
Monitoring Framework for Stream-processing
Networks

Vu Thien Nga Nguyen
School of Computer Science
University of Hertfordshire
Hatfield, United Kingdom

v.t.nguyen@herts.ac.uk

Raimund Kirner
School of Computer Science
University of Hertfordshire
Hatfield, United Kingdom

r.kirner@herts.ac.uk

Frank Penczek
School of Computer Science
University of Hertfordshire
Hatfield, United Kingdom

f.penczek@herts.ac.uk

Abstract—In this paper we present a monitoring framework
that exploits special characteristics of stream-processing networks
in order to reason the performance. The novelty of the framework
is to trace the non-deterministic execution which is reflected in
i) the dynamic mapping and scheduling of network components
at the operating system level and ii) the dynamic message routing
across the network at runtime. We evaluate the efficiency with
an implementation for the coordination language S-Net, showing
negligible overhead in most cases.

I. INTRODUCTION

The ongoing trend towards increasing numbers of execution
units running in parallel raises challenges for the field of soft-
ware engineering. For example, mastering concurrency issues
while still exploiting a high fraction of the potential computing
power of a parallel platform challenges the programmer.

Stream-processing networks [10], [2] are networks of com-
ponents that communicate via streams. They have been pro-
posed as a paradigm to reduce the complexity of parallel
programming, since the communication with streams also
provides a form of implicit synchronisation at the same
time. However, as for other parallel programming approaches,
achieving high utilisation of the individual resources is still
of high concern for stream-processing networks. Thus, the
availability of monitoring frameworks that provide insights
into the internal temporal behaviour is important.

There exist numerous monitoring frameworks for perfor-
mance debugging, with the commercial ones typically covering
generic parallel programming approaches. However, stream-
processing networks do provide special properties like syn-
chronisations through communication channels, for which ded-
icated monitoring support would be beneficial. Monitoring the
temporal behaviour would also require to extract information
about the operation of the underlying operating system, as
the resource management of the operating system typically
has a significant influence on the performance of the parallel
program.

In this paper we present a software-implemented monitoring
framework for performance monitoring of stream-processing
networks that operates both at the runtime system level and
also at the operating-system level. This allows to provide de-
tailed information with low overhead. The monitoring frame-
work focuses on the non-deterministic execution behaviour of

the application at both levels. In contrast to other approaches
for monitoring stream-processing applications, we do not need
to instrument the application code. The approach also does
not rely on any special automatic code instrumentation, as
we embedded the required annotations into the application-
independent side, namely the runtime system of the streaming
layer and the operating system.

We present in Section II the assumptions about the kind
of stream-processing networks for which we want to support
monitoring. In Section III we list the requirements about what
information has to be monitored and present the conceptional
architecture of the proposed monitoring framework. Section IV
describes the concrete stream-processing environment for
which we implemented the monitoring framework. This is
based on the coordination language S-Net [7], [8], running on
the user-mode operating system LPEL [13]. In Section V we
study the overhead of the monitoring framework. Section VI
sketches how the monitoring information can be used for
performance measurement and analysis. In Section VII we
discuss related work and Section VIII concludes the paper.

II. ASSUMPTIONS & DEFINITIONS

A. Terminology

Scheduling vs. Mapping. The scheduling of resources
involves decisions for the space and time domain. By con-
vention, within this paper we refer to the space scheduling as
mapping and to the time scheduling simply as scheduling.

B. Stream-processing Networks

A stream-processing network [10], [2] consists of a set of
processing components connected by directed communication
channels, called streams. We assume that each stream has
single reader and single writer. While a component is a static
description, its instances to be executed at runtime are called
tasks.

C. Execution Framework

A stream-processing network is compiled into a program, to
be executed on an execution framework. In the following we
describe the generic form of execution framework for which
the monitoring framework should be applicable.

An execution framework consists of a runtime system and
an operating system as in Figure 1. The runtime system maps
the compiled stream-processing program into a set of tasks
and streams, as shown in the upper part of Figure 1. Each
task loosely represents for a network components. Tasks com-
municates with each other by sending and receiving messages
via streams. A stream again has single reader task and singe
writer task.

The operating system provides the resource management,
including the mapper to assign tasks to computational ele-
ments of the underlying platform and a scheduler to define
the temporal order of task executions within the computational
elements.

Mapper&

Task&

Run-me&System&

Stream&

Opera-ng&System&

Message&

Scheduler&

Fig. 1. Assumed Execution Framework

The operation of the scheduler has to take into account the
current waiting relation between tasks to decide which task to
execute next.

The waiting relation of a task A waiting for a task B is
denoted as a predicate W (A,B). W (A,B) is TRUE if task
A is waiting for task B and FALSE otherwise. To express the
predicate formally, we denote the unique reader task and writer
task of a stream S as reader(S) and writer(S), respectively.
Further state(S) ∈ {full,empty,available} describes
the filling level of a stream S’s waiting queue, and state(A) ∈
{blocked-by-input,blocked-by-output, . . .}
describes the state of a tasks A. Based on these definitions
the predicate W (A,B) can be formally described as

W (A,B)⇔ ∃S ∈ STREAMS .

(state(S) = empty ∧ A = reader(S) ∧ B = writer(S)

∧ state(A) = blocked-by-input)

∨
(state(S) = full ∧ A = writer(S)) ∧ B = reader(S)

∧ state(A) = blocked-by-output)

III. MONITORING FRAMEWORK

In the following we present our requirements for a moni-
toring framework and also the conceptional realisation of the
monitoring framework based on the system assumptions in
Section II.

The main purpose of the monitoring framework is to analyse
the temporal behaviour of the stream-processing system. We
are basically interested in two main use cases. First, we want
to determine the performance of the stream-processing system
in terms of throughput, latency and jitter.

Latency, is the delay between the receipt of data by a
processing node and the release of the processing results into

the output channel(s). For the high-performance system the
average latency is important, while for real-time computing
the maximum latency is significant.

Jitter, describes the variability of the latency. For high-
performance computing the jitter can be a useful metrics to
guide the dimensioning of internal implementation-specific
mechanisms needed to store data. In real-time computing the
jitter is also important for control applications to reason about
the quality of control.

Throughput, how much data (either how many messages
or data volume) is passed through a node per time unit.

In the absence of concurrency, the throughput is related
to latency but not to jitter. In the presence of concurrency,
throughput, latency and jitter are independent.

Second, we want to support performance analysis, i.e., to
provide information about the detailed timing behaviour of
the individual computational elements in order to tune the
performance.

A. Monitoring Requirements

1) Determing Performance Metrics: While throughput of
an application can be obtained without knowing the internal
operations on input messages, latency calculation is performed
for each input message and requires the full execution trace of
the input message. The execution trace of an input message
is formed from two kinds of information: i) the descendant
messages generated during the execution of the input message;
ii) the execution time of tasks on the input message itself and
all its descendants. To provide the first kind of information,
all messages should be distinguishable and the parent-child
relations between messages should be provided. The second
kind of information can be obtained through task events
including message-read and message-written.

2) Performance Reasoning: The application performance
are affected by the resource management which is controlled
by mapping and scheduling. Therefore, it is necessary to
monitor the mapping and scheduling activities to identify
performance problems.

Although it is possible to have static mappings for static
stream-processing networks, it is not the case for dynamic
networks. To support general stream-processing networks, the
monitoring framework must capture the mapping activities.
Scheduling activities are controlled by the scheduling policy
on the current task states. Basically, there are two types
of task states counted on the scheduling activities: ready
and blocked. Ready tasks are considered to be scheduled
while blocked ones are not. As the task states are changing
during the runtime, scheduling activities are dynamic. The
monitoring framework therefore must capture these activities
and task states. However, this is not enough to reason about the
application performance since it does not provide the causes of
blocked tasks. These causes are in fact reflected by the waiting
relations between tasks. Thus, this information should also be
included.

2

B. Concepts of the Monitoring Framework

In this section, we present concepts of the monitoring
framework aiming to collect the information described in
Section III-A. The required information includes: mapping ac-
tivities, scheduling activities, waiting relations between tasks,
and execution traces of input messages. The overview of our
monitoring framework is shown in Figure 2 which consists of
the Message Identification Generator (MIG), Stream Monitor-
ing Object (STMO), Task Monitoring Object (TMO), Mapper
Monitoring Object (MMO) and Scheduler Monitoring Object
(SCMO).

Mapper&

Task&

Run-me&System&

Stream&

Opera-ng&System&

Message&

Scheduler&

TMO& STMO& MMO& SCMO&

Task&Info&

Stream
&

Info&

M
apping&Info&

Scheduling&Info&

Monitoring&Framework&

MIG&

M
essage&
Id&

Fig. 2. Monitoring Framework

To capture the mapping activities, the MMO is employed,
using event driven techniques. For each event in which the
mapper sends a task to computational element, the MMO
records the identifications of the task and the computational
element. Using the same technique, the SCMO is used to
monitor scheduling activities by capturing scheduling events
such as task-created events, task-blocked events, and task-
destroyed events, etc. For each of these, SCMO records the
time, the event type and the task identification.

As presented in Section II-C, waiting relations are inferred
from the task states, stream states, stream reader and stream
writer. The task states are actually supplied by the scheduling
events. The rest is provided by a STMO which is equipped
for each stream.

As discussed in Section III-A1, to obtain the execution
traces of input messages, first it is necessary to distinguish
messages. In the runtime system, a MIG is responsible for
this by generating unique identification and attaching to each
message. Second, the parent-child relations can be obtained
easily by providing each message with its parents’ identifi-
cations. Finally, task events are captured by TMOs since the
SCMO does not have control on the internal operations of
tasks.

IV. IMPLEMENTATION OF THE MONITORING FRAMEWORK

In the following we present a concrete instantiation of the
monitoring framework, based on the execution framework
composing of the S-Net runtime system and the LPEL op-
erating system.

A. Stream-processing with S-Net

S-Net [7], [8] is a declarative coordination language that
aims to separate computations from concurrency management
aspects. The computational logic is meant to be capsuled
inside the individual computational components, also called
boxes, while S-Net focuses on how to connect the communi-
cation between these components via streams.

These boxes of a network are reentrant programs (written in
a conventional programming language) that transform a data
element from a typed, single input stream into a (possibly
empty) sequence of data records on a typed, single output
stream without any persistent state, i.e., the value of none of
the internal variables is preserved from one execution to the
next.

In order to construct a streaming network from boxes, S-Net
provides four network combinators. On the one side these are
static combinators, called serial composition (denoted as ..)
and parallel composition (denoted as |), to construct pipelines
and branches. They are static in the sense that only one
instance for each of their operands are created. On the other
side there are dynamic combinators that create replicas of their
operands on demand by means of serial replication and parallel
replication. Serial replication (called ?-combinator in S-Net)
allows to instantiate execution pipelines of dynamic lengths.
Data records in this pipeline are processed and forwarded to
the next stage until an exit condition is met. Parallel replication
(called !-combinator) creates a dynamic number of instances
of its operand and combines these in parallel. Data records
are processed by one of these instance; the concrete instance
is determined by a tag that a data record is expected to carry.
Note that above combinators, except for the serial composition,
do not preserve message order. But they have a special order-
preserving variant as well (denoted as ||, ??, and !!)

The routing decision in parallel combinator is non-
deterministic if a message type matches equally well to both
branches, i.e., it is left to the concrete implementation to decide
the routing. Our monitoring framework is especially targeted
to capture such non-deterministic behaviour.

Constructed networks are, just as boxes, SISO entities.
Therefore, if a box or network requires data from several
records as input, these records have to be synchronised,
i.e. merged, first. S-Net provides a primitive for this, called
synchro-cell. A synchro-cell is parameterised over the type of
records that it is supposed to merge. As soon as it receives
records of all matching types, it releases a single combination
of these records.

B. LPEL - A User-mode Microkernel for the Coordination
Language S-Net

The Light-Weight Parallel Execution Layer (LPEL) [13]
is an execution layer designed for S-Net to give control on
mapping and scheduling. LPEL adopts a user-level threading
scheme providing the necessary threading and communication
mechanisms in the user-space. It builds upon the services
provided by the operating system or virtual hardware, such as

3

kernel-level threading, context switching in user-space, atomic
instructions and timestamping.

On LPEL, each S-Net runtime component is mapped onto
a user-level thread, called a task. Tasks communicate with
each other via streams. Each stream is a uni-directional
communication channel between two tasks and modelled as
a bounded FIFO buffer.

Tasks are distributed on workers, each of which represents
for a computation element. Task distribution happens upon
task creation according to the task allocation strategy. Each
worker manages its own set of assigned tasks and facilitates a
worker-local scheduling policy. The scheduling policy deter-
mines a task with a ready state to be dispatched next. The state
of a task changes according to the availability of the input and
output streams. Reading from an empty stream or writing to
a full stream causes the task to be blocked. Likewise, reading
from a full stream or writing to an empty stream can unblock
the task on the other side of the stream.

C. Implementation of the Monitoring Framework for LPEL
and S-Net

1) Mapping and Scheduling Activities: Since LPEL has its
own mapper, it allows to instrument the mapper to obtain
information. The MMO is implemented as a hook inside the
LPEL mapper and is activated when a task is assigned to a
worker. The MMO records the task identification, the task
name and the worker it is assigned for. The task identification
is a sequential number while the task name describes the
runtime position of the task in the network. This feature
helps to correlate tasks to the network components. Similarly,
SCMO is attached to the LPEL scheduler to catch scheduling
events. In LPEL, there are five scheduling events: task-created,
task-dispatched, task-blocked-by-input, task-blocked-by-output
and task-destroyed. For each of these events, the SCMO
records the event type, task identification and event timestamp.

2) Waiting Relations: Each task in S-Net is equipped with a
TMO to catch task events such as message-read and message-
written events. When each of these events happens, the TMO
records the time and the identification of the processed mes-
sage. Similarly, each stream is instrumented by an SMO to
memorises the reader task and writer task of the stream. The
stream state is used to determine the waiting relation but is
necessary only when either the reader task or the writer task
is blocked. The SMO therefore does not continuously look up
the stream state but only when the reader task or writer task
is blocked. For the performance measurement in the future,
the SMO also records the number of messages read from or
written to the stream during each period of task execution.

3) Message Execution Traces: The MIG is implemented
in the message manager of the S-Net runtime system. The
MIG generates message identifications, each of which has
two parts: the identification of the computational element
where the message is produced; and a message index within
the computational element. The first part is different for
each computational element. The second part is a sequential
and unique number for each message produced within a

computational element. The combination of these two parts
forms the uniqueness of message identifications. As presented
in Section III-B, the parent-child relations can be determined
by the presence of parents’ identifications in each message.
However, it is not necessary for LPEL and S-Net. An S-Net
component is compiled into one LPEL task whose execution
contains multiple execution of the S-Net component (as shown
in Figure 3). Since S-Net components do not have persistent
state, during the task execution, all the S-Net component
executions are independent and separated from each other.
This characteristics of S-Net and LPEL helps to determine the
parent-child relations between messages. Within a execution
of an S-Net component, all the input messages are the parents
of all the output messages. In the case where no input message
is required, output messages will have no parents. Messages
coming from external sources do not have parents, too.

LPEL$Task$Execu-on$

Message$Read$$
Events$

Message$Read$$
Events$

Message$Wri9en$
$Events$

Message$Wri9en$
$Events$

S;Net$Component$
$Execu-on$

Fig. 3. S-Net component executions in a LPEL task execution

4) Extra Information: For each worker’s execution, the
monitoring framework recorded sequential executions of tasks
allocated to it. Execution periods of each task are marked
between either task-created or task-dispatched and either task-
blocked-by-input or task-blocked-by-output or task-destroyed
events. Theoretically, unmarked time periods are the wait-
ing time of the worker. However, in practice these periods
might also include the time that the worker is busy with
non-functional tasks such as scheduling and timestamping.
To distinguish these kinds of time periods, each worker is
equipped with a Worker Monitoring Object (WMO) to capture
the worker events. There are four worker events: worker-
started, worker-waited, worker-resumed and worker-ended.
Based on these events, the waiting periods of a worker are
marked between worker-waited and worker-resumed events.
Non-functional tasks are therefore executed during unmarked
intervals, also called unaccounted time.

5) Information Storage: All the monitoring information is
written to files. Since all tasks in one worker have to be
executed sequentially, a worker has one log file shared by its
WMO and the TMOs of all its tasks. To reduce the overhead,
TMOs write only entries for three events: task-blocked-by-
input, task-blocked-by-output, and task-destroyed. The task-

4

Application #MSE #Message #Stream
ANT 2.6 · 106 1.15 · 106 10 · 103

DES 2.1 · 106 470 · 103 62
MC 38 · 106 19.3 · 106 5 · 106

RT 22 · 103 23 · 103 100

TABLE I
APPLICATION PROPERTIES

created event is combined within the entry of the task-
destroyed event. task-dispatched, message-read and message-
written events are combined with either task-blocked-by-input
or task-blocked-by-output or task-destroyed events depending
on which one happens next. Similarly, the WMOs write the
time for every worker event except for worker-waited events.
Instead WMOs write the waiting time for each the worker-
resumed event.

6) Operation Modes: For the flexibility, the implementation
supports two modes: monitoring and low overhead. In the
former mode, all monitoring information are collected and
printed to log files. In the later one, no information is collected
and this allows the program to be executed with the lowest
overhead.

V. EVALUATION OF MONITORING OVERHEAD

The monitoring framework instruments LPEL and the S-Net
runtime system by placing some controls to collect monitoring
information. This causes some overhead compared to the
original LPEL even no information is collected. We do some
experiments to measure the overhead in terms of the execution
time and the size of log files. In our experiments, we measure
the maximum overhead by using in the monitoring mode,
and the minimum overhead with the low overhead one. The
minimum overhead is caused by monitoring controls without
collecting any information while the maximum one includes
the execution of monitoring controls, information collecting
and information writing.

The overhead is caused by the WMOs, MMO and SCMO,
MIG, TMOs, STMOs. Basically, the overhead of WMOs,
SCMO and MMO are affected by the number of mapping and
scheduling events while STMOs’ overhead correlates to the
number of streams. MIG and TMOs deal with messages and
therefore their overhead is affected by the amount of messages.

Based on the default mapping and scheduling policies of
LPEL [13], we do experiments on different applications with
varied number of mapping and scheduling events (MSE),
number of messages, and number of streams as in Table I.
The experiment is performed on four applications as follows.

• ANT is a solver for combinatorial optimisation problems
based on the behaviour of ants [5]. Several ants itera-
tively construct solutions to a given problem and leave a
pheromone trail behind. Following ants use these trails as
guide and base their decisions on it, refining previously
found good solutions. Concurrency may be exploited in
space, by means of parallel solver instances, and in time,
by overlapping the execution of multiple stages of the

Application LPELmon0 LPELmon1

time overhead [%] time overhead [%] log size [MB]
ANT 0.05 3.45 132
DES 0.54 3.90 88
MC -0.44 23.14 1800
RT -1.35 -0.17 1

LPELmon0 . . . monitoring built-in, no output
LPELmon1 . . . monitoring built-in, with monitoring output

TABLE II
THE MONITORING OVERHEAD

pipeline. In this experiment, the application computes a
schedule for 1000 jobs using 45 parallel ants that repeat
the solver step 1000 times.

• MC is an application to calculate option prices using
Monte Carlo method [3]. The experiment is performed
with 1 million price paths.

• DES is an implements the DES cipher [4]. In the exper-
iment, 500KB of data is encrypted.

• RT implements a distributed solver for ray-tracing
(see [12] for detail). In the experiment, the 100 scenes
are dynamically allocated to one of the four solvers with
automatically balancing the load.

All the applications are run on a 48-core AMD machine
with 800 MHz, 512 MB cache for each core and 256 GB of
memory. The time and space overhead is shown in Table II.
The space overhead correlates to the number of monitored
events while the time overhead does not. This can be explained
by the fact that scheduling events and task events does not
happen equally on workers, i.e. monitored events on one
worker can be far more than on another. The overall time
overhead is the maximum of the unequal overhead on each
worker, and therefore does not scaled on the number of
monitored events.

When the overhead is very low, there appears negative value
in case the MC and RT applications. This timing anomaly can
explained by the fact that with the performance increase of
components the schedule can change, which then can reduce
overall performance, similar to timing anomalies inside a
processor [16].

The maximum time overhead does not correlate to the
size of the log files because the file I/O is performed asyn-
chronously supported by the hardware. For this reason, the
maximum time overhead is quite small for relatively long
running application. For the option pricing application, the
overhead is quite large (23.14%) because the network is
unfolded proportional to the input value which is very large
in this case (106). While unfolding the network, the runtime
system create numerous new tasks which correspond to a large
number of monitored events. That increases significantly the
amount of information needed to write to files. However, the
execution time of the application is small compared to the
amount of data and therefore it cannot take the advantage of
the asynchronous I/O operations.

5

VI. APPLICATIONS OF THE MONITORING FRAMEWORK

A. Visualisation of Resource Utilisation

In this section, we present an approach to visualise the CPU
utilisation of the application. Basically, the CPU utilisation on
each computational element is obtained by extracting moni-
toring information from tasks mapped on the corresponding
worker. We created a tool which reads the log files and
generates an image to exhibit the resource utilisation of the
application.

Time Line

Worker 0 Worker 1 Worker 2 Worker 3

Waiting TimeUnaccounted Time

Task DispatchInput Message Output Message

Fig. 4. Screenshot: Visualisation of CPU utilisation of the MC application
on a 4-core machine

The CPU utilisation of the application is shown in two
aspects: space and time (as in Figure 4). The space view
is displayed horizontally: each worker’s execution are drawn
in one column. The operations inside of a worker are drawn
vertically scaling to the execution time. The worker’s opera-
tions are composed by multiple task execution periods. Each
task execution period is determined by either a task-created
or task-dispatched event and either the task-blocked-by-input
or task-blocked-by-output or task-destroyed event following.
Each task execution period is annotated with the name of
the task, the execution time and the task state by the end of
the execution (task-blocked-by-input, task-blocked-by-output
or task-ended). Thanks to the task events, processed messages
are also displayed during each task execution period. This way
of displaying shows an overview of the resource utilisation of
each worker execution, each task execution and each message
processing.

During the worker’s execution, there is some unaccounted
time in which the worker is performing non-functional tasks
such as scheduling and timestamping. The unaccounted time
is shown with the white colour while the waiting time is drawn

with grey colour. For convenience, different kinds of tasks are
also displayed with different colours.

B. Performance Metrics Calculation

This section shows the formulae to calculate the perfor-
mance metrics in term of throughput, latency and jitter from
the monitoring information.

Throughput. The throughput of an application equals to
the number of input messages over the execution time of
the application. The formula to calculate the throughput is
shown in Equation 1, with NInput Message is the number of
input messages and MAXworker(Execution T ime) is the
maximum execution time of workers in the application. The
execution time of a worker is measured from the worker-
started event to the worker-ended event. The number of input
messages can be provided by the user. In case of unspecified,
the number of input messages is obtained by counting the
number of messages which are not produced by any task.

T =
NInput Message

MAXworker(Execution T ime)
(1)

Latency is calculated for each input message I as sum
of tasks’ execution time on itself and its descendants
Descendant(I) (as shown in Equation 2). The descendants
of an input message can be derived in the similar way of
deriving parent messages (presented in Section IV-C).

L(I) =
∑

Di∈Descendant(I)

Execution T ime(Di) (2)

Jitter is easily obtained by calculating the standard devia-
tion of the latency of all input messages L̄ as in Equation 3.

J = σ(L̄) (3)

C. Profile-based Performance Optimisation

An Optimisation Experiment.

vcall ::
N è
V

[| sync |] ::
V!
Sum,<cnt>,<M>

acc ::
V,Sum,<cnt>,<M> è
V,<cnt>,<M>!
|CALL

**{CALL}

png ::
<M> è
Sum,<cnt>,<M>!
| N!

Fig. 5. The Monte Carlo Option Pricing network with default mapping

We do a simple experiment to demonstrate the possibility to
deduce performance problems from the monitoring informa-
tion. The goal is to predict the mapping problem by the number
of waiting events and total waiting time of each worker. In this
experiment, the MC application (described in Section V) is run
with 50 price paths on a 4-core machine in the monitoring
mode. From the collected monitoring information, we have
the number of waiting events (WE) and total of waiting time
(WT) for each worker shown in Table III. The WE numbers
are quite large in sense of only 50 price paths. Also, these

6

Worker 0 1 2 3
WE 45 128 105 152
WT [ms] 10.9 22.0 26.4 22.6

TABLE III
WORKER WAITING EVENTS AND WAITING TIME OF THE MC APPLICATION

numbers of worker 1, 2 and 3 are extremely high compared
to those of work 0. Thus, it is likely that dependent tasks are
spread widely on workers. The mapping log is used to confirm
this prediction. From the original implementation shown in
Figure 5, we see that all the tasks inside the serial replication
are dependent on each other but are mapped in the manner
of Round-Robin, i.e. spreading equally on 4 workers. Also,
the log information shows that the execution time of all these
tasks is quite small. That means the communication between
workers is likely higher than the profit of the parallelism.

vcall ::
N è
V

[| sync |] ::
V!
Sum,<cnt>,<M>

acc ::
V,Sum,<cnt>,<M> è
V,<cnt>,<M>!
|CALL

**{CALL}

png ::
<M> è
Sum,<cnt>,<M>!
| N!

@1

@2

@3

Fig. 6. The Monte Carlo Option Pricing network with explicit mapping

One way to improve the performance is to map all the tasks
inside the serial replication to one worker as in Figure 6.
Since LPEL supports manual mapping, we can measure to
verify our reasoning. The result is shown in Figure 7. The
first column is the execution time on original LPEL without
monitoring framework. The second is the execution time with
our monitoring framework and default mapping while the
third shows the execution time with optimised mapping. The
optimised mapping improves the execution time by 188%.
Even compared with the original LPEL, the application is
speed up to 183%.

0"

50"

100"

150"

200"

250"

Original"LPEL"with"default"
mapping"

Monitoring"with"default"
mapping"

Monitoring"with"improved"
mapping"

Fig. 7. Execution time (in seconds) of the MC application with different
mappings

Profiled-based Optimisation Approach. With the im-
provement of 188%, the above experiment leads us to a
promising profiled-based performance optimisation approach.

In this approach, the monitoring framework is used to collect
the information about the non-deterministic behaviour of the
application and the execution framework. This information
then is analyse to detect performance problems. We are
currently working an automatic tool to analyse the monitoring
information and adapt the application to obtain better perfor-
mance.

VII. RELATED WORK

To deal with performance measurement and analysis in
parallel programming, there is a significant number of prior
work with three main approaches.

First, most of the work uses code instrumentation, for
example Paradyn [11] and Pablo [14], to provide performance
metrics focus at the application level, for example blocking
time, message rates, I/O rates or number of active processors
of the application.

The second approach is hardware instrumentation, which
provides performance measurement in terms of hardware
properties such as catch misses and TBL misses. Typical
frameworks of this approach include VTune from Intel [9]
and CodeAnalysist [1] from AMD.

The third approach is to operate on the operating system
level, as also done in ours. One example of this approach
is KernInst [15] which allows dynamic instrumentation in the
kernel’s code space to measure performance metrics of a spec-
ified function. KernInst supports two metrics: the number of
procedure calls made by a specified function and the number of
kernel threads executed within the specified function. VTune
does support operating system instrumentation focusing on the
process events such as semaphores or mutexes. Nevertheless,
to our best knowledge, none of these framework capture
the mapping events, scheduling events and waiting relations
which deeply affect the performance. Another factor that
differentiates our work from others is that we focus on stream-
processing in which the communication and synchronisation
are reflected on streams.

The work on debugging for the stream language SPADE [6]
focuses on stream processing and also uses instrumentations
of the operating-system. This framework also provides stream-
related performance metrics such as throughput and latency.
Compared to ours, it also does not focus on the resource
utilisation which has strong effects on the performance.

VIII. CONCLUSION

The support of monitoring is essential for achieving high
system utilisation of parallel execution platforms. In this paper
we presented a monitoring framework that is geared towards
performance monitoring of stream-processing networks. This
monitoring framework extracts information from both, the
runtime system of the stream-processing network, for which
we used the coordination language S-Net, as well as from
the underlying operating system. The extracted information
provides the trace of non-deterministic behaviours of the
application at both levels. We have shown how the monitoring
information can be used to determine performance metrics like

7

throughput, latency, or jitter and how to use it for performance
analysis.

The monitoring approach is purely software-based, but
avoids the need for instrumenting the application code. Though
we experienced one measurement with a monitoring overhead
of about 23%, the experimentation with several applications
shows that the monitoring overhead is typically quite low, in
the range of a few percent or less.

For the future work we plan to automate the performance
optimisation approach presented in Section VI-C.

REFERENCES

[1] AMD. AMD CodeAnalyst Performance Analyzer for Linux. http://
developer.amd.com/tools/CodeAnalyst.

[2] E. A. Ashcroft and W. W. Wadge. Lucid, a nonprocedural language
with iteration. Commun. ACM, 20:519–526, 1977.

[3] F. Black and M. Scholes. The Pricing of Options and Corporate
Liabilities. The Journal of Political Economy, 81(3):637–654, 1973.

[4] DES. Data Encryption Standard. In FIPS PUB 46-3, Federal Information
Processing Standards Publication, 1977.

[5] M. Dorigo and T. Stützle. Ant Colony Optimization. Bradford Book,
2004.

[6] B. Gedik, H. Andrade, A. Frenkiel, W. De Pauw, M. Pfeifer, P. Allen,
N. Cohen, and K.-L. Wu. Tools and strategies for debugging distributed
stream processing applications. Softw. Pract. Exper., 39:1347–1376,
November 2009.

[7] C. Grelck, S. Scholz, and A. Shafarenko. Asynchronous Stream
Processing with S-Net. International Journal of Parallel Programming,
38(1):38–67, 2010.

[8] C. Grelck, S.-B. Scholz, and A. Shafarenko. A Gentle Introduction
to S-Net: Typed Stream Processing and Declarative Coordination of
Asynchronous Components. Parallel Processing Letters, 18(2):221–237,
2008.

[9] Intel. VTune Amplifier XE. http://software.intel.com/en-us/articles/
intel-vtune-amplifier-xe/.

[10] G. Kahn. The semantics of a simple language for parallel program-
ming. In J. L. Rosenfeld, editor, Proc. IFIP Congress on Information
Processing, Stockholm, Sweden, Aug. 1974.

[11] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth,
R. B. Irvin, K. L. Karavanic, K. Kunchithapadam, and T. Newhall. The
paradyn parallel performance measurement tool. Computer, 28:37–46,
November 1995.

[12] F. Penczek, S. Herhut, S.-B. Scholz, A. Shafarenko, J. Yang, C.-Y. Chen,
N. Bagherzadeh, and C. Grelck. Message Driven Programming with S-
Net: Methodology and Performance. Parallel Processing Workshops,
International Conference on, 0:405–412, 2010.

[13] D. Prokesch. A light-weight parallel execution layer for shared-memory
stream processing. Master’s thesis, Technische Universität Wien, Vienna,
Austria, Feb. 2010.

[14] D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields, B. W.
Schwartz, and L. F. Tavera. Scalable performance analysis: The pablo
performance analysis environment. In Proc. the Scalable parallel
libraries conference, pages 104–113. IEEE Computer Society, 1993.

[15] A. Tamches and B. P. Miller. Using dynamic kernel instrumentation
for kernel and application tuning. Int. J. High Perform. Comput. Appl.,
13:263–276, August 1999.

[16] I. Wenzel, R. Kirner, P. Puschner, and B. Rieder. Principles of
timing anomalies in superscalar processors. In Proc. 5th International
Conference of Quality Software, Melbourne, Australia, Sep. 2005.

8

