

Citation for the published version:

Kirner, R., Menon, C., & Iacovelli, S. (2018). ATMP: An Adaptive Tolerance-based
Mixed-criticality Protocol for Multi-core Systems. In Proceedings of the 13th IEEE
International Symposium on Industrial Embedded Systems (pp. 190). IEEE.

Document Version: Accepted Version

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted ncomponent of this work in other works.

General rights

Copyright© and Moral Rights for the publications made accessible on this site are retained by the
individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied and it is a
condition of accessing publications that users recognise and abide by the legal requirements
associated with these rights. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url
(http://uhra.herts.ac.uk/) and the content of this paper for research or private study, educational, or
not-for-profit purposes without prior permission or charge.

Take down policy

If you believe that this document breaches copyright please contact us providing details, any such
items will be temporarily removed from the repository pending investigation.

Enquiries

Please contact University of Hertfordshire Research & Scholarly Communications for any enquiries at
rsc@herts.ac.uk

ATMP: An Adaptive Tolerance-based Mixed-criticality Protocol for
Multi-core Systems

Abstract

The challenge of mixed-criticality scheduling is to
keep tasks of higher criticality running in case of re-
source shortages caused by faults. Traditionally, mixed-
criticality scheduling has focused on methods to handle
faults where tasks overrun their optimistic worst-case
execution time (WCET) estimate.

In this paper we present the Adaptive Tolerance-
based Mixed-criticality Protocol (ATMP), which gen-
eralises the concept of mixed-criticality scheduling to
handle also faults of other nature, like failure of cores
in a multi-core system. ATMP is an adaptation method
triggered by resource shortage at runtime. The first
step of ATMP is to re-partition the task to the available
cores and the second step is to optimise the utility at
each core using the tolerance-based real-time computing
model (TRTCM). The evaluation shows that the utility
optimisation of ATMP can achieve a smoother degra-
dation of service compared to just abandoning tasks.

Keywords: mixed-criticality, real-time systems,
partitioned scheduling, multiprocessor systems, utility
functions, fault-tolerance.

1 Introduction

Research in mixed criticality systems started with
the Vestal work to provide a more flexible and effec-
tive a priori verification model for safety critical sys-
tems [28]. In fact, the increasing trend of integrating
functionalities with different levels of criticality on the
same platform has introduced new challenges in real-
time scheduling, particularly in providing fault toler-
ance guarantees and in certifying such mixed critical-
ity systems by a certification authority. However, in-
tegrating mixed criticality tasks on the same platform
can be beneficial in various ways, particularly in reduc-
ing cost and energy consumption [11]. Moreover, since

copyright notice: 978-1-5386-4155-2/18/$31.00 2018 c©IEEE

the beginning of this century the computer chip mar-
ket has experienced what has been named as multicore
revolution which is pushing all major chip producers
to switch from single to multicore platforms. As a con-
sequence, motivated by the vastly increased computa-
tional demand of real-time workloads and the trend in
hardware toward multicore and multiprocessor CPUs,
real-time systems are increasingly coming to be imple-
mented upon multiprocessor platforms.

A large body of research has been performed ad-
dressing the various issues, challenges and opportu-
nities arising from this move towards multiprocessor
platforms [8]. The problems of devising algorithms to
schedule a set of tasks on a multiple cores is known to
be rather difficult. A well known approach is to parti-
tion the tasks into groups so that each group of tasks
can be feasibly scheduled on a single processor accord-
ing to some scheduling algorithm. From this point of
view, the problem of partitioning a set of tasks is equiv-
alent to the bin-packing problem [14] and it is thus
reduced to determining a good partitioning scheme to
map a set of tasks to a set of cores such that the num-
ber of processors used is minimum [9]. However, such
heuristics are unaware of task criticalities and cannot
deal with situations in which the number of cores is
always insufficient.

The shift towards multi- and many-core architec-
tures made researchers working on mixed-criticality
aware of the need to design systems that cope with
permanent faults. The main aim of mixed-criticality
theory is that to provide higher levels of assurance to
the services of highest criticality. However, the focus of
the majority of research is limited to transient faults,
in particular to transient faults caused by different lev-
els of Worst-Case Execution Time (WCET) assurances
and overruns. So far, the challenges of implementing
mixed-criticality systems to tolerate permanent faults,
i.e., faults whose presence is assumed to be continu-
ous in time, has largely remained out of focus. This
is a key issue to face since permanent faults such as
a permanent processor failures can render the system

even useless or leading it to unsafe states. One of tra-
ditional solutions to processor failure is to use resource
redundancy such as physical hardware replication and
multiple software versions. Recently, Thekkilakattil et
al. pointed out the need to design mixed criticality sys-
tems that can cope with permanent faults [25]. He pre-
sented a taxonomy of spatial redundancy techniques
to tolerate permanent faults and identified how mixed-
criticality architectures can be implemented when us-
ing spatial redundancy.

However, such solutions are usually popular in gen-
eral purpose multicomputer or distributed systems but
the embedded systems stringent design constraints of-
ten preclude the usage of such expensive resource re-
dundancy. In fact, the adoption of redundancy in
embedded system design is often not economical due
to the Size, Weight and Power (SWaP) requirements.
An alternative software solution to hardware resource
replication, especially if we consider the always increas-
ing trend in moving from uniprocessor to multi and
many core architectures, is to migrate tasks assigned
to a faulty processor to others still available when a
failure is detected [18]. In such approaches, the timely
detection of processor failures is crucial since the mi-
grated tasks should be restarted on newly allocated
processing elements as soon as possible so to minimise
performance degradation.

Therefore, there is the need of heuristics to parti-
tion mixed-criticality tasks to deal with such perma-
nent shortages of computing resources. An important
issue arising is to decide what tasks to drop if the re-
duced available computing resources cannot cope any-
more with the workload represented by the initial set of
tasks. We propose an algorithm that, in case of sudden
failure of some cores, re-allocate the initial task set on
the remaining cores and optimises the frequency rate
of the new resulting partitioned set of tasks to make
them schedulable. The heuristics drops first tasks with
least criticality and utility in which it is not possible to
perform an adequate period adjustment. The approach
is adaptive since, in case some processing elements be-
come available again at runtime, a further mapping of
tasks to cores and optimisation is made.

This article contains the following contribution:

1. Introducing a criticality and utility-aware adap-
tation method (ATMP) that maximises the util-
ity on each core by adjusting the periods of tasks
within their tolerance range.

2. Evaluating this adaptation method by comparing
it with the standard utility-agnostic approach that
simply drops tasks according to their utilisation
factor to adjust the system load.

2 Related Work

Since the mixed-criticality task model was first pro-
posed by Vestal in 2007 [29], the model has been amply
developed and extended. Burns and Davis published
a review on mixed criticality systems [4] containing an
historical introduction of the topic, the challenges to
face to better develop the mixed-criticality systems and
the future directions to investigate.

The current trend towards the integration of cores
into multi-core architectures allows to tasks having dif-
ferent criticalities to run on the same platform. This
raises new challanges due both to the potential task
interference among mixed-criticality tasks and to the
verification and certification of platform subsystems.
From this point of view, a holistic architecture for
the seamless mixed-criticality integration encompass-
ing distributed systems, multi-core chips, operating
systems and hypervisors is still an open research prob-
lem. Obermaisser et al. describe the state-of-the-art
of mixed-criticality systems and discuss the ongoing
research within the European project DREAMS on
a hierarchical mixed-criticality platform with support
for strict segregation of subsystems, heterogeneity and
adaptability [22].

The Integrated Dependable Architecture for Many
Cores (IDAMC) platform was introduced to run mul-
tiple mixed-critical applications on a single multi-core
platform [27, 21]. IDAMC is a NoC tiled architec-
ture that provides spatial and temporal isolation. It
supports safe sharing of resources, a transparent map-
ping of applications to available resources, isolation of
highly critical tasks against faulty low critical tasks on
a shared platform.

Su et al. analyse the performances of the Elastic
Mixed-Criticality (E-MC) approach on systems with
multiple identical cores that can share different levels
of on/off-chip caches [24]. E-MC was first introduced
together with the Early-Release EDF (ER-EDF) on
uniprocessor systems to improve the service level pro-
vided for low-criticality tasks. The authors first inves-
tigate the schedulability of E-MC tasks under various
well-known task-to-core mapping heuristics and then
compare the results with the Global EDF-VD sched-
uler. They show that the E-MC with ER-EDF on
multi-core systems improves the service levels of low-
criticality tasks while Global EDF-VD may negatively
affect them by canceling most of their task instances
at runtime, especially for systems with more cores.

Legout et al. propose the LPDPM-MC approach [19]
to reduce the energy consumption in multiprocessor
mixed-criticality embedded systems by continuining
to guaranteeing that high-criticality tasks meet their

2

deadlines. Since tasks usually do not use all their
WCET estimates and low-criticality tasks are assured
at a lower level, such approach uses part of the time
budjet of low-criticality tasks to find an appropriate
trade-off between the number of missed deadlines of
low-criticality tasks and energy consumption. The ap-
proach uses the LPDPM algorithm [20] to minimize the
static energy consumption via linear programming.

Thekkilakattil et al. propose a fault-tolerant ap-
proach to mixed-criticality real-time scheduling that
considers the recommendations given by the hard-
ware reliability studies like Functional Hazard Analy-
sis (FHA) and Zonal Hazard Analysis (ZHA) to im-
prove the overall system reliability and safety [26].
FHA and ZHA are usually used for safety critical sys-
tems to ensure that the proposed redundancies on the
hardware components, e.g., wires and communication
sub-systems, indeed exist. Such approach for schedul-
ing mixed criticality real-time systems aims to provide
real-time guarantees for the critical tasks offline and to
ensure flexibility for the non-critical tasks.

Burns et al. adapted the traditional cyclic executive
scheduling on multi-core systems to handle tasks hav-
ing up to five criticalities [5]. The authors consider
both partitioned and global scheduling schemes and
criticality monotonic as priority assignment. Because
of this, at any instant, all the processors are only al-
lowed to execute code of the same criticality level as
this rules out the possibility that less critical code in-
terferes with the execution of more critical code in ac-
cessing shared resources [10]. The authors have stud-
ied their approach in partitioning scheduling, by us-
ing common heuristics to map application tasks to the
multi-core cyclic executives, and in global scheduling,
by proposing a polynomial-time sufficient schedulabil-
ity test to determine whether a given mixed-criticality
system is schedulable together with an algorithm to
build a feasible schedule. Lastly, they also estimate the
reduction in schedulability that arises from the require-
ment that only code of the same criticality executes at
the same time on different cores.

Izosimov and Levholted have presented a new metric
to design and assess mixed-criticality multi-core sys-
tems without changing the development flow and prac-
tice [13]. The primary goal in development of such
metric was to provide a tool for engineers and safety
managers in taking decisions with respect to the mixed-
criticality and help to justify and judge a particular
solution for safety-critical system design. The pro-
posed mixed-criticality metric balances the reduction
in severity of faults against implications on reduction
in performance and increase in system complexity.

Kirner et al. used utility functions to optimise

performances and to allow for reconfiguration at
runtime in case of permanent failures in mixed-
criticality systems [15, 16]. Kirner proposed a
model called Tolerance-based Real-Time Computing
Model (TRTCM), that exploits the range between
the latency where the service utility becomes zero
and the latency chosen as technical deadline to
smoothly degrade the quality of high critical services
in case of resource shortage till a level that is still
acceptable. This feature is not supported by existing
mixed-criticality approaches that focus on services
guarantees at different certification level, rather than
on system utility in presence of faults. TRTCM
allows to consider different performance parameters
via utility functions such as latency, throughput and
jitter and to optimise the Quality of Service (QoS)
by maximising the overall system utility in case of
standard and mixed-criticality real-time services. Such
approach has been further developed for adaptation
of mixed-criticality systems with periodic task sets on
uniform multiprocessors [17].

3 System Model and Assumptions

In the following section we describe the tolerance-
based mixed-criticality system model used in this pa-
per. We assume a mixed-criticality system, which con-
sists of multiple tasks that could have different levels
of criticality. Each task τi of a task set τ is defined as
follows:

τi = 〈pi, di,~ci, li, ui〉 (1)

pi represents the period of task τi.

di is the relative deadline of task τi. We assume im-
plicit deadlines, i.e. di = pi. (Note that such as-
sumption is only chosen for a concrete scheduling
test in our implementation, but it is not a require-
ment of our optimisation method.)

li is the criticality level of task τi with li > 0. A higher
value of li means a higher level of criticality. The
vector ~l is used to represent all possible criticality
levels in a system: ~l = (l1, . . . , lk), with l1 being
the minimum and lk being the maximum possible
criticality level.

ui is the relative utility of task τi with 0 ≤ τi ≤ 1. The
calculation of ui is described in Section 3.1. We
also use an absolute utility Ui, which is calculated
as Ui = ui · li.

~c is a vector of WCET estimates, with one WCET
estimate per criticality level li and the additional

3

constraint lx < ly =⇒ ci(lx) ≤ ci(ly). Note that
ci(lx) is only defined for lx ≤ li.

The individual instances of a task at runtime are
called jobs. A job j is described by the following tuple:

j = 〈a, p, d, et,~c, l〉

where ai is the arrival time and et is the actual exe-
cution time. The entries p, d,~c and l are inherited from
the job’s task structure.

3.1 Utility Function

In our tolerance-based mixed-criticality model the
period pi of a task τi is not a given constant, but can
be chosen by our optimisation method within a certain
interval that is specific for each individual task. How-
ever, the chosen value pi determines the utility ui. To
be able to calculate the utility of a task, we assume that
each task τi ∈ τ has some additional utility parameters
upi:

upi = 〈pprim,i, ptol,i, utol,i〉 (2)

pprim,i is the primary period of task τi, representing
the optimal execution rate. For any period p ≤
pprim,i the relative utility is one: ui = 1.

ptol,i is the tolerance period of task τi, which is the
maximum period still tolerable for task τi.

utol,i is the tolerance utility of task τi, which is the
relative utility at period ptol,i.

1.0

0.0

ptol pcritpprim

utol

period p

utility u
relative

Figure 1: Utility function to calculate relative utility
based on chosen period

Figure 1 shows how the utility parameters upi de-
scribe the utility function of a task τi. The modelled
tolerance section of the utility function is of linear
shape and it is used to smoothly adjust, i.e. degrade

or speed up according to the circumstances, the task
arrival rates at runtime. Figure 1 also contains the
critical period (indicated as pcrit) that represents the
arrival rate for which the task utility becomes zero.
More details on the tolerance-based real-time model
can be found in [17].

The key concept of the tolerance range is that it
allows to tune the task period within tolerable utility
values. Based on this, the possible load of a task τi
is within its so-called primary load loadprim,i and its
tolerance load loadtol,i:

loadprim,i =
ci

pprim,i
, loadtol,i =

ci
ptol,i

(3)

where ci represent the non-conservative WCET esti-
mates of an individual task. Consequently, this allows
to also vary the total system load within loadprim and
loadtol:

loadprim =
∑
τi∈τ

ci
pprim,i

, loadtol =
∑
τi∈τ

ci
ptol,i

(4)

4 Optimisation Method

The Adaptive Tolerance-based Mixed-criticality Pro-
tocol (ATMP) consists of the following two main parts:

1. Tasks are first sorted according to decreasing crit-
icality. Then, the partitioning of tasks to cores
is made as in Algorithm 1, i.e., highest criticality
tasks are selected and assigned to the core with
least load allocated.

2. If a task set allocated to a specific core is schedu-
lable, then it is processed by the underlying sched-
uler otherwise a binary search heuristics with lin-
ear programming optimisation is performed on
each core as showed in Algorithm 2.

The main feature of ATMP is that to exploit the
tolerance range described in Section 3 to optimise the
tasks’ periods. Each task has its own tolerance range
[pprim, . . . , ptol] at which corresponds a utility range
[1, . . . , utol] and its runtime adaptation capability is
classified according to the relationship between its tol-
erance range and its tolerance utility as in Figure 2.
The higher is the tolerance utility utol corresponding
to ptol and the larger is the tolerance range extent, the
better the runtime adaptation will be. Therefore, the
adaptation at runtime is made considering first tasks
that have a higher utility corresponding to the ptol
value and a larger tolerance range extent.

According to the specific needs, the systen designer
can set a tolerance utility value as well as a tolerance

4

range extent value under which the period optimisa-
tion could be considered not useful anymore. Then,
among tasks with least criticality, ATMP drops tasks
according to their capability adaptation, i.e. first are
dropped tasks corresponding to Figure 2.d), then tasks
in Figure 2.c), next tasks in Figure 2.b) and lastly tasks
in Figure 2.a).

If a task set allocated to a specific core is deemed to
be not schedulable, then a binary search is perfomed
for a predefined number of times by modifying a copy of
the partitioned task set assigned to such core. Every
time, the binary search finds an lm value to use as
load upper bound for the set of tasks allocated. The
algorithm checks wheter such task set has a tolerance
load greater then the lm value found by binary search.
If the task set has tolerance load greater than lm, then
the algorithm drops the first least criticality task with
worst adaptation capability (Figure 2). This goes on
till the task set tolerance load becomes not grater than
lm.

Once a suitable task set with tolerance load not
greater than lm has been found, then the ATMP pro-
tocol exploits the individual tasks tolerance ranges to
find the best arrival rate for each task such that the
utility is maximised. If such task set consists of just
one task, then it is assumed to have a load less than
or equal 100% and thus it is schedulable by default
according to its primary period. Binary search contin-
ues on the upper half to find a task set with better
tolerance load. On the other hand, if the resulting
task set consists of more than one task, then it is used
to create an LP problem according to TRTCM model
published in [17] with lm used as upper bound for the
resource constraint. The LP optimisation gives the op-
timised periods for each task. A schedulability test is
perfomed to check wheter such optimised task set is
feasible. Our method is independent from the specific
feasibility test used. However, we use the AMCrtb
schedulability analysis since we have considered task
sets with two criticality levels [3]. Whenever a schedu-
lable optimised task set with higher tolerance load is
found, it is stored and binary search continues on the
upper half to find a better optimised task set. If the op-
timised task set is not schedulable, then binary search
continues in the lower half.

5 Experimental evaluation

To show the effectiveness of ATMP, we compare
it with a standard approach that we name Standard
Adaptive Mixed-criticality Protocol (SAMP) in which
tasks have no tolerance range. Within the SAMP ap-
proach, the tasks removal is performed only considering

Algorithm 1: Criticality aware allocation

Input : Γ: task list sorted by criticality;
CS : list of cores;

1 begin
2 while Γ is not empty do
3 tid ← getTaskWithMaxCrit(Γ);
4 cid ← getCoreWithMinLoad(CS);
5 addTaskToCore(tid , cid);

6 end

7 end

the load computed according to the predefined periods
and no LP optimisation is performed. Once a parti-
tioned set of tasks is assigned to a specific core, the
SAMP looks for the most suitable sub set of the al-
located tasks, i.e. the one with load not greater than
the lm value found by binary search, by simply remov-
ing tasks with least utilisation factor among those with
least criticality.

We have created a task set consisting of twenty tasks
randomly generated and then we have processed it us-
ing both ATMP and SAMP first on eight, then on
five and finally on three cores. The experiment con-
firms that, in case of resource shortages, i.e. sudden
unavailability of computing resouces, the usage of the
tolerance range to appropriately optimise the tasks ar-
rival rates allows to ATMP to de-allocate a smaller
amount of tasks per core. Both approaches worked well
with eight cores since no task was removed. However,
ATMP showed its advantages after further reducing
the number of processing elements. Because of this, we
only show the performance comparison between SAMP
and ATMP in case of five and three cores. Figure 3
dispays the absolute utility accrued by each individual
task with the two above approaches compared with the
maximum achievable utility indicated with MAX. The
absolute utility of de-allocated tasks is 0. Tasks from A
to H have criticality 2 while tasks from I to T have crit-
icality 1. Figure 3.a) presents the runtime reallocation
on five cores. In this case, SAMP removes five non-
critical tasks while ATMP allows, via tolerance-based
optimisation, to adjust the tasks periods and to keep
all tasks allocated to their cores. It is worth to notice
that such result is achieved also slowing down higher
criticality tasks and this leads to a decrease in the over-
all load allocated on each core. Such results are even
more emphasised in Figure 3.b) in which the number of
cores available is further reduced. In this latter case, in
the whole, SAMP removes thirteen tasks (two of which
are highly critical ones) while ATMP removes just six

5

Relative	
Utility	

Period	

1.0	

0.0	 pprim	 ptol	

utol	

(a) Large tolerance range with high tolerance utility

Relative	
Utility	

Period	

1.0	

0.0	 pprim	 ptol	

utol	

(b) Large tolerance range with low tolerance utility

Relative	
Utility	

Period	

1.0	

0.0	 pprim	 ptol	

utol	

(c) Small tolerance range with high tolerance utility

Relative	
Utility	

Period	

1.0	

0.0	 pprim	 ptol	

utol	

(d) Small tolerance range with low tolerance utility

Figure 2: Service utility adaptation: tolerance range versus tolerance utility

tasks and keeps onboard all the higher criticality tasks.
Table 1 summarises the overall outcome of our ex-

periment by showing the total relative and absolute
utilities accrued within the system and the amount of
tasks removed respectively by SAMP and ATMP. The
total relative utility consists of the sum of the individ-
ual task utility while the total absolute utility consid-
ers also the task criticality. The more the number of
cores is reduced and the more the utility gained by the
tolerance-based approach increases compared with that
accrued by standard one. Furthermore, our method al-
lows to run more tasks per core when the amount of
computing resources decreases.

6 Safety implications of scheduling

Safety-critical systems are typically subject to two
stringent correctness requirements that is necessary to
consider during their design phase: a priori verification
and runt-time robustness [1]. The verification deter-
mines offline whether a system will behave correctly
during runtime and deals with the case when runtime
behavior is compliant with its assumed model while the
robustness at runtime is concerned with what happens
when modeling assumptions are violated. A robust sys-
tem design should ensures that performance degrades
gracefully whenever resources suddenly become insuffi-
cient. In this case, a general rule is that less important
system functionalities should be compromised before
the most important ones.

From a safety perspective, tasks can be divided into
safety-related and non-safety related, corresponding to

HI and LO in case of just two criticalities. In practice,
safety-related tasks can be further classified based on
the extent to which they contribute to the safety of
the system. These further subdivisions may be based
on Safety Integrity Levels (SIL) [7] or similar classifica-
tions. The safety-related and non-safety related func-
tions are required to be separated [7], since failures of
non-safety related functions should not cause a danger-
ous failure of the safety functions.

The idea behind the mixed-criticality scheduling
theory is that to construct multiple models, each of
which true to a different level of assurance [1]. The
successive verification of functionalities is made at the
level of assurance appropriate for the specific critical-
ity level. Such approach allows the system developer
to avoid the usage of excessively conservative models
to verify less critical functionalities and thus reduces
the over-approximated estimates. Since both safety-
related and non-safety related tasks may be run on a
shared platform, as described in [2], applying mixed-
criticality scheduling theory enables to design systems
that are verified correct and that make a more effi-
cient resources usage at runtime if compared with sys-
tem verified using conventional schedulability analysis
techniques.

The design of robust mixed-criticality scheduling
protocols should allow to drop a low criticality task
without impacting on the performance of any of the
high criticality ones. However, this does not mean that
discarding non-safety related tasks is free from conse-
quence. These tasks may be important for non-safety
reasons, e.g. to maintain sustainability, continuity of

6

0	

0.5	

1	

1.5	

2	

2.5	

A	 B	 C	 D	 E	 F	 G	 H	 I	 J	 K	 L	 M	 N	 O	 P	 Q	 R	 S	 T	

A
bs
ol
ut
e	
U
ti
lit
y	

Task	ID	

Absolute	Utility	of	Individual	Tasks	(5	Cores)	

MAX	

SAMP	

ATMP	

(a) Comparison on 5 cores

0	

0.5	

1	

1.5	

2	

2.5	

A	 B	 C	 D	 E	 F	 G	 H	 I	 J	 K	 L	 M	 N	 O	 P	 Q	 R	 S	 T	

A
bs
ol
ut
e	
U
ti
lit
y	

Task	ID	

Absolute	Utility	of	Individual	Tasks	(3	Cores)	

MAX	

SAMP	

ATMP	

(b) Comparison on 3 cores

Figure 3: Absolute utility achieved by each task with SAMP and ATMP

service or provision of capability. The advantage of this
algorithm is that also non-safety related tasks, and not
only safety-critical ones, can be allocated again when
resourcing allows it.

6.1 Optimization and essential services

The ATMP protocol increases the system resilience
against failures. In fact, if any core suddenly becomes
unavailable, such method allows to de-allocate tasks ac-
cording to their criticality and online adaptation capa-
bility till when the computing resources become avail-
able again. This is of particular concern for the UK
critical national infrastructures supplying essential ser-
vices. These services include provision of drinking wa-
ter, transport of oil and gas, rail transport and medical
infrastructure. Moreover, the EU has recently estab-
lished a directive [23] that mandates that providers of
essential services take steps to mitigate the impact of
incidents which can compromise the delivery of such
services, and the National Cyber Security Centre guid-
ance [6] identifies as core principle that such essential
services must be resilient, meaning that the provision
of essential services should not be interrupted.

In some cases the infrastructure for the provision
of essential services may also provide additional ser-
vices classified as non-essential (e.g., a system mon-
itoring and providing functionality for availability of
drinking water may also be used to monitor the supply
of non-potable water). Failure of essential services typ-
ically has safety implications, while temporary failure
of non-essential services is unlikely to represent a safety
risk. Because of this, tasks associated with the essen-
tial service may be regarded as higher criticality and

those associated only with the non-essential services
as lower criticality ones. In case of resource-shortages,
the ATMP protocol removes first the non-essential ser-
vices with worst adaptation capability and meanwhile
it ensures the continuity of essential services during and
after resolution of the incident. As such, our protocol
could represent a potential solution for scheduling tasks
on a shared platform required to comply with [23].

7 Summary and Conclusion

In this paper we have applied the Tolerance-based
Real-Time Computing Model (TRTCM) to optimise the
utility of mixed-criticality systems on multi-processor
platforms. While the original mixed-criticality schedul-
ing focuses on resource shortages due to overruns of op-
timistic WCET estimates, we consider also faults due
to permanent unavailability of processing elements in
a multi-core system.

The proposed ATMP protocol provides adaptive re-
configuration in case of resource shortages. The basic
idea is to use a tolerance range of the tasks’ periods
to adjust the system load while at the same time op-
timising the system utility. Compared with the sim-
ple strategy of just abandoning tasks (SAMP) in case
of resource shortage, ATMP achieves a considerably
smoother degradation of service. The evaluation shows
that ATMP allows to retain more tasks than SAMP,
while at the same time also achieving higher overall
system utilites.

Future work will include the analysis of the inter-
play of ATMP with a mixed-criticality protocol like
the Bailout Protocol [12].

7

Algorithm 2: ATMP Utility Optimisation

Input : Γ: task set allocated;

Local : lm← 0.90;
lm1← 0.2;
lm2← 1.0;
lcnt← 0;
∆← Null;
bestlm← 0.0;
LCNTMAX ← 6;

Output: Ω: optimised task set;

1 begin
2 if isSchedulable(Γ) then
3 Ω← Γ;
4 else
5 while lcnt ≤ LCNTMAX do
6 ∆← Γ;
7 while (loadtol(∆) > lm) and

(len(∆) > 1) do
8 TSMIN ← getMinCritTSET (∆);
9 tid ← getTaskToDrop(TSMIN);

10 ∆← removeTask(∆, tid);

11 end
12 if len(∆) = 1 then
13 if lm ≥ bestlm then
14 bestlm← lm;
15 Ω← ∆;

16 end
17 lm1← lm;

18 lm← lm+ (lm2−lm)
2 ;

19 else if len(∆) > 1 then
20 prob← genLP(∆, lm);
21 periods← solveLP(prob);
22 ∆← getOptTSET (periods,∆);
23 if isSchedulable(∆) then
24 if lm > bestlm then
25 bestlm← lm;
26 Ω← ∆;

27 end
28 lm1← lm;

29 lm← lm+ (lm2−lm)
2 ;

30 else
31 lm2← lm;

32 lm← lm1 + lm−lm1
2 ;

33 end

34 lcnt← lcnt+ 1;

35 end

36 end
37 return Ω;

38 end

References

[1] S. Baruah. Mixed-criticality scheduling theory: Scope,
promise, and limitations. IEEE Design & Test,
35(2):31–37, 2018.

[2] S. Baruah. Mixed-criticality scheduling theory: Scope,
promise and limitations. IEEE Design & Test,
35(2):31–37, 2018.

[3] S. K. Baruah, A. Burns, and R. I. Davis. Response-
time analysis for mixed criticality systems. In Pro-
ceedings of the 2011 IEEE 32Nd Real-Time Systems
Symposium, RTSS ’11, pages 34–43, Washington, DC,
USA, November 2011. IEEE Computer Society.

[4] A. Burns and R. I. Davis. Mixed criticality systems -
a review. Research Report V4-31/7/2014, University
of York, Department of Computer Science, York, UK,
July 2014.

[5] A. Burns, T. Fleming, and S. Baruah. Cyclic exec-
utives, multi-core platforms and mixed criticality ap-
plications. In Proceedings of the 2015 27th Euromicro
Conference on Real-Time Systems, ECRTS ’15, pages
3–12, Washington, DC, USA, 2015. IEEE Computer
Society.

[6] N. C. S. Centre. Nis-directive: Top level objec-
tives, 2018. https://www.ncsc.gov.uk/guidance/nis-
directive-top-level-objectives.

[7] I. E. Commission. Functional safety of electrical,
electronic, programmable electronic safety-related sys-
tems, 2010.

[8] R. I. Davis and A. Burns. A survey of hard real-time
scheduling for multiprocessor systems. ACM Comput.
Surv., 43(4):35:1–35:44, October 2011.

[9] S. K. Dhall and C. L. Liu. On a real-time scheduling
problem. Operations Research, 26(1):127–140, Febru-
ary 1978.

[10] G. Giannopoulou, N. Stoimenov, P. Huang, and
L. Thiele. Scheduling of mixed-criticality applications
on resource-sharing multicore systems. In Proceedings
of the Eleventh ACM International Conference on Em-
bedded Software, EMSOFT ’13, pages 17:1–17:15, Pis-
cataway, NJ, USA, 2013. IEEE Press.

[11] N. Guan, P. Ekberg, M. Stigge, and W. Yi. Effective
and efficient scheduling of certifiable mixed-criticality
sporadic task systems. In Proceedings of the 2011
IEEE 32Nd Real-Time Systems Symposium, RTSS ’11,
pages 13–23, Washington, DC, USA, 2011. IEEE Com-
puter Society.

[12] A. B. Iain Bate and R. I. Davis. An enhanced
bailout protocol for mixed criticality embedded soft-
ware. In IEEE Transactions on Software Engineering,
volume 43, pages 298–320. IEEE, 2017.

[13] V. Izosimov and E. Levholt. Mixed criticality met-
ric for safety-critical cyber-physical systems on multi-
core architectures. In Proceedings of the 4th Workshop
On Manufacturable and Dependable Multicore Archi-
tectures at Nanoscale (MEDIAN’15), MEDIAN ’15,
March 2015.

8

SAMP ATMP
Cores# Rel. Utility Abs. Utility Task dropped Rel. Utility Abs. Utility Tasks dropped

8 20.00 28.00 0 20.00 28.00 0
5 15.00 23.00 5 17.51 25.23 0
3 7.00 13.00 13 11.79 18.81 6

Table 1: Overall comparison between ATMP and SAMP

[14] D. S. Johnsonf, J. D. Ullman, M. R. Gareyi, and R. L.
Grahamii. Worst-case performance bounds for simple
one-dimensional packing algorithms. 3(4), December
1974.

[15] R. Kirner. Ingredients for the specification of mixed-
criticality real-time systems. In Proc. 10th IEEE
Workshop on Software Technologies for Future Em-
bedded and Ubiquitous Systems (SEUS’14), Reno,
Nevada, USA, June 2014.

[16] R. Kirner. A uniform model for tolerance-based real-
time computing. In Proc. 17th IEEE Int’l Sym-
posium on Object/Component/Service-oriented Real-
Time Distributed Computing, pages 9–16, Reno,
Nevada, USA, June 2014.

[17] R. Kirner, S. Iacovelli, and M. Zolda. Optimised adap-
tation of mixed-criticality systems with periodic tasks
on uniform multiprocessors in case of faults. In Proc.
11th IEEE Workshop on Software Technologies for
Future Embedded and Ubiquitous Systems (SEUS’15),
Auckland, New Zealand, April 2015.

[18] C. Lee, H. Kim, H. woo Park, S. Kim, H. Oh, and
S. Ha. A task remapping technique for reliable multi-
core embedded systems. In T. Givargis and A. Don-
lin, editors, IEEE/ACM/IFIP International Confer-
ence on Hardware/Software Codesign and System Syn-
thesis (CODES+ISSS), pages 307–316. ACM, 2010.

[19] V. Legout, M. Jan, and L. Pautet. Mixed-criticality
multiprocessor real-time systems: Energy consump-
tion vs deadline misses. In First Workshop on Real-
Time Mixed Criticality Systems (ReTiMiCS), pages 1–
6, Taipei, Taiwan, August 2013.

[20] V. Legout, M. Jan, and L. Pautet. An off-line
multiprocessor real-time scheduling algorithm to re-
duce static energy consumption. In First Workshop
on Highly-Reliable Power-Efficient Embedded Designs
(HARSH), pages 7–12, Shenzhen, China, February
2013.

[21] B. Motruk, J. Diemer, R. Buchty, R. Ernst, and
M. Berekovic. Idamc: A many-core platform with run-
time monitoring for mixed-criticality. In IEEE 14th
International Symposium on High-Assurance Systems
Engineering (HASE), pages 24–31. IEEE Computer
Society, October 2012.

[22] R. Obermaisser and D. Weber. Architectures for
mixed-criticality systems based on networked multi-
core chips. In Proceedings of the 2014 IEEE Emerg-
ing Technology and Factory Automation, ETFA 2014,
Barcelona, Spain, September 16-19, 2014, pages 1–10,
2014.

[23] E. Parliament and the Council of the European Union.
Directive (eu) 2016/1148 concerning measures for a
high common level of security of network and infor-
mation systems across the union, 2016.

[24] H. Su, D. Zhu, and D. Mossé. Scheduling algorithms
for elastic mixed-criticality tasks in multicore systems.
In 2013 IEEE 19th International Conference on Em-
bedded and Real-Time Computing Systems and Appli-
cations. IEEE, August 2013.

[25] A. Thekkilakattil, A. Burns, R. Dobrin, and S. Pun-
nekkat. Mixed criticality systems: Beyond transient
faults. In Proceedings of the third International Work-
shop on Mixed Criticality Systems (WMC), San Anto-
nio, Texas, USA, December 2015.

[26] A. Thekkilakattil, R. Dobrin, and S. Punnekkat.
Mixed criticality scheduling in fault-tolerant dis-
tributed real-time systems. In 2014 International Con-
ference on Embedded Systems (ICES), pages 92–97,
July 2014.

[27] S. Tobuschat, P. Axer, R. Ernst, and J. Diemer.
Idamc: A noc for mixed criticality systems. In IEEE
19th International Conference on Embedded and Real-
Time Computing Systems and Applications, RTCSA
2013, Taipei, Taiwan, August 19-21, 2013, pages 149–
156, August 2013.

[28] S. Vestal. Preemptive scheduling of multi-criticality
systems with varying degrees of execution time as-
surance. In 28th IEEE Real-Time System Symposium
(RTSS 2007), December 2007.

[29] S. Vestal. Preemptive scheduling of multi-criticality
systems with varying degrees of execution time as-
surance. In Proc. 28th IEEE International Real-Time
Systems Symposium (RTSS’07), pages 239–243, Dec.
2007.

	2018_Iacovelli_Kirner_Menon_cover
	2018_Iacovelli_Kirner_Menon

