
Non-Random Weight Dilution in High Performance
Associative Memories

S.P Turvey, S.P.Hunt, N.Davey, R.J.Frank
Department of Computer Science,

University of Hertfordshire,
College Lane, Hatfield, AL10 9AB. United Kingdom

email: {s.p.turvey, s.p.hunt, n.davey, r.j.frank}@herts.ac.uk

Abstract  The consequences of two techniques for symmetrically diluting the weights of the standard
Hopfield architecture associative memory model, trained using a non-Hebbian learning rule, are
examined.  This paper reports experimental investigations into the effect of dilution on factors such
as: pattern stability and attractor performance.  It is concluded that these networks maintain a
reasonable level of performance at fairly high dilution rates.
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1 Introduction
The associative memories examined in this paper are based around the standard Hopfield architecture
[10].  It has been known for some time [1] that networks with performance superior to that of the
original model can be built.  Improved performance may be achieved by using an alternative learning
rule: either a rule that finds an approximation to the projection weight matrix, or one that implements
perceptron-style learning.  (See [6,7,14] for a comparison of performance of different models).

Weight dilution is a technique for reducing the degree of connectivity within a network.  Connections
are removed after training has taken place (post-training dilution).  For one-shot Hebbian learning, as
employed in the ‘standard’ Hopfield model, it is known [13] that capacity drops linearly with the
fraction of connections removed.  It has even been suggested that an associative memory may be
trained by starting with a fully connected network with random fixed weights and systematically
removing a fraction of the connections [12].

1 Models Examined
In each experiment we train a network of N units with a set of N–ary, bipolar (+1/-1) training vectors,

{x
p
}.  The N by N weight matrix is denoted by W, and the state (output) of the i’th unit is denoted by

Si.  During recall the net input, or local field, of a unit, is given by:
hi = wijS j

j ≠i
Â

where wij is the weight on the connection from unit j to unit i.  The next state of a unit is derived from
its local field and its current state:

† 

¢ S i =

1 if hi > q i
-1 if hi < q i
Si if hi = qi
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where the threshold, qi , is normally taken as zero.  Unit states may be updated synchronously or
asynchronously.  Here we use asynchronous, random order updates. These network dynamics and a
symmetric weight matrix guarantee simple point attractors in the network’s state space.  Each of
theses point attractors is a stable state of the network.

A training vector, x, will be a stable state of the network if the aligned local fields, hixi are non-
negative for all i (assuming all qi  are zero).  Each training vector that is a stable state is known as a
fundamental memory of the trained network.  The capacity of a network is the maximum number of
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fundamental memories it can store.  The loading, a, on a network is calculated by dividing the number
of vectors in the training set by the number of units in the network, N.

1.1 Learning Rules
Two learning rules have been employed in this work.  The first, described by Blatt & Vergini [3],
approximates the projection matrix generated using the pseudo-inverse rule (see [8] for details).  The
second is Gardner’s perceptron-like symmetric local learning rule [6,9].

1.1.1 Blatt & Vergini’s Rule

Blatt & Vergini [3] present a learning rule which takes the form of an iterative method for
approximating the projection matrix.  The training algorithm is guaranteed to find an appropriate
weight matrix within a finite number of presentations of each pattern if such a matrix exists.

The minimum number of presentations of the training set to perform, P, is calculated as being the
smallest integer conforming to:
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where k and T are real valued constants such that 1 < k ≤ 4 and 0 ≤ T  < 1.  k is referred to as the
memory coefficient of the network; the larger it is, the fewer steps are required to train the network.  In
this work, k=4 and T=0.5 for all networks trained by this rule.

The algorithm is as follows:

BEGINNING WITH A ZERO WEIGHT MATRIX

FOR EACH PATTERN IN TURN

APPLY THE PATTERN ONTO THE NETWORK
FOR m := 1 TO P

FOR EACH PROCESSING ELEMENT IN TURN

UPDATE INCOMING WEIGHTS ACCORDING TO:   Dwij =
k m-1

N
Ê 

Ë 
Á 

ˆ 

¯ 
˜ x i

p - hi( ) x j
p - hj( )

REMOVE ALL SELF-CONNECTIONS

Note that patterns are added incrementally without corrupting patterns learnt previously.

1.1.1 Symmetric Local Learning

Gardner [9] pointed out that an iterative perceptron-like training rule could be made to produce
symmetric weights by simply updating both wij and wji when either changes.  Gardner also showed that
such algorithms would find a symmetric weight matrix, if one existed, for a particular training set.

The symmetric local learning rule is given by:

BEGIN WITH A ZERO WEIGHT MATRIX

REPEAT UNTIL ALL LOCAL FIELDS ARE CORRECT

SET THE STATE OF NETWORK TO ONE OF THE  xP

FOR EACH UNIT, i, IN TURN

IF  hi
pxi

p  IS LESS THAN T THEN

   UPDATE WEIGHTS ON CONNECTIONS INTO AND OUT OF UNIT i ACCORDING  TO:

      Dwij = Dw ji =
xi

px j
p

N
OTHERWISE DO NOTHING

This is a symmetric version of the Perceptron learning rule with a fixed margin of T and a learning rate
of 1/N.  We refer to T as the learning threshold for the network.  Since a set of training vectors is
stable when the aligned local fields of those vectors have all been driven to be non-negative, we could
set T to zero.  However, based on previous results [6], we choose T=10 in order to achieve a better
attractor performance for the networks.
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1.1 Training Sets
Throughout this work we employ training sets made up of psdeudo-random training vectors.  An
uncorrelated training set is one in which the patterns are completely random.  Correlation can be
increased by varying the probability that a given bit in a training pattern is +1 (or –1).  We refer to the
probability of any bit being +1 in each training vector as the bias, b, on the training set. So: "i,p •
prob (xi

p = +1) = b,  Thus, a bias of 0.5 corresponds to an uncorrelated training set and a bias of 1
corresponds to a completely correlated one (as does a bias of 0).

1.1 Weight Dilution
We present two approaches to weight dilution.  The first involves the removal of a proportion of the
connections chosen at random, the second involves selecting the connections to be removed based
upon some heuristic by which it is hoped that the most efficacious connections are retained [2,4,5].

1.1.1 Random Dilution

Pairs of units are chosen at random and, if the units are connected, both connections between them are
removed, until the correct proportion of connections has been removed from the network.  By
removing both connections between units we ensure that the weight matrix remains symmetrical.

1.1.1 Informed Dilution

The connection pair with the weight of least magnitude is identified, and both connections in the pair
are removed from the network.  This process is repeated until the required number of connections has
been eliminated.

1 Analysing Performance
A series of experiments were carried out on networks of size N=100 using training sets of bias 0.5 and
0.9 and at a fixed loading of a=0.50  (i.e. 50 training patterns).  Networks were trained using either
Blatt & Vergini’s rule, or the Symmetric Local Learning rule, as described in Section 2.1.  The
connections in the networks were then diluted according to the methods described in Section 2.3.  Two
aspects of  network performance of were measured: pattern stability and attractor performance.

1.1 Measuring Pattern Stability
The proportion of fundamental memories that are stable states of the network after dilution provides
an indicator of the robustness of a particular model.  In this work all networks are trained to below
maximum capacity, so all training patterns are fundamental memories prior to dilution.  Figures 1 to 4
show the proportion of training patterns that are stable at various dilutions.

1.1 Measuring Attractor Performance
For an associative memory model to be effective, the training patterns should not only be stable states
of the network, but should also act as attractors in the network’s state space.

We use, R, the normalized mean radius of the basins of attraction [11], as a measure of attractor
performance.  It is defined as:

R =
1- m0

1 - m1

where m0 is the minimum overlap an initial state must have with a fundamental memory for the
network to converge on that fundamental memory, and m1 is the largest overlap of the initial state with
the rest of the fundamental memories.  The angled braces denote an average over sets of training
patterns. Details of the algorithm used can be found in [11].
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1 Results

1.1 Pattern Stability
In this section we present the results measuring the stability of the trained patterns while varying the
degree of weight dilution within the network.

1.1.1 Networks trained with Blatt & Vergini’s rule

  
Figures 1 & 2: Pattern stability in networks trained with Blatt & Vergini’s rule.  a=0.50 (N=100).
Figure 1 (left) shows performance of networks trained with uncorrelated patterns (b=0.5).  Figure 2 (right) shows
performance of networks trained with correlated patterns (b=0.9). In each case the upper line represents informed dilution.

1.1.1 Networks trained with the Symmetric Local Learning rule

  
Figures 3 & 4: Pattern stability in networks trained with Symmetric Local Learning.  N=100,  a=0.50.
Figure 3 (left) shows performance of networks trained with uncorrelated patterns (b=0.5).  Figure 4 (right) shows
performance of networks trained with correlated patterns (b=0.9).  In each case the upper line represents informed dilution.

1.1 Attractor Performance
In this section we present the results measuring the attractor performance of the networks while
varying the degree of weight dilution.

1.1.1 Networks trained with Blatt & Vergini’s rule

  
Figures 5 & 6: Attractor performance in networks trained with Blatt & Vergini’s rule.  N=100, a=0.50.
Figure 5 (left) shows performance of networks trained with uncorrelated patterns (b=0.5).  Figure 6 (right) shows
performance of networks trained with correlated patterns (b=0.9).  In each case the upper line represents informed dilution.
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1.1.1 Networks trained with the Symmetric Local Learning rule

  
Figures 7 & 8: Attractor performance in networks trained with Symmetric Local Learning.  N=100, a=0.50.
Figure 7 (left) shows performance of networks trained with uncorrelated patterns (b=0.5).  Figure 8 (right) shows
performance of networks trained with correlated patterns (b=0.9).  In each case the upper line represents informed dilution.

1 Discussion

1.1 Observations on Pattern Stability
There are four key observations that can be made from the results of the pattern stability tests:

1) Informed dilution gives a clear and significant improvement in pattern stability over simple random
dilution.  These improvements take the form of an increase in the level of dilution at which the
networks retain memory of all the trained patterns.

2) It is possible to remove around 50-60% of the networks’ connections without a serious decline in
the stability of the trained patterns.

3) The bias in the training set makes very little difference to the pattern stability.  All four plots
describe remarkably similar behaviour.

4) The learning rule used appears to make little difference to the effect of dilution on pattern stability.

1.1 Observations on Attractor Performance
The pattern of the attractor performance results is similar to that of pattern stability.  Specifically:

1) Informed dilution performs significantly better than simple random dilution.

2) It is possible to remove up to approximately 40% of the networks’ connectivity without serious
damage to the attractor performance of the network.

3) The bias in the training set makes very little difference to the attractor performance.

4) The learning rule used appears to make little difference to the effect of dilution on attractor
performance.

1.1 Conclusions
This paper reports two important results:

1) Informed dilution is markedly better than random dilution.

2) Informed dilution demonstrates that a large number of connections are redundant in networks of
this type and at these loadings.

As the loading of these networks is a=0.5 they are below their maximum storage capacity; it may be
of interest to repeat these experiments at higher loadings where the networks may be under greater
stress with regard their maximum capacity.

It is interesting to note that, for both performance measures, failure, when it occurs, proceeds with
great rapidity.  There is a sharp decrease in both proportion of stable patterns and attractor
performance once the networks begin to lose their stability and ability to act as attractors.  In this
respect, our results differ from those of Sompolinksy, whose work on randomly diluting the traditional
Hopfield network [13] resulted in a linear decline in pattern stability.
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The system of informed dilution we have presented is very simple; no re-training of the network is
required.  It is possible that in biological systems complex strategies may be similarly unnecessary.
Chechik et al [5] have noted that during brain maturation there is a reduction in connectivity that is
expensive to maintain from an energy perspective.  It is interesting that our artificial system also
demonstrates levels of redundancy in connectivity albeit in a much simpler model.

Informed dilution, as implemented in this work, is functionally equivalent to the system of annealed
dilution proposed by Bouten et al. [4] in which the dilution is performed as part of the learning
process.  The results presented here concur with their prediction that 60% dilution is the approximate
limit beyond which network capacity is compromised.

The work presented here concentrates on the dilution of fully connected networks, whereas our current
work focuses on networks that have been created as sparsely-connected tabula rasa.  Training these
networks has presented new challenges and performance characteristics.  We expect to be able to
present these new findings in the near future.
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