajectory has exactly one predecessor and one
successor.
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(a) (b) (c) (d)

Fig. 3. Forbidden dynamics in PCDr2m: (a) collision on an edge; (b) branching on an
edge; (c) collision and branching on a vertex; (d) flow vector parallel to an edge.

Definition 12 (PCDr2m). We say that a PCD2m H = (Q,F) is regular (or
PCDr2m) if the following holds:

1. For any q, q′ ∈ Q, if b ∈ Bd(q)∩Bd(q′) then either b ∈ In(q) and b ∈ Out(q′),
or b ∈ Out(q) and b ∈ In(q′).

2. The vector field in any q ∈ Q is not parallel to any e ∈ cl(q) ∩ E(Q).

Examples of dynamics forbidden for PCDr2m by Definition 12 are given in
Figure 3. Now a manifold is a finite set of triangles with identified edges, and the
constant vector field in each triangle defines a successor relation between edges
of the triangle such that each triangle has either two input edges and one output
edge or one input and two output edges.

4 Dynamical Systems on the Closed Orientable Surfaces

Dynamical systems on the closed orientable surfaces and topological properties
of their trajectories considered in [16] provide a formalism promising to serve as
a ‘reference system’ for showing decidability of reachability problem on PCDr2m.

Let Sg be a closed orientable 2-dimensional manifold (surface) with the genus
g > 0, and R be a covering of this manifold by a finite number of regions ri,
1 6 i 6 n, homeomorphic to a Euclidean disc such that every region ri has its
own coordinate system (ϕi, ψi). Let the dynamics in each ri be defined by a
system of differential equations:

ϕ′i = Φ(ϕi, ψi), ψ′i = Ψ(ϕi, ψi) (1)

Furthermore, we assume the following:

– Transformation of one coordinate system to another at the points which be-
long to two regions or more is done by continuous functions with continuous
derivatives and nonzero Jacobian;

– The right sides of the Equation 1 are continuous functions and become zero
only at a finite number of points;

– Dynamics change between regions is done by the functions transforming one
coordinate system to another.
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For convenience we refer such systems as Regionwise Dynamical Systems on
2-dimensional manifolds (RDS2m) in the rest of the paper.

In this study we are concerned with three different types of trajectories. Two
of them, dense and orbital stable trajectories are defined below. The third type
of interest are trajectories on a subset of R2 and their properties are described
in Section 2.

Definition 13 (Dense trajectory). A trajectory τ is dense on a set of inter-
vals e1, . . . , ek if for any x ∈ τ and any interval e′i ⊆ ei, 1 6 i 6 k, there is
y ∈ e′i such that y is reachable from x.

Definition 14 (Orbital stable trajectory). A trajectory τ is called orbital
stable if for any ε > 0 there exists δ > 0 such that if a trajectory τ ′ starts in the
δ-neighbourhood of τ then it is also contained in the ε-neighbourhood of τ .

Along with the covering of the given manifold by the regions as described
above, we also consider another covering. Theorem 2 below shows that any
RDS2m can be decomposed into components consisting of trajectories which
are equivalent topologically.

Theorem 2 (Mayer, [16]). A RDS2m Sg is a disjoint union of a finite number
of areas M1, . . . ,Mk (referred later as dynamical components) of the following
types:

1. Type A: Any trajectory inside the area is orbital stable and non-closed.
Furthermore, all the trajectories have the same set of limit points; the area
is flat and at most 2-connected;

2. Type B: Any trajectory inside the area is closed; the area is either flat and
at most 2-connected or equals to the whole manifold in case of g = 1 (only
for a torus);

3. Type C: Any trajectory inside the area is everywhere dense; the area is not
flat and the number of areas of this type does not exceed g.

All other trajectories, called separatrices, form boundaries between the areas
of the above types.

Proposition 1. Any PCDr2m is a RDS2m, and therefore it is a disjoint union
of a finite number of areas of types A, B and C as defined in Theorem 2 and
separatrices.

Proof. By definition of PCDr2m the dynamics change between regions is non-
degenerate and local coordinates change with nonzero Jacobian. The flow in each
region is constant, hence there is a local coordinate system where both ϕ′i and
ψ′i are nonzero. ut

Proposition 2. Any separatrix of PCDr2m H = (Q,F) starts and ends at a
vertex.
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Proof. Let us assume that there is an infinite (or half-infinite) separatrix τs.
Then there is an ε-tube around τs (see Figure 4) such that the trajectories from
different sides of τs belong to different dynamic components but never split,
which contradicts to the definition of a separatrix (a trajectory separating areas
of different types). ut

Note that there could be trajectories that starts and ends in vertices that
are not separatrices in the above sense. They could divide a dynamic component
of Type B into several smaller periodic components. For convenience we include
those trajectories in the set of separatrices.

5 Language of PCDr2m

In the following we assume a finite non-empty set A called an alphabet, and the
elements of A are called letters. By A∗ we denote the set of all finite sequences
of A called words. A language L over A is a subset of A∗.

Definition 15 (Factorial language). A language L over an alphabet A is
factorial if u0u1 . . . un ∈ L implies u1u2 . . . un ∈ L and u0u1 . . . un−1 ∈ L for
arbitrary u0, . . . , un ∈ A.

Definition 16 (Prolongable language). A language L over an alphabet A is
prolongable if for any u ∈ L there exist a, b ∈ A such that au ∈ L and ub ∈ L.

In the following we consider the words induced by the trajectories of a
PCDr2m in the following sense: e1 . . . ek is a word if it is a signature of some
trajectory segment.

Proposition 3. Let H = (Q,F) be a PCDr2m, and L(H) be the set of all finite
words generated by the trajectories of H. Then L(H) is a factorial and prolongable
language over the alphabet Bd(Q).

Proof. By definition, L(H) is a language over Bd(Q). It is obviously factorial and
prolongable because for every boundary point x there are boundary points xsucc
and xpred such that xsucc is reachable from x and x is reachable from xpred. ut

A recurrent word is an infinite word over A in which every finite subword
occurs infinitely often.

Definition 17 (Uniformly recurrent language). A language L is called
uniformly recurrent if for any n ∈ N there exists ηn ∈ N such that every
word from L of length ηn contains all of the words from L of length n as sub-
words.

The language of a dynamic component of PCDr2m can be naturally seen as a
constraint of a language of PCDr2m on a set of words produced by the trajectories
of this component. It is a language with the same properties as in Proposition 3.
The following lemma gives the sufficient condition for the language of a dynamic
component of a PCDr2m to be uniformly recurrent.
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Lemma 1 (Uniformity condition). Density of the trajectories of a dynamical
component C of PCDr2m H = (Q,F) implies the uniformal recurrence of its
language LC .

Proof. Let w = e1e2 . . . en be a word in LC , and sw ⊆ e1 be a maximal sub-
interval such that w is generated by a trajectory starting at some x ∈ sw.

The density of trajectories in C implies that the first-return map f : sw → sw
is defined for any x ∈ sw.

To prove the uniformal recurrence of LC it is sufficient to show that there
exists a constant C(sw) such that r(x) < C(sw) for any x ∈ sw, where r(x) is
the length of the word corresponding to the trajectory segment connecting x
and f(x). Then by choosing ηn = max

w:|w|=n
C(sw) we guarantee that any word of

length ηn contains any word of length n.

x

}ε. . .
e1 e2

e3
en−1

en

Fig. 4. ”ε-tube” around images of x

We observe that for any inner point x ∈ sw there is a returning interval
ix ⊆ sw around x such that r(y) = r(x) for any y ∈ ix. This is because a
trajectory of x does not meet any vertex and there is always an ”ε-tube” around
the subsequent images of x (see Figure 4).

We also observe that any two adjacent returning intervals i(x) and i(y) are
divided by a trajectory of some vertex (see Figure 5). As C contains a finite
number of vertices, we conclude that there is k ∈ N such that sw is a disjoint
union of k returning intervals corresponding to some x1, . . . , xk ∈ sw.

i(xj) {
i(xj+1){

(a)

︸ ︷︷ ︸
sw

x1 x2 xk. . .︸︷︷︸
i(x1)

︸︷︷︸
i(x2)

︸︷︷︸
i(xk)

(b)

Fig. 5. An example illustrating the proof of Lemma 1

We define C(sw) = max
i∈{1,...,k}

r(ii) and this concludes the proof. ut

Corollary 1. The language of any dynamical component of Type B of any
PCDr2m is uniformly recurrent.
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a

b c

(a)

ca

bc

ab
ba

(b)

Fig. 6. (a) Rauzy graph of power 1 of the language in Example 1; (b) Rauzy graph of
power 2 of the same language.

6 Decidability of Reachability for PCDr2m

In this section we show that the reachability problem is decidable for PCDr2m.
Moreover, we provide an algorithm which decides in a finite number of steps if
a target edge is reachable from an initial edge.

6.1 Rauzy Graphs

Definition 18 (Rauzy graph). Rauzy graph of power k > 1 of a language L
is a directed graph Rk(L) = (V k, Ek) defined as follows:

– V k = {w ∈ L | |w| = k};
– For any two vertices u = u1u2 . . . uk ∈ V k and v = v1v2 . . . vk ∈ V k there is

an edge (u, v) ∈ Ek if u2 = v1, u3 = v2, . . . , uk = vk−1 and u1u2 . . . ukvk ∈ L.

In other words, any two words of length k are connected in the Rauzy graph
of power k if they are a prefix and a suffix of some word of length k + 1.

Example 1. Let Le = {a, b, c, ab, bc, ba, ca, abc, aba, bab, bca, cab}. Then R1(Le)
and R2(Le) will look like graphs on the Figure 6.

6.2 Deciding Reachability of PCDr2m

In the main algorithm we will build a sequence of Rauzy graphs until the criteria,
provided by the following theorem, is satisfied.

Theorem 3. Let PCDr2m H = (Q,F) have C dynamic components and a lan-
guage L. Then there exists tstop ∈ N such that any Ri(L), i > tstop consists of
k > C disconnected components such that at least one of the following conditions
holds for each component Kj = (Vj , Ej):

(1) All vertices in Vj contain the same set of letters;
(2) There is t′ < t such that the set of signature types of Vj equals to the set of

signature types of some V ′j of Rt
′
(L).
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Proof. By Theorem 2, H is divided into a finite number of regions with differ-
ent dynamics (regions of Types A, B and C, and the separatrices forming the
boundary of the regions). By Proposition 2 each separatrix starts and ends in
a vertex. Let m be the maximal length of a separatrix in H. Then any Ri(L),
i > m will contain at least C components as there could be no words of length
more than m (see Figure 7).

e1
e2 em

. . .

Fig. 7. An illustration of the proof of Theorem 3

Each dynamical component DA of Type A is flat and therefore can be seen
as a 2-PCD. Then by Theorem 1 DA has a finite number of signature types.
All the signature types of DA will be constructed on some step in a sequence
of Rauzy graphs and no new signature types will be later discovered. Hence,
Condition (2) will eventually hold.

Each trajectory inside any component DB of Type B is closed and there-
fore periodic. It will visit the same sequence of edges, hence, Condition (1) will
eventually hold.

Each trajectory inside any component DC of Type C is dense in DC . Hence,
the underlying component of a Rauzy graph is connected. By Lemma 1 the
language generated by DC is uniformly recurrent. From this follows that there
exists η1 such that any word of length η1 generated by any trajectory of DC will
contain all words of length 1 (singular letters) as subwords, hence the Condition
(1) will eventually hold.

Depending on which vertex belongs to which region of H separatrices could
either generate the same words as the dynamic components or generate a finite
set of words that will form a number of special components Sj in Ri(L). By
Proposition 2 each separatrix starts and ends in a vertex and there are finite
number of them, hence Condition (1) will eventually hold for each Sj . ut

Theorem 4. Edge-to-edge reachability for any PCDr2m is decidable.

Proof. For any PCDr2m H = (Q,F), the set V k of vertices of Rk(L) = (V k, Ek)
consists of all the words of length k over the finite alphabet on the edges of H.
This set can be constructed by applying the successor function k − 1 times to
each edge. The edges of Rk(L) can be computed in a finite time by checking if
any two vertices have common suffix and prefix of length k − 1.

It follows from Theorem 3 that there is a finite tstop such that an edge
ef ∈ E(Q) is reachable from an edge es ∈ E(Q) if and only if Rtstop(L) contains
a component with a vertex labelled by a word (. . . es . . . ef . . . ). ut
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7 Conclusions

In this paper we have shown that the reachability problem for a subclass of PCDs
on orientable manifolds (we called such systems Regular PCD2m, or PCDr2m) is
decidable. As future work we would be interested to extend the current results
to non-orientable manifolds using properties of trajectories on non-orientable
manifolds presented in [2].
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