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Abstract— This paper proposes a face recognition system that 

can be used to effectively match a face image scanned from an 

identity (ID) document against the face image stored in the bio-

metric chip of such a document. The purpose of this specific face 

recognition algorithm is to aid the automatic detection of forged 

ID documents where the photography printed on the document’s 

surface has been altered or replaced. The proposed algorithm uses 

a novel combination of texture and shape features together with 

subspace representation techniques. In addition, the robustness of 

the proposed algorithm when dealing with more general face 

recognition tasks has been proven with the Good, the Bad & the 

Ugly (GBU) dataset, one of the most challenging datasets contain-

ing frontal faces. The proposed algorithm has been complemented 

with a novel method that adopts two operating points to enhance 

the reliability of the algorithm’s final verification decision. 

Keywords—face recognition, shape and texture combined 

features, detection of forged IDs 

I. INTRODUCTION 

Even though the first successful face recognition algorithms 
dated from the late eighties, it is still a vibrant area of research 
with new and better techniques appearing every year. One of the 
main reasons for the popularity of face recognition is the wide 
range of potential applications, including access control, identi-
fication systems, surveillance, and identity verification, to name 
but a few. This paper investigates the applicability of face recog-
nition to the authentication of biometric ID documents, i.e., the 
process of analysing an ID document in order to prove its legit-
imacy. ID documents are specifically designed with security fea-
tures (watermarks, holograms, special materials, etc.) to avoid 
counterfeiting and forgery. A counterfeit document is a com-
plete reproduction of a document from scratch to resemble an 
officially issued document, whereas a forged document is a gen-
uine document that has been illegally altered in some way.  

Some organisations have studied how to detect fraudulent 
identity documents by examining their security features [1], [2]. 
This can be done manually by human operators, or automatically 
by processing the document electronically. In practice, the most 
effective method is a combination of both: documents are elec-
tronically validated and referred to a human operator when the 
automatic electronic validation fails for any reason. Nowadays, 
millions of ID documents are manually examined by human op-
erators every day in different businesses and organisations. 
Thus, this study is motivated by the growing need for automatic 
or semi-automatic methods for authenticating ID documents. 

This paper introduces an additional automatic validation check 
to detect forged documents by using face recognition for the 
comparison of the image printed on the ID document to the im-
age stored in the ID document’s biometric chip. This validation 
check aims to reduce one common method of forgery, namely 
photography substitution [1], [2].  

The problem presented here is a specific face recognition 
case since it effectively compares whether the images them-
selves are identical (i.e. derived from the same camera shot). 
Hence, the main difficulties arise from the presence of water-
marks, holograms, reflections and other imperfections on the 
scanned image as shown in Fig. 1. Other studies [3], [4] have 
investigated the problem of matching degraded face images 
scanned from passports to high-resolution digital face images. 
Those studies have proposed pre-processing methods to improve 
the quality of the scanned face images for their later use in a face 
recognition algorithm. While these pre-processing steps are 
likely to improve the overall performance, they are intrinsically 
domain specific. By not applying any domain specific pre-pro-
cessing, the proposed algorithm is more generalised and can be 
used to compare any two face images. In order to test its accu-
racy for both the specific application considered here as well as 
more general face recognition applications, the proposed algo-
rithm has been evaluated on two different datasets, namely (i) a 
proprietary dataset (hereinafter referred to as the BiometricID 
dataset) containing face images scanned from ID documents and 
digital images from the biometric chip of those documents; and 
(ii) the Good, the Bad & the Ugly (GBU) dataset, which contains 
pairs of frontal face images with three levels of difficulty [5]. 

The proposed face recognition method is based on the fusion 
of texture-based features and shape-based features. In particular, 
Scale-Invariant Feature Transform (SIFT) descriptors are used 
to extract the texture features, and a set of coefficients that rep-
resent relative distances between pairs of facial landmarks is 
used to describe the shape of the face. These two different types 
of features are further processed using Principal Component   

 

Fig. 1. Example of image printed on an ID document (left) and image stored 
in the biometric chip of the same document (right). 



Analysis (PCA) and Linear Discriminant Analysis (LDA) to 
project the features to a lower dimensional and more discrimi-
nating space. Furthermore, the use of two operating points is 
proposed to provide a greater degree of control over the verifi-
cation decision.  

The remainder of the paper is structured as follows. Section 
II provides a subject review with a focus on the approaches 
adopted in this study. Section III describes the proposed algo-
rithm in detail and Section IV presents and analyses the experi-
mental results. Finally, conclusions are drawn in Section V.  

II. SUBJECT REVIEW 

A. Face Alignment with Constrained Local Neural Field 

The term face alignment is typically used in the literature to 
refer to the automatic detection of facial landmarks in a face im-
age or video in order to support further processing. Those land-
marks can be used to normalise faces to a canonical view using 
2D or 3D transformations or to extract shape features out of the 
face image. The algorithm proposed in this paper makes use of 
the Constrained Local Neural Field (CLNF) algorithm [6], an 
extension of the Constrained Local Model (CLM) [7]. CLM and 
CLNF are based on the popular Active Appearance Model 
(AAM) method [8]. AAM is a statistical model of shape and tex-
ture created from a training set of manually annotated face im-
ages and subsequently used to fit new unseen images. The fitting 
process starts by placing landmark points on an image using the 
mean location of each landmark in the training set. Then, the 
texture residual between the current estimate and the model is 
calculated, and the shape parameters updated in order to mini-
mise that residual. In both CLM and AAM methods, a set of 
rigid and non-rigid shape parameters 𝐩 = [𝑠, 𝐑, 𝐭, 𝐪] models the 
positions of the predefined set of landmarks 

 𝐱 = 𝑠𝐑(𝐱̅ + 𝚽𝐪) + 𝐭, (1) 

where 𝐱 are the locations of the set of facial landmarks defining 
the face shape in the given image, 𝐱̅ the mean shape of the faces 
in the training set, 𝚽 the principal component matrix describing 
the modes of variation among the face shapes and 𝐪 a vector of 
weights that control the non-rigid shape defined by 𝐱. The rigid 
shape transformations are controlled by a scaling term 𝑠, a trans-
lation term 𝐭, and a rotation matrix 𝐑. 

CLM methods offer better performance than AAM by using 
local descriptors to represent the texture surrounding each land-
mark location instead of utilising a global texture model of the 
whole face. The CLNF method, in particular, uses a local de-
scriptor based on a neural network with one hidden layer and 
similarity and sparsity spatial constraints in the output to en-
hance the accuracy [6].  

B. Scale-Invariant Feature Transform  

SIFT descriptors have been extensively used in object and 
face recognition [9]. The original SIFT algorithm [10] finds key 
points on an image and calculates a descriptor for each one of 
these key points. This section summarises how to calculate the 
descriptor. The process of finding the key points is not discussed 
here since the algorithm proposed in Section III calculates de-
scriptors on fixed locations within the image. 

 
Fig. 2. Orientation histograms created from gradients sampled over a 16 x 16 
region. The Gaussian weighting function is represented with a circular window 

on the left figure. Image taken from [11]. 

 The first step is to compute gradients in a region of 16 x 16 
pixels around the centre of the key point. Then, the magnitude 
of each gradient is weighted using a Gaussian weighting func-
tion to avoid abrupt changes in the descriptor and give less em-
phasis to gradients located far from the centre. Orientation his-
tograms of 8 bins are then created using gradients within 4 x 4 
sub regions. In an orientation histogram the bins can be repre-
sented by vectors pointing to different directions, where the 
length of each vector is the magnitude of the corresponding bin 
(see Fig. 2). The final descriptor is formed by concatenating the 
magnitudes of the bins of all the orientation histograms in the 16 
x 16 region. Since there are 4 x 4 histograms, each containing 8 
bins, the dimension of the descriptor is 128 [10]. 

C. PCA and LDA in Face Recognition 

The Eigenfaces algorithm based on PCA was one of the first 
successful face recognition techniques [12], and although its per-
formance has since been surpassed by more advanced algo-
rithms, PCA is still a relevant technique used in many modern 
face recognition algorithms. One of the limitations of PCA is 
that it does not use class labels, meaning that faces from the same 
identity and faces from different identities are treated in the same 
way. 

LDA is a similar approach to PCA but uses the class (iden-
tity) labels to find a projection that minimises the variation 
within the classes while maximising the variation between clas-
ses, i.e., the identity labels are used to reduce intra-person vari-
ations while increasing inter-person variations. PCA is typically 
used before LDA to reduce the dimensionality of the input fea-
ture vector, as LDA does not perform well when the within-class 
scatter matrix is not well estimated. This happens when there are 
not enough samples in the training set compared to the high di-
mensionality of the input feature vector [13], [14]. This combi-
nation of PCA before LDA has been adopted in this work. 

III. PROPOSED ALGORITHM 

A. Face Normalisation 

The Viola-Jones object detector [15] is applied to detect the 
position of the face(s) in a given image. In order to perform face 
alignment, the CLNF landmark detector is used to locate a set of 
68 landmarks in each face [6]. Once the landmarks have been 
located, the positions of the pupils (which are found at the inter-
secting point defined by the landmarks surrounding the eye 
sockets) are used to normalise the face images to a common 
scale (128 x 128 pixels) and crop area, with the eyes located at 
fixed locations. Lastly, the image is converted to greyscale. 



Fig. 3. Diagram illustrating the face representation step of the proposed algorithm. The figures below each block indicate the number of dimensions after each step.

B. Face Representation 

The face images are represented in two steps: firstly, a num-
ber of features are calculated to extract relevant information that 
are more informative than the raw pixels; secondly, the extracted 
features are transformed using machine learning techniques in 
order to create feature vectors that are more discriminating and, 
ideally, unique to each person. 

1) Feature Extraction 
Two different types of features are calculated in the proposed 

algorithm: texture-based features and shape-based features.  

Texture features are the most popular kind of features for 
face recognition. They can represent more information than 
shape features as they are directly computed from the raw pixels. 
Shape features are usually calculated from landmark locations 
within the face image, which means that their reliability depends 
heavily on the accuracy of the landmark localisation algorithm. 
On the other hand, shape features can improve robustness in sit-
uations when the appearance of a face changes but not its geom-
etry, for example, comparing face images of the same person 
with and without facial hair, makeup, or glasses. In this work, 
shape features are fused with texture features to boost the recog-
nition accuracy of the proposed algorithm. 

 
Fig. 4. The Euclidean distance between the highlighted landmarks when the 

expression is neutral (left image) is 100.60, and 101.41 when the expression is 
smiling (right image), i.e. the relative distance between the landmarks remains 

almost the same. On the other hand, the misalignment of the landmark in the 

right corner of the mouth when the person smiles is 20.52 with respect to the 
case in which the expression is neutral. 

a) Texture features 

Inspired by [16], [17], the texture features used in the pro-
posed algorithm consist of SIFT descriptors densely extracted 
from local patches across the face image. In particular, 64 SIFT 
descriptors with a radius of 6 pixels are extracted from a 8 x 8 
grid of fixed key points as shown in the top half of Fig. 2.  

b) Shape features 

The shape features used in the proposed algorithm are Eu-
clidean distances between pairs of landmarks. The distances are 
calculated after normalising the face image so that the effect of 
scaling is removed. The total number of possible distances is 

given by (𝑛
2

) = 𝑛(𝑛 − 1)/2, where 𝑛 is the total number of 

landmarks. As shown in the bottom half of Fig. 3, 68 landmarks 
are used resulting in a total number of landmark distances of 
2,278. 

Other studies have considered the use of landmarks for face 
representation. For example, the use of landmark coordinates 
and distances between pairs of landmarks has been studied in 
[18]. Their ratio-based model is very similar to the approach 
adopted in this paper. However, they made use of fewer land-
mark points and removed half of the distances due to the simi-
larity between both sides of the face. In contrast, the approach 
adopted in this work uses all the possible landmark points to rep-
resent as much shape information as possible. In [19] the use of 
landmark locations for affine-invariant shape representation is 
studied. However, shape variations encountered in real datasets 
are not only a result of affine transformations but also of non-
rigid transformations caused by, for example, changes in facial 
expression. As shown in Fig. 4 the shape features based on dis-
tances between pairs of landmarks are more robust to facial ex-
pressions than the shape features based on landmark locations. 

2) Subspace Representation 
Multivariate statistical tools can be used to transform a high 

dimensional space spanned by a large number of features into a 
lower dimensional space that retains the most useful information 
for discriminating the original samples. 



As suggested in Section II.C, the proposed algorithm uses a 
common method in face recognition wherein LDA is applied to 
the subspace obtained by first applying PCA to the input data. In 
this work, PCA+LDA projections are used to independently 
transform the space spanned by each SIFT descriptor and the 
space spanned by the shape features. Other studies [17], [20], 
[21] have used a random sampling technique [22] to reduce the 
dimensionality of very high dimensional feature spaces (e.g. the 
space that would result from concatenating all the shape and tex-
ture features). However, independently applying PCA+LDA to 
lower dimensional spaces as proposed here has the advantage of 
eliminating the need of such random sampling techniques, 
which might otherwise accidentally remove highly discriminat-
ing features. 

Using a PCA that retains 98% of the original variance, the 
128-dimensional SIFT descriptors become (on average) 73-di-
mensional when the FRGC dataset is used for training (see Sec-
tion IV.B), and the 2,278-dimensional vector representing the 
landmark distances becomes 40-dimensional. The observed sig-
nificant reduction in dimensionality of both the texture and 
shape vectors, notwithstanding the retention of 98% of the vari-
ance in the data, substantiates the notion that many distances be-
tween pairs of landmarks must be highly correlated as they are 
calculated from landmarks being located next to each other. 

The next step is to combine the shape and texture features. 
First, all the PCA+LDA projected texture features are concate-
nated resulting in a 4,670-dimensional vector (64 × ~73) and 
normalised to unit 𝐿2-norm. The PCA+LDA projected shape 
features are normalised in the same way prior to being concate-
nated with the texture features. The feature vector resulting from 
concatenating the shape and texture features is 4,710-dimen-
sional (4,670 texture features and 40 shape features) and might 
contain redundant information. For this reason, another 
PCA+LDA transformation is performed to project the infor-
mation contained in the concatenated texture and shape features 
into a more discriminating feature space with even lower dimen-
sionality. In this case a PCA retaining 90% of the variance is 
performed to reduce the dimensionality to 265 before applying 
LDA. A diagram describing the entire face representation step is 
depicted in Fig. 2. 

Another way of fusing multiple modalities such as face tex-
ture and shape is to have separate recognition algorithms for 
each modality and then combine their scores [19]. However, fea-
ture-level fusion has the advantage of having to train a single 
algorithm, and eliminates the need to optimise the fusion 
weighting. Liu and Wechsler [23] used a feature-level fusion 
method similar to the one proposed here. However, the input 
features in [23] are the raw image pixels and the landmark coor-
dinates instead of the more informative features considered in 
this study. 

C. Face Matching 

In this work, the matching score between two feature vectors 
𝐚 and 𝐛 is calculated using the cosine similarity: 

 cos(𝐚, 𝐛) =
𝐚 ∙ 𝐛

‖𝐚‖‖𝐛‖
. (2) 

Typically, the operating point of the algorithm is determined 
by a threshold 𝑡 used to decide whether two face images match 
or not. This threshold defines the true and the false acceptance 
rates (TAR and FAR) and the true and the false rejection rates 
(TRR and FRR). When analysing such a conventional biometric 
system that operates with one threshold only, the verification ac-
curacy is completely specified by the pair of error rates FAR and 
FRR, as TAR = 1 − FRR and TRR = 1 − FAR. As shown in 
Fig. 5, with one threshold and one operating point, FRR can be 
reduced arbitrarily at the expense of increasing FAR and vice 
versa. 

In order to alleviate the conflict between FRR and FAR, an 
approach that uses two thresholds, i.e., two operating points, is 
adopted here. In this approach, the higher threshold 𝑡ℎ controls 
the accepted comparisons (TAR and FAR), whereas the lower 
threshold 𝑡𝑙 controls the rejected comparisons (TRR and FRR). 
A matching score in between the two operating points would 
yield an undetermined result. As shown in Fig. 6, this approach 
allows both FRR and FAR to be reduced at the same time, as 
they are determined separately by two different thresholds. In 
real applications, it is often desirable to achieve very low error 
rates whilst it is acceptable to have a certain number of undeter-
mined cases, which might be handled further in a specific way 
(e.g. by manual inspection). Therefore, the introduction of a sec-
ond threshold represents a significant improvement in terms of 
the applicability of face verification in practice. 

IV. EXPERIMENTAL RESULTS 

This section presents details about the protocol and the da-
tasets adopted for the evaluation of the proposed algorithm (Sec-
tion IV.A), the subsets used for training (Section IV.B), and the 
evaluation results (Section 0).  

A. Evaluation Protocol and Datasets 

The protocol adopted for the evaluation of the algorithm is 
based on the protocol as defined by NIST for its face recognition 
challenges [24]. In this protocol, the algorithms are tested by 
comparing all the images in a target set to all the images in a 
query set. The resulting scores are used to generate a Receiver 
Operating Characteristic (ROC) curve that plots TAR against 
FAR. 

The proposed algorithm is evaluated on two different datasets. 
The BiometricID set is a proprietary database where for each 
subject there are face images scanned from his/her ID document 
(i.e. scanned images with artifacts such as watermarks, holo-
grams, etc.), and the original digital face image obtained from 
the biometric chip of the same ID document (i.e. the RFID im-
age). For some subjects there are more than one scanned images 
(as the artifacts can vary from one scan to the next), and some 
others do not have any scanned or RFID image. In such cases, 
all the images are used to form additional matching or non-
matching pairs. For example, if a subject only has one scanned 
image and no RFID image, the scanned image is compared 
against all the RFID images in the evaluation set to produce ex-
tra non-matching pairs. In total, the target set contains 4,802 
RFID images and the query set 8,801 scanned images forming 
6,029 matching pairs and 42,256,373 non-matching pairs. 



 
Fig. 5. ROC curve plotting FAR against FRR and a possible threshold. It can 

be seen the effect that increasing or decreasing the threshold 𝑡 has on TAR, 

FRR, FAR and TRR. 

The second database is the Good, the Bad and the Ugly pub-
lic dataset [5], one of the most challenging sets available to eval-
uate the performance of face recognition algorithms on frontal 
images. The GBU dataset is divided into three partitions. The 
Good partition consists of face pairs easy to match, the Bad par-
tition consists of face pairs with an average matching difficulty 
and the Ugly partition consists of face pairs difficult to match. 
The query and target sets of each partition contain 1,085 images 
from 437 subjects. The distribution of images on each query and 
target set, i.e., the number of images per subject, is the same 
across the three partitions. In total, there are 3,297 matching 
pairs and 1,179,928 non-matching pairs on each partition. 

B. Training 

Two different sets of images have been used to train the al-
gorithm, one for each dataset evaluated in this study. One is a 
random subset of the BiometricID dataset for evaluation on the 
BiometricID dataset, and the other is a random subset of the 
FRGC dataset [25] for evaluation on the GBU dataset. Since the 
GBU dataset does not provide training images, the FRGC da-
taset is used as both of them contain images that were collected 
by the University of Notre Dame under similar conditions. 

The BiometricID training set contains 1,000 images from 
500 subjects, with 2 images per subject, one RFID image and 
one scanned image. Only 2 images per subject are used since any 
additional sample available for a subject is simply a different 
scan of the face image printed on the ID document. The training 
set used for evaluating the algorithms on the GBU dataset con-
tains 5,320 images of a total of 266 subjects from the FRGC da-
taset with 20 images per subject. Recognition of face images on 
the BiometricID dataset is considerably easier than recognition 
on the GBU dataset in the sense that the algorithm requires less 
training data to perform well on the BiometricID dataset.  This 
is because for the face images in the BiometricID dataset the 
PCA+LDA only needs to learn feature vectors to match two dif-
ferent versions of the same face image (RFID and scanned) and 
differentiate them from feature vectors generated for face im-
ages of other subjects; whereas the more general scenario pre-
sented by the GBU dataset requires similar (matching) feature   

 
Fig. 6. ROC curve plotting FAR against FRR and two possible thresholds. In 

comparison with Fig. 4, the introduction of the lower threshold 𝑡𝑙  allows to 

reduce FRR at the expense of reducing TRR and having comparisons where the 
result is undetermined. In real applications this is often desirable, as the number 

of comparisons between non-matching faces is usually much lower than the 

number of comparisons between matching faces. 

vectors generated for various, and sometimes dramatically dif-
ferent, face images of each and every subject in the dataset. 

C. Results 

The open source implementation of the 4SF algorithm de-
scribed in [16] has been chosen as the baseline for the perfor-
mance evaluation in this work. The 4SF algorithm is a good ex-
ample that makes use of local descriptors and subspace repre-
sentation. To focus the comparison on the face recognition ac-
curacy rather than on the face detection accuracy, the same face 
alignment technique has been adopted in both algorithms. For 
this reason, the 4SF algorithm was modified to use the CLNF 
landmark detector to locate the position of the eye pupils. More-
over, the 4SF algorithm is trained and evaluated using exactly 
the same images as the proposed algorithm. 

As seen in the ROC curves obtained with the BiometricID 
dataset (Fig. 7) and the GBU dataset (Fig. 8), the proposed algo-
rithm outperforms the baseline algorithm in all cases. This im-
plies that (i) the proposed combination of texture and shape fea-
tures possesses more discriminating information than texture 
features alone (at least when evaluating datasets that contain 
mainly frontal images), and (ii) the proposed PCA+LDA applied 
to multiple low dimensional spaces is a more effective dimen-
sionality reduction strategy than the random sampling technique 
used in 4SF. 

V. CONCLUSIONS 

This paper presents a novel face recognition algorithm tai-
lored for a specific application scenario of face recognition that 
involves face images with added security features such as water-
marks and holograms for the detection of forged ID documents. 

Considering the similar face geometry across faces of the 
same subject, the proposed algorithm fuses face shape features 
with the commonly used face texture features. The high dimen-
sionality produced by the large number of shape and texture 



 
Fig. 7. ROC curves on the BiometricID dataset using the 4SF algorithm and 
the proposed algorithm. 

 

Fig. 8. ROC curves on the Good, Bad and Ugly partition of GBU dataset 
using the 4SF algorithm and the proposed algorithm. 

features has been avoided by using multiple PCA+LDA trans-
forms. The proposed algorithm has achieved high accuracy for 
the specific application scenario considered here. In addition, the 
robustness of the proposed algorithm for more generic face 
recognition tasks has been confirmed by its performance on the 
GBU dataset, offering a good balance between training and ac-
curacy in the sense that there is no need to train using many thou-
sands of images as is the case with the latest face recognition 
algorithms based on deep learning [26]. 

Finally, it has been shown how the applicability of any face 
recognition algorithm in real applications can be benefited with 
the use of two thresholds to have a better control on the face 
recognition rates at the expense of having comparisons where 
the result is undetermined. 
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