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The coefficient, l/a, maintains the amplitude of frequency

response of If/a.b = a -Ilf/ (b - t) across different scales.
a

Equivalently, (1) can be expressed in terms of the Fourier
transforms of the signal and wavelet

II. WAVELET DESIGN PROCEDURE

Assuming ",(t) is the mother wavelet (or wavelet base), the
wavelet transform of the signal x(t) at the scale a and time­
shift b can be defmed by convolving x(t) with a dilated
wavelet [1],

(SC) filters. Also, it facilitates the circuit design greatly since
the various dilations of SI wavelet filters can be implemented
by controlling the sampling frequency precisely and easily.

As of now, the prevalent methods for analogue
implementation of WT mainly involves the rational function
approximation of wavelet bases and the design of bandpass
filters whose impulse responses are the approximated wavelet
bases. In [7], the wavelet base is synthesized with a rational
function obtained by the Pade approximation, and then
realized by a cascade connection of SI filters. Although the
feasibility is verified in this paper, this method still has some
limitations as below: Firstly, the zeros and poles of the
approximation network are arbitrary and unpredictable. In
many cases, the approximation rational function cannot be
factorized into a multiplication of several rational fractions,
which means it is impossible to be realized by cascade filters.
Secondly, although the cascade connection performs relatively
well, their passband sensitivities tend to become too large for
many applications, especially as the filter order increases [9].

To overcome the shortcomings appeared in [7], this paper
proposes a method that employs the powerful signal flow
graph (SFG) methodology to implement arbitrary
approximation rational functions. For brevity, here we use the
approximation rational function of the first derivative of
Gaussian wavelet given in [7] as an example to illustrate the
design procedure, in which the SI bilinear mapping lossless
integrator is used as the building block. The feasibility of the
proposed method is confrrmed by simulation.

Abstract - A signal flow graph method for analogue
implementation of wavelet transform using switched-current
circuits is proposed in which the wavelet transform is
synthesized by a bank of switched-current bandpass filters
whose impulse responses are the mother wavelet and its
dilations. To facilitate the implementation of arbitrary
wavelet function, the proposed approach employs the signal
flow graph methodology to design the wavelet filter. The first
derivative ofGaussian wavelet is used as an example in this
paper to illustrate design details. Simulation results show the
feasibility ofthe proposed method
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I. INTRODUCTION

Wavelet transform (WT) has found a wide range of
applications in signal processing due to its time-frequency
localization characteristics [1]. Because of the heavy
computational burden, however, software implementations of
wavelet transforms cannot be used in real-time signal
processing. Over the past few years, hardware
implementations have been investigated [2,3], mostly
concentrating on digital circuit implementations. Although
successful in many aspects, these designs suffer from the
effect of large power dissipation associated with the required
analogue-digital converter. To alleviate the difficulties
associated with such digital designs, research on analogue
circuit implementations has attracted much attention [4-8].
Typically, [7] presents an approach to implement wavelet
transforms using switched-current (SI) circuits, in which the
wavelet transform is synthesized by a bank of SI filters whose
impulse responses are the basic wavelet function and its
dilations (Le. wavelet filter). This method resolves the
problem of incompatibility with the digital VLSI
technology when implementing with switched-capacitor
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J b-t
WTx(a,b) = a-I x(t)lJf(-)dt

a
(1)
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(5)

(4)

H(s) = 1/as

generation SI circuit as shown in Fig. 2 is used as the
integrator block [11]. Its transfer functions in z-domain and s­
domain are defmed as (4) and (5), respectively.

H(z)=a
z +1

z -1

WT".(a,b) =[l/(2n)] fX(m)\{J* (am)exp(j@)dm (2)

Due to the characteristic of satisfying the admissibility criteria
[1], the wavelets are inherently bandpass filters in the Fourier
domain, defmed as wavelet filters. Hence, the WT can be
carried out simply by using a bank of bandpass filters whose
impulse responses are the mother wavelet and its dilated
versions.

Using bilinear transform, s =~ (z -I) , the parameter value
T (z +1)

in Fig. 2 can be calculated by the coefficient matching as

III. SIGNAL FLOW GRAPHS FOR ARBITRARY TRANSFER

FUNCTIONS

The general transfer function with arbitrary fmite
transmission zeros can be defmed as

n n-I 2 I
H(s) = ans + an_IS +... + a2s +als +ao

b n b n-I b 2 bIb (3)nS + n_IS +... + 2S + IS + 0

Based on Mason's Gain Formula, the direct signal flow
graph for a current-mode circuit which has the transfer
function as (3) can be realized by Fig.l (a) [10]. For the
convenience of practical realization, one can replace the
integrator (lis) by the general integrator (lisa). Meanwhile, in
order to give the same transfer function, the corresponding
modifications of the feedback and feedforward coefficients
should be made accordingly. After scaling, the modified SFG
of (3) is shown in Fig. 1 (b).

a = T /20'

in which, T is the sampling period of the SI circuit.

- .......----+--Voo

(6)

""'-

~bo
""'-

~b
""'-,

10
-bn- 1

~ ~ ~ ~ _._.. ~ ~ ~ ~

i' Go lIs lis lis 1/s 11bn

~

I
.J

""'"
G1 .J

""'"an- 1
.J

""'"

Fig.2. Bilinear mapping lossless integrator

t, B. Filter Architecture and Synthesis

The normalized approximation function for the fIrst
derivative of Gaussian wavelet proposed in [7] is given as:

H(s) = 5.75s
3

-18.3s
2

+92.4s (7)
SS +8.33s 4 +33.0s 3 +74.8s 2 +94.5s+52.3
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Fig.I. (a) Direct form and (b) Modified signal flow graph for current­
mode

Letting 0'1 = 0'2 = 1,0'3 = 0'4 = 1/3,0'5 = 1/5 , the

SFG realization of (7) using the methodology mentioned in
section 3 is shown in Fig. 3.

lis lis

Fig.3. SFG realization of wavelet filter

IV. WAVELET FILTER DESIGN

A. Switched-Current Building Blocks

As seen from Fig.1, the basic building cell of the filter
architecture is the general integrator lisa. In this paper, the
bilinear mapping lossless integrator based on the second-

To realize the integrators and branch coefficients in Fig.3,
we extend the structure of the basic SI bilinear integrator in
Fig.2 so that it includes these additional coefficients as shown
in Fig.4. Fig.4(a) implements this multiple-input multiple­
output bilinear integrator, in which the negative output is
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(a)

(b)

Fig.4. (a)Multiple-input multiple-output bilinear integrator and (b)
Simplified form

where (00 and (Op are the frequencies in the z-domain and s­
domain, respectively.

From (4)-(8), the parameters for the wavelet filter can be
determined which are listed in Table I.

V. SIMULATIONRESULTS

In this paper, we use the program ASIZ to simulate SI
circuits [12]. ASIZ (Analysis of SI Filters in Z Transform)
uses an interface with graphic windows, and analyses
switched-current, switched-capacitor filters, or any
periodically switched circuit where the circuit stabilizes
between the switching instants.

With the sampling frequency 50 KHz, the time-domain
response of the wavelet filter at a=2° is plotted in Fig.6. The
peak value is achieved at around t=0.06 ms, which is almost
the same as the ideal value 0.056 ms. As seen from Fig.6, the
performance of the SI wavelet filter is confrrmed by the
excellent approximation of the first derivative of Gaussian
wavelet.

Due to the feature of implementing wavelet transforms
using SI filters, any dilation constant across different scales of
the transform can be precisely implemented and easily
controlled by the sampling frequency. Changing the sampling
frequency to 100 KHz and 200 KHz for example, we can
implement the first derivative of Gaussian wavelet filters at
dyadic scale values a=2-1 and a=2-2

, respectively. The time­
domain responses are shown in Fig.7, achieving the peak
value at t=0.03ms and t=0.015ms, respectively. Observed
from these figures, simulation results indicate that the
presented approach can easily approximate an arbitrary
wavelet function at different dilations by controlling the
sampling frequency.

VI. CONCLUSIONS

Hardware implementation is an optimum approach to the
real-time application of wavelet transforms. This paper has
described a novel method for the SI filter implementation of
wavelet transform, in which the SFG methodology is utilized
to implement the arbitrary approximation rational functions of
wavelet bases. Taking the first derivative of Gaussian wavelet
as an example, the proposed approach employs the bilinear
mapping lossless integrators in the wavelet filter design. The
simulation results have shown that the proposed method is
very suitable for the analogue implementation of arbitrary
wavelet bases.(8)

01001 =2+tan-
p J s 21s

-Ii
n

achieved by simply inverting the output current of the
integrator with a simple current mirror circuit. Fig.4(b) is the
simplified form of Fig.4(a). The SI implementation of the first
derivative of Gaussian wavelet filter presented in Fig.3 can be
obtained as shown in Fig.5.

One can denormalize (7) to any desired centre frequency
according to application requirement. Herein, the centre
frequency is selected as 5 KHz as for the auditory wavelet
transform. Meanwhile, the SI circuit is a sampled-data system
in which the minimum sampling frequency can be determined
by the sampling theorem. However, the greater the sampling
frequency fs, the smaller the WIL of the current mirror; in this
case we let fs =50 KHz. In addition, to avoid errors due to the
bilinear transform, frequency pre-warping is used, which can
be expressed as:

TABLE I

PARAMETERS OF SI SFG WAVELET FILTER

a l a 2 a 3 a 4 as a 6 a 7 as a 9 a l O all a l 2 a l 3

1.16 1.14 -1.65 0.69 -1.30 0.23 0.69 -0.99 -0.24 0.23 -0.42 0.41 0.23
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Fig.5. Sf circuit of SFG wavelet filter
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Fig.6. Time-domain response of the wavelet filter at a=2°
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Fig.7. Time-domain response of the wavelet filter at (a) a=2-1 and (b) a=2-2
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