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Abstract

In this paper we present the foundations of an architecture that will
support the wider context of our work, which is to explore the link between
a↵ect, perception and behaviour from an embodied perspective and assess
their relevance to Human Robot Interaction (HRI). Our approach builds
upon existing a↵ect-based architectures by combining artificial hormones
with discrete abstract components that are designed with the explicit
consideration of influencing, and being receptive to, the wider a↵ective
state of the robot.

1 Introduction

The ability of embodied agents to integrate within a human-centric environment
may depend upon their capacity to respond to a↵ective and behavioural cues:
attainment of their goals, and possibly even their survival, could be contingent
on their capacity to interpret and convey emotion.

A↵ect-based systems can provide a practicable mechanism of managing in-
ternal resources and conflicting goals. They can also facilitate the expression of
needs so as to elicit appropriate emotional responses and empathy from human
observers, which is important in the context of Human Robot Interaction (HRI).

Research on a↵ect has traditionally been focussed on one of two directions:
works that explore emotional traits aimed at facilitating interaction with hu-
mans, versus those that focus on the adaptive mechanisms that are advantageous
for survival. Some authors (e.g. [1, 2, 3]) suggest that the former approach tends
to model ‘shallow’ or ‘superficial’ aspects of emotions unless combined with the
latter. This view is consistent with the perspective that emotions should be
grounded in the agent’s architecture and internal value system, rather than
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modelled from the point of view of an observer [1, 4]: a key tenet of the Animat
approach [5].

Damasio suggests that emotion is a vestigial mechanism for maintaining
homeostasis [6], hence modelling homeostatic variables and hormone produc-
tion can provide a compelling approach to the grounding problem [7]. Brooks’
summary of Kravitz’s work on hormonal responses in lobsters [8], defines eight
distinct principles in his computation model of hormones [9]. This paper fo-
cuses on the fourth of these: e↵ects of hormones on ‘sensory elements...higher
processing centers, and motor or hormonal output systems’.

Brooks’ implementation [9] of Kravitz’s work controlled sensory elements,
higher processing centers, and motor output systems via behaviours, which are
in turn influenced by hormones. Subsequent works [2, 10, 11] have tended to
take a similar position, focusing on gross level systems like the Action Selection
Mechanism (ASM) to determine behaviour, rather than allowing it to occur as
a consequence of modulating finer-grained elements of sensory, cognitive or mo-
tor function. This is analogous to mechanisms like pupil dilation in mammals,
occurring as part of the ‘fight or flight’ stress response triggered by the sympa-
thetic branch of the nervous system. Pupil dilation has the benefit of facilitating
predator detection, which is a prerequisite of any behaviour intended to increase
the likelihood of evading capture. Hence hormone induces behaviour as result
of altering the sensory experience, rather than by changing the response to it.

This distinction can be illustrated in terms of behaviour-based robotics by
a scenario using stress hormones to modulate response to a predator. On the
one hand, an approach that modulates perception at the gross level, such as
the one adopted in [12], uses hormonal modulation of exteroception (i.e. per-
ception of external stimuli) to intensify the predator’s perceived proximity, and
increase the likelihood that the ASM will select a behaviour consistent with
predator evasion. A similar method uses hormonal modulation of interoception
(i.e. hormonal modulation of internal stimuli) to amplify the internal percep-
tion of tissue damage, causing the ASM to select a behaviour tailored to the
detection of potential threats in order to prevent further injury. In both cases,
the behaviour of the robot changes, whilst the behaviour of the sensor remains
the same.

This contrasts with models that create direct associations between hormone
levels and the functional properties of individual sensory elements, such as their
range or update frequency [13]. Following this other approach, the presence
of stress in the above example could increase the energy employed by the sen-
sors for the purposes of threat detection. Whilst this could be a useful adaptive
mechanism in isolation, it becomes more powerful when several sensors are com-
bined with ‘higher processing centres’ [8] to form simple sensory systems, as we
seek to demonstrate later in this paper. These sensory systems can provide
more properties that can be modulated by a↵ect, and provide a degree of au-
tonomy that more closely resembles the reflexive mechanisms found in biological
systems, such as saccadic responses in the mammalian vision system. Further-
more, by modelling these characteristics, and grounding their operation more
firmly in the a↵ective context of the robot, we postulate that the resulting be-
haviour driven by these systems will appear more natural and expressive to
human observers.

Whilst this discussion has focussed predominantly on sensory systems, other
functional units that could benefit from being grounded to the robot’s a↵ective
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state include motor output systems [8]. Kinesic properties such as posture,
quality of movement and motion dynamics are all good communicators of af-
fect in mammals [14]. Anger, for example, is usually expressed by large, jerky
movements coupled with an erect stance whilst sadness is often characterised by
collapsed posture coupled with small slow movements [15]. This kinesic colour-
ing can determine how a core behaviour is interpreted by an observer: avoidance
behaviour combined with ‘angry’ kinesics could give the appearance of a crea-
ture that is seeking to avoid confrontation, but which is ultimately prepared to
fight. Conversely avoidance combined with ‘sadness’ might convey resignation
or exhaustion.

We have described the benefits of separating the coarse-grained elements
that remain the domain of the primary ASM, the ‘what’, from the finer-grained
nuances which are critical to the ‘how’. The former relates to the satisfaction
of motivations via appropriate action, whilst the later pertains to regulation of
internal systems to maximise their relevance to the robot’s present context. In
this paper we propose how sensory systems, motor output and other ‘higher
processing centers’ [8] could be modelled via a decentralised architecture con-
sisting of loosely coupled components that use hormones to coordinate discrete
aspects of their operation. In doing so we hope to describe the benefits from
both an adaptive viability and an HRI perspective.

After briefly outlining our architecture, we will consider the key properties of
hormones and how they can be represented using components and sockets. An
example component, the Perceptual Memory Map, will be introduced followed
by an illustration of how elements of its operation can be coordinated via sockets.
We will then suggest how these elements could be integrated within a wider
Motivational Action Control Architecture before concluding with a summary of
the key benefits of this approach and an outline of future work.

2 Architecture

This section presents a robot architecture that has been designed to model some
of the key properties of hormone interaction upon the wider system. Hormones
have the ability to target multiple areas of the nervous system in di↵erent ways
and for di↵erent durations. In addition to the level of hormone present, salient
factors include the site’s sensitivity to the hormone, presence of inhibitors and
duration of exposure [12, 16, 17]. We have attempted to reproduce these features
by combining functional units, representing areas of the nervous system, with
interfaces that enable their properties to be connected to a hormone source via
a weighted link. We have labelled the former constructs ‘components’ and the
latter ‘sockets’.

2.1 Components

Our first component is the Perceptual Memory Map (PMM), which provides a
residual memory of captured sensory data, coupled with a confidence estimate of
how reliable that data is, as explained in detail below. It is designed to model
cognitive phenomena such as attention and surprise, and models the area in
the immediate surroundings of the robot by dividing it into a variable number
of segments. When a new sensor value is obtained, the segment closest to its
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azimuth is updated, as shown by Fig. 1a below. Following movement of the
agent, the recorded sensor values and their corresponding angles are mapped
into two-dimensional space and transformed relative to the robot’s new position,
shown by Fig. 1b and Fig. 1c respectively. If two samples share the same angle,
the smallest is retained. A potential fields mechanism is used to calculate a
desired movement vector, which is then interpreted by the movement controller,
as illustrated by Fig. 1d. The model can also output a vector indicating the
most advantageous movement in terms of sensory data acquisition, which the
action selection mechanism can integrate with the movement vector, depending
on the holonomic constraints of the robot.

(a) (b)

(c) (d)

Figure 1: Diagrams showing the state of the Perceptual Memory Map after: (a)
a single proximity sensor captures distance in real-time, (b) the robot rotates
on the spot by 30 degrees, (c) the robot has moved forward 10 mm and (d) the
resultant movement vector is calculated.

The transformation of sensory data is contingent on the orientation and
position of the robot, which we obtain via di↵erential drive forward kinematic
equations, using live motor speeds sampled at 100 ms intervals. This open-loop
approach fails to take account of acceleration or deceleration occurring between
the sample periods or external physical factors, such as loss of traction, but
these cumulative errors are of little concern since the captured sensor values
decay over time. This decay represents loss of confidence due to environmental
changes that could have occurred without the agent’s knowledge, which O’Regan
labels insubordinateness [18], and also limits to the robot’s ability to accurately
track its location over extended time periods. When a value is first captured by
a sensor the recorded confidence is 100%, which decreases as the sensor is moved
away. If the confidence level decays to zero, the value is removed. Similarly,
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Figure 2: Diagram showing the structure of an input socket, connected to a
variable number of hormone sources by weighted links.

it is also removed if the robot is more than a given distance from the mapped
value. Later experiments will seek to control the decay, range and resolution of
the model via hormonal control.

Our model was inspired by the findings of studies on spatial mapping in
rats and path integration in cockroaches and other insects. Rats were found to
have specialised cells in the parahippocampal cortex: head direction cells that
fire when the animal faces a specific direction, grid cells that map distances
and border cells which represent proximity to boundaries [19]. Path integration
research on insects revealed how proprioceptive sensation is used to measure
distance travelled and orientation relative to their environment [20, 21] which
is consistent with the approach we have taken. The PMM is flexible enough
to be useful in a number of contexts. We have applied it to the whole agent,
but it could equally be utilised at a more localised level, for example simulating
saccadic movement in an ocular sensory system.

2.2 Sockets

Sockets are software constructs that enable weighted connections to be made
between hormones and the discrete properties components make available for
hormones modulation. There are two types of socket: input and output sockets.
Input sockets enable many hormones to modulate a single property, whereas
output sockets enable a single property to a↵ect a number of hormones. Figure 2
illustrates the structure of the input socket. In common with a Perceptron [22]
the input socket incorporates an activation function and an output function.
An additional ‘temporal filter’ inhibits the output if it has been active for too
long. Unlike a Perceptron, our activation function calculates the average of the
weighted inputs, rather than the sum. The inputs are constrained to values
between 0 and 100, hence the output from the activation function will also
be within this range. Since we are currently using a linear output function,
the value passed to the component’s property will be the same as the socket’s
activation. The temporal function will be explored in future experiments, but is
currently unused. Output sockets allow components to influence hormone levels
within the system via a weighted link from the property to the hormone. The
inbound connection to the hormone itself is made using an input socket.

Figure 3 provides an example which illustrates how a single hormone can
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Figure 3: Diagram showing a socketed architecture in which a single hormone
modulates aspects of perception and motor control.

simultaneously modulate both perception and motor function via socketed com-
ponents. The two components considered are a PMM and a Motor Controller.
The PMM has input sockets to set decay rate, resolution of the map, sensitivity
to movement and update frequency. These are connected to weights 7, 8, 9 and
10 respectively. The Motor Controller’s input sockets, connected to weights
11 and 12, enable minimum and maximum speeds to be changed. Therefore
specifying positive values for weights 7 to 11 would result in greater alertness
coupled with faster movement speeds, simulating some of the aspects of hor-
mones such as Epinephrine, which trigger physiological arousal. The PMM also
has an output socket that connects the presence of movement to the hormone
level via weight 6.

Providing positive values for this weight would increase the levels of hormone
whenever movement was detected, simulating the roles of the endocrine system
and hypothalamus in mammals. This example shows the grounded physiolog-
ical consequences of a↵ect in precipitating the allocation of internal resources
in response to environmental challenges, and behaviour that an external ob-
server can interpret as an emotional response, in this case anxiety. It also shows
how the architecture facilitates the coordinated change of individual subsys-
tems, which collectively result in a behavioural response relevant to the agent’s
a↵ective state.

2.3 Integrating the Perceptual Memory Map as Part of a

Motivational Action Selection Control Architecture

Figure 4 illustrates how the perceptual map component has been integrated
into a motivational control system, based on our group’s longstanding approach
[23, 12, 24]. Our architecture has been designed to enable the agent to interact
in the environment shown in Fig. 5.

Besides the robot, initially a Khepera 3, environmental features include large
blocks and smaller pillar-like objects, designed to require careful detection for
the robot to avoid them successfully. Predator and prey are represented by red
and green robots which slowly move around the arena, attracted to and repelled
by the agent respectively. A blue circle of 10cm in diameter is a�xed to the
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Figure 4: Diagram showing the Perceptual Memory Map integrated in an Ex-
tended Motivational Action Control System.

floor of the arena to represent a static source of hydration. Maintenance of
homeostasis is dependent upon four physiological variables: blood sugar, hy-
dration, tissue integrity and energy. Blood sugar is replenished by collision with
a mobile prey robot; hydration is restored by moving over a blue circle in the
arena; energy is depleted by movement and replenished by inactivity and tissue
damage occurs as a result of collisions with static obstacles or mobile predators.
Deficits in the homeostatic variables drive motivations to rectify the imbalance,
which in turn weight the ASM towards appropriate behaviours. Behaviours will
not be selected without appropriate motivations, but additional sensory stimuli
may also be required. For example, water will not be consumed unless there is
a motivation to drink coupled with the presence of water, which is indicated by
stimulation of the floor facing IR sensor. Actions that are dependent on both
motivations and sensory cues are represented by shaded boxes on the diagram.

Predators, prey and water are detected via a front-facing camera which
captures levels of red, green and blue in a 60 degree field of view. Obstacles
are sensed via a ring of infra-red (IR) and ultrasound emitters and objects less
than 20mm away from the robot will generally cause damage unless the the
prey sensor is highly stimulated. In this case, damage is suppressed for forward-
facing sensors and blood sugar is replenished instead. Water is consumed via
stimulation of a floor facing IR sensor. The proximity sensors are also associated
with the PMM, which are able to pass vectors and other contextual information
into the ASM. Output properties of the PMM include movement detection,
activation and confidence. Movement will trigger a motivation to identify the
source with the main camera, whilst low confidence in the validity of its internal
representation will trigger a motivation to look around. The total activation
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Figure 5: Diagram showing the environment the agent was designed to occupy.

of the PMM is used to influence hormone levels within the system, in this
case simulating fear of being trapped, and hormone level is also increased by
physiological deficits.

The input sockets are not shown on the diagram for the sake of clarity,
since they have been discussed in previous sections, but elevated levels of hor-
mone increase motor speed, heighten sensitivity to movement and reduce over-
all confidence, creating behaviour that might equate to anxiety. Note that the
implementation details of the ASM are not considered to be important, since
the architecture is compatible with most action selection approaches, including
winner-takes-all and voting-based methods. However, our implementation uses
a winner-takes-all approach, and the inbound connections to each behaviour are
assumed to be directly proportional to the probability of it being selected as
the dominant activity.

Coupling the PMM tightly with the hormone facilitates the positioning of
sensors with the aim of maximising their acuity and relevance to the agent’s
a↵ective context, allowing it to actively drive behaviour that meets the current
requirements of the sensory system. The ASM helps coordinate this behaviour
with competing demands from other sensory systems. We believe this mecha-
nism is scalable, and can support many other components that will collectively
produce more behavioural properties that human observers will be able to iden-
tify with those of other creatures.

3 Discussion

This paper has described an architecture intended to facilitate subtle forms of
expression and adaptive behaviour. It has also suggested how the properties of
sensory perception, higher reasoning and motor control can be represented by
loosely coupled components coordinated via hormones. We believe this granular
approach provides the following benefits: a grounded link between a↵ect and
behaviour, an approach that can be implemented using a variety of paradigms,
and an architecture that can be applied to di↵erent morphologies of robot with
only minor adjustment.

In terms of grounding, we have endeavoured to ensure our model of a↵ect
directly influences aspects of perception, cognitive function and motor activ-
ity. This granular, component-driven focus reflects the findings of neuroscience

8



research suggesting that di↵erent sensory aspects, such as colour and edge detec-
tion, are spatially separated in the brain, even within the same sensory systems
[25]. Regarding flexibility of implementation, we represent components via pro-
gramatic constructs but other paradigms, such as Artificial Neural Networks,
could have been adopted instead [26, 27]. A benefit of our design is that di↵er-
ent approaches can also be used interchangeably within the same architecture,
which enables broad components to be used as temporary proxies until they can
be decomposed into smaller units of functionality. Finally, we contend that our
architecture promotes flexibility, since it facilitates encapsulation of elements
that are specific to the morphology of the platform, such as sensor input and
motor output. If, for example, the architecture is migrated to a platform that
has additional motor capabilities, these additional properties can easily be as-
sociated with the a↵ect mechanism and coordinated via this secondary control
system without making any fundamental changes to the behaviours or ASM.

We believe this model could help simple situated robots to respond to the
a↵ective and behavioural cues of humans and other actors and facilitate com-
munication of their needs in a way that mirrors the familiar forms of non-verbal
communication which are typical of many mammals. However, we are still in
the preliminary stages of empirical testing and are currently carrying out exper-
iments to assess the adaptive value of the PMM in di↵erent environments and
with di↵erent sensory configurations.
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