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Abstract

In this article we describe a new method for
supervised classification of EEG signals. This roeéth
applies to the power spectrum density data andyassi
class-dependent information weights to individual
pixels, so that the decision is defined by the samypm

weights of the most informative pixel features. We
versions of the generated by the use of devices such as mobilegghon

experimentally analyze several
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sometimes rather significant, such as eye movement,
muscle activity, cardiac activity, respiration askin
potential. Also, even if the pure biological EEQus®
were to be noise free, amplification and digiteiiza
would add noise (systematic bias) [1]. As a madter
fact noise components of a signal can have differen
origins, biological or not.

More irregularities in the EEG patterns may also be

approach. The informative features appear to be @s exposure to pulse modulated electromagnetidsfiel

rather similar among different individuals, thus
supporting the view that there are subject indejgand
general brain patterns for the same mental task.

1. Introduction

Electroencephalography (EEG) signals contain usefu

information about the state or intention of the anjt,

2, 9, 12] and are considered to be one of the romst
invasive approaches to acquiring information for
classifying mental tasks [5].

EEG signals may provide an individual with an
alternative channel for communication with the
external environment [5, 8, 12]. It could be thdyon
possibility to communicate with other people, ieth
individual is completely motor paralyzed but hasab
sensory and cognitive brain functions (locked-in-
syndrome), with the communication being conducte
via a brain computer interface (BCI). Other intéires
applications of EEG signals include the diagnodis o
neurological disorders and other abnormalities hef t

human body [9, 12] and even monitoring the depth of

anesthesia [7].

Although EEG signals may provide a number of
benefits, their processing is far from being trivia
Indeed each electrode records the activity of tands

of neurons simultaneously [5], which makes EEG

generated by them affects the cerebral blood flow i
certain areas of the brain [3, 13].

Another problem faced by EEG signal processors is
that classifying these signals is an intrinsicatigh
dimensional task [10]; a recording of one hour gsin
128 electrodes at 500 samples per second would

|generate around 0.45 GB [9].

One well-known technique used to smooth data and
reduce variability is signal averaging [2]. Thisal
allows estimation of the amplitude of signals thety
be buried in noise, which involves the followingygtn
necessarily realistic, assumptions [1]:

- The signal and the noise are uncorrelated,;

- The timing of the signal is known;

- A consistent signal component exists to be

extracted using repeated measurements;

- The noise is truly random with zero mean.

d The averaging technique has proven sufficientlyusbb

to survive minor violations of the above assumption
and it is currently used by researchers, see, for
example, [2, 12].

Our proposed method takes advantage of the above
benefit by applying averaging to the power spectrum
density data that belong to the same class. Invthis
we can find information weights of the most
informative pixels and use them for classification.

recording very noisy, and thus EEG patterns are 2. Description of the Data and the Power

difficult to discern.

Although most of the noise is supposed to come

from either within the brain or over the scalp [8e
truth is that there can be many other sources izeno

Spectrum Density

The raw EEG data were recorded from three healthy
subjects, with five bipolar electrodes (channelsil a



sampling frequency 250Hz. In each trial of eight patterns emerging at solving the same mental tasks
seconds there are 2001 samples. The electrodes wenmuch depend on personal circumstances (compare
placed according to positions standardized in the Figures 2 (a) and 2 (b)) and a number of otheraspe
extended 10-20 system using fc3 to pc3, fcl to pzl, including the aging process as it changes the resspo
to pz, fc2 to pc2 and fc4 to pc4. In spite of siggigg of brain to stimuli [9]. That is why feature exttiaa is
that dense electrode arrays may enhance the sigmals especially important for BCI systems based on EEG
classification purposes [8, 15], only five channetse signals.
utilized here because our previous work [11] hassh
that this configuration is able to achieve good 3.1 Feature extraction
classification for online BCI.

In each trial, the subject was instructed to imagin ~ Since EEG data are likely to have a certain degfee

body movement task which could be either noise, assuming that this noise is truly randonecait
(T1) Moving left hand, or be minimized by averaging the trials belongingtie t
(T2) Moving right hand, or same tasks by using formula (1.1), which lead$iteet
(T3) Moving feet. averaged trials § one for each of the task$1Q.
This set of tasks will be denoted@s= {T1, T2, T3}. In the data used for experiments, each #i has
The EEG signal obtained in a trial was recorded as5680 pixels (71x80), so that it becomes important t
a three way function a=f(t, c, r) in which a regnets identify a small group of pixels to be used asifezs in
the amplitude, t corresponds to a sample and rangeshe follow-up classification.
from 1 to 2001, c to one of five channels, c=1,.aid In order to create such a group one needs a measure

r to a trial. The three subjects from which theadzdve of importance of a pixelg, ) (m=1,...,71; n=1,...,8D

been collected are denoted Ag240 trials),B (120 for classification purposes. We measure the distarfic

trials) andC (350 trials) respectively. a pixel in trial §£S to taskwIQ by comparing its
The raw data have been transformed into powerprightness with the brightness of the corresponding

spectrum density (psd) to generate a dataset vd@ioh  pixel in the average trial,S

be viewed as a set of images. Each image is a m@fste

71x80 pixels to represent a trial on the scalésopsd _ 2

as a function of time and frequency-channel, incivhi d(s(m,n),w) = |S(m' n) - Sw(m' n)| (1.2)
71 is the number of samples within second 1 and

second 8 in a trial, 80 is the number of featunesach We refer to the pixel as being good in trial shiét

sample consisting of psds over 8~45Hz (psds in 16difference of brightness (1.2) is smaller to theamef
frequency bands from each channel). Each of thesehe subset $§) that has the correct label. The goodness
images will be referred to as a trial in the rerdain value for pixel(m,n)is defined then as the proportion
Consider a set S of N trials =1, 2, ..., N). This  of trials in which it is good. After computing the
set is partitioned into three subsetsyS¢orresponding  goodness values for all pixels, one can use thetheas
to the mental tasksw=T1, T2, T3, so that importance weights.
S=8(T) 0O S(T2) 0 S(T3). This allows us to  Moreover, our experiments have shown that
average trials over the tasks as follows. classification results can be improved if plxelmow
goodness values are discarded. Hence we introduce a
thresholdd such that all pixels whose goodness value is
S, = }{“ 23 (1.1) less than 6 are removed from the process of
@i0S(w) classification. Features remaining after removahlbf
those pixels whose goodness is less thaf.45 can be

Where N, is the number of trials in &). seen in Figures 1 (a), 1 (b) and 1 (c) for subjéct®
and C respectively These figures show the pixels
3. TheMethod found as being the most important ones for

classification in the three subjects. It can bensthat

the pixels before second 4 in each trial tend to be

unimportant to the classification (check the y-axis

techniques [10]. a_lbout the 3% time poir_1t), psds over 8~17Hz (the first
As defined by [4, 14] a pattern can be seen as thefllve frequency bands in each channel) are mosulysef

opposite of a chaos; it is an entity, vaguely dairthat and all the 5 channels provide important pixels and
could be given a name. What is important is that thus make contributions to the classification (&t

Our method involves two phases: (i) feature exioact
and (i) classification, which is similar to mostCB
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Figure 1 (c)

The feature extraction algorithm is as follows
0.0. Initialize all goodness values g(m, n)=0.
1.0 Calculate the mean of all trials per tagk S
using formula (1.1).
2.0 For each trial s
2.1 For each pixel (m, n)
2.1.1 Calculate its distance to the
same pixel in $using formula (1.2).
2.1.2 If the distance is of pixel
(m,n)ds is closer to its peer pixel in

the correct average trial &),
increase its goodness value g(m, n)
by 1.

3.0 Update the goodness values by dividing them by
the total number of trials and remove all pixels
whose goodness values are smaller thére., set
those initially as g(m,n) as 0).

3.2 Classification

Given a trial s, its distances to tasks1Q are
calculated using the following formula:

d(s,S,) = iNZm:\s(m, n)=S,(mn) g(mn) (1.3)

n=1m=1
The trial is assigned to its closest tagkQ.

4. Experimental Results

In an attempt to get the best possible value fer th
threshold® with subjectsA, B and C, a number of
experiments have been run. The accuracies given in
figures 2 (a), 2 (b) and 2 (c) are the averagethre®e
runs using the ten-fold cross validation methode Th
relation between the threshold and the accuracly wit
subjectA is depicted in Figure 2 (a). The best result,
67.22%, is a6=0.45.

The accuracy for subjedB as function of the
discarding threshold which had a maximum of 84.17%
at6=0.45 is presented in Figure 2 (b).

SubjectC had a maximum accuracy of 82.34% at
6=0.48 and 82.07% &=0.45, as shown in Figure 2
(c).

One can notice that subje®'s data allow to
achieve a higher accuracy rates including the mamxim
of 84.17% at the same optimal value of threshold
0=0.45 as subjecA. Also the difference of accuracies
for subjectC using its optimal threshold of 0.48 and
0.45 is not that great either.



that the best pixels would have even greater inftae
in the classification process using formula (1.3).
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Figure 3 (a) Accuracy rates for subjécat different values foe.

The accuracies shown in figure 3 (a) for subject
were obtained at the best threshéld/alues. Similar
results for subjecB and C are presented in Figures 3
(b) and 3 (c) respectively. These show that the
“contrast” exponent gives no subject independent
improvement to the classification results.
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5. Compar ative Results

08231

We have experimented with several versions of the 082f
method on the same data. T
1 11 12 1.3 14 15 1.6 17 18 19 2
5.1. Contrast exponent Figure 3 (c). Accuracy rates for subjeCtat different values for

e.5.2. Different weighting
In the first modification we raise the goodnesaigalto
the power of the parameter The objective was to  In our second modification we used different weiggnt
make the difference between pixels more contrast, s in formula (1.3). We have made experimentation$ wit



the same method but changing the weight to 1/(1+g). 3:;‘ version: Pearson correlation 46.3 56j1 549
The accuracy results using the respective beskesalu | 4" version: Pearson correlation | 63.3 | 80.5 | 81.7

for the threshold found in the previous section were :‘;’Qﬁme‘j with shift to grang

much worse: 5™ version: & version using thd 56.2 | 71.3 | 75.2
e SubjectA: 0.5542 different weighting
* SubjectB: 0.7194
+  SubjectC: 0.7200 6. Results of Using Data within Shorter
Windows

5.3. Different distance

S ] In real world applications a BCI system should
Another modification involved the weighted Pearson respond as fast as possible rather than at theolead

correlation instead of the Euclidian squared distan trial. This requirement fits well with our proposed
method, because it does not need to have a fallds
ﬁ(dmn)-S)-(Sw(mn)-éu)g(mn) (1.4) input. One can use, for instance, only the trialada
psS,) = L el within a temporal window. The results using differe
JZ%(S(mn)-é)zg(mn)i%(sm(mn)-éw)zg(mn) window sizes for subject#, B and C are listed in
el L Tables 2, 3 and 4 respectively.

While in terms of the distance a trial should beeled Table 2. Accuracy rates for subjecusing different window sizes
to its closest averaged trial, in this modificatitn Subject | Threshold Window Size (Time Points)  Accyragc

should be labeled to the averagdgdl with the highest A 0.47 > | 03.33%
weighted correlation index. 2 8'25 1105 6623‘9026/%
This modification has also provided a lower [, 049 200 64.72%4
accuracy than the original method itself: A 0.47 25 64.31%
. SubjectA: 0.4639 A 0.47 30 65.28%
* SubjectB: 0.5611
o SubjectC: 0.5495 Table 3. Accuracy rates for subj@&using different window sizes
Subjec | Thresholt | Window Size (Time Point Accurac)
) , B 0.47 5 72.5%
The previous test was also performed with an extraj g 047 10 75.00%
step in the data preprocessing stage: subtradivea B 0.49 15 77.78%
trials by the mean of all trials, which lead to the | B 0.4¢ 20 80.83%
following accuracies. B 0.48 25 | 8361%
B 0.47 30 | 83.61%

* SubjectA: 0.6333
*  SubjectB: 0.8056

Table 4. Accuracy rates for subjétusing different windows sizes

e SubjectC: 0.8171 Subject| Threshold Window Size (Time Points Accyrak
C 0.49 5]  79.90%
One more experiment was conducted using the| € 0.47 10| 81.43%

above index (formula (1.4)) with the extra pre- g g'jf %g %22'8$/;
processing step explained in the previous paragraph—c 049 >5 82'.48‘:,/0
and the weight & (L+ g). The accuracies are as [C 047 30 | 8286%
follows: )

. SubjectA: 0.5625 Even though the optimal threshold value now

+  Subjectd: 0.7139 depends on the size of the window, we can still see

0.47 as being an optimal value.

When the optimal threshold is 0.48 or 0.49 the
increase in accuracy in relation to the use of 047
very small and in most cases cannot be proved.

* SubjectC: 0.7524

A summary of the experiments is presented in Table

Table 1. Accuracy rates qgf A(%) | B(%) | C(%)

methods using different 7. Conclusion and Discussion
modifications.Methods

Goodness Matching Algorithm | 67.2 | 84.1 | 823 P . .
1% version: conirast expons 665 1836 | 827 We proposed a classification method involving a

7™ version: different weightir 554 | 719 | 72.¢ measure of the goodness of pixels as both the pixel




weighting coefficient and the pixel rejection base. Analysis and Machine Intelligence, 2000, vol. 24, f,
The results of EEG classification heavily depend on __ Pp- 4 - 37 _
subjects, as was pointed out by other researcprs [ [0 Lee, F., Scherer, R., Leeb, R., Neuper, C.cls, H.,
As the reader can see in Figures 1 (A), 1 (B), &nd Plurtscheller, G, A Comparative analysis of muliss
(C), although subjects, B, and Cprovide for very EEG c[aSS|f|cat|0n for brain compgtgr |ntgrface,
- . . Proceedings of the Y0 Computer Vision Winter
different accuracy r:_;ltes, their good pixels are Workshop, 2005, pp.195-204
somewhat similar. This suggests that there may beje) Mmirkin, B., Clustering for Data Mining: A Data
subject independent general brain patterns foséinee Discovery Approach, Chapman and Hall/CRC, Boca
tasks. This could also mean that finding 0.45 (when  Raton Fl. USA, 2005
using the whole data of a trial) and 0.47 (windowed [7] Ortolani, O., Conti, A., Di Filippo, A., AdembrC.,
version) as the best parameter for the threshidd all Moraldi, E., Evangelisti, A., Maggini, M., Robers, J.,
subjectsA B andC, is not entirely by chance. EEG signal processing in. ar!aesthe5|a: Use of neural
One can notice, too, that a good classificatiamis network technique for monitoring depth of anaedihes
. British Journal of Anaesthesia, 2002, vol. 88, Bopp.
a matter of having less sparse goodness valuestable

: , 644-648
subject A even having a much denser clusters than [8] Peterson, D., Knight, J., Kirby, M. Anderson, Chaut,

subjectB has led to poorer result. _ M., Feature selection and blind source separation i
This points to the conclusion that BCI devices EEG-based brain-computer interface, EURASIP Journal
should be supplied with a set of classification on Applied Signal Processing, 2005, vol. 19, p2&1

algorithms so that a learning device would not ditly 3149 _ _
the parameters but also choose the algorithm #tgerb  [9] Sanei, S., Chambers, J. A., EEG Signal ProogssiK:
applies to a subject. WileyBlackwell, 2007

ElO] Tomioka, R., Aihara, K., Muller, K. R., Logist
regression for single trial EEG classification, Adees
in Neural Inf. Proc. Systems, 2007, vol. 19, ppZ-37

Since our goodness measure is task independent, i
can also be applied to not only learning but also

clustering trials using the k-means algorithm atsd i 1384

intelligent version [6]. [11] Tsui, C., Gan, J. Q., Roberts, S., A self-phteain-
computer interface for controlling a robot simutatan
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