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Abstract

Nervous systems of biological organisms use temporal pat-
terns of spikes to encode sensory input, but the mechanisms
that underlie the recognition of such patterns are unclear.
In the present work, we explore how networks of spiking
neurons can be evolved to recognize temporal input patterns
without being able to adjust signal conduction delays. We
evolve the networks with GReaNs, an artificial life platform
that encodes the topology of the network (and the weights of
connections) in a fashion inspired by the encoding of gene
regulatory networks in biological genomes. The number of
computational nodes or connections is not limited in GRe-
aNs, but here we limit the size of the networks to analyze
the functioning of the networks and the effect of network size
on the evolvability of robustness to noise. Our results show
that even very small networks of spiking neurons can perform
temporal pattern recognition in the presence of input noise.

Introduction
It is widely accepted that the brain employs temporal pat-
terns of spikes to encode sensory input (for review, see
Bialek et al., 1991; Gerstner et al., 1996; Laurent, 1996;
Rieke et al., 1997; deCharms and Zador, 2000; Ahissar and
Arieli, 2001; Huxter et al., 2003). Temporal coding forms
the basis of sensory processing across different modalities,
including hearing (Joris and Yin, 2007), vision (Thorpe
et al., 1996), and olfaction (Isaacson, 2010). Nonetheless—
in spite of the ubiquity of temporal coding in neuronal
systems—the mechanisms that underlie the generation and
recognition of temporal spike patterns are unclear.

It has been recognized that temporal pattern recognition
can be performed by a system that contains an array of tuned
delay lines and a coincidence detection mechanism (for ex-
ample, Hopfield, 1995). Such a system, however, requires
the existence of a developmental process or a learning algo-
rithm that generates the appropriate delays, either by pick-
ing them from a spectrum of existing delays, or by adjust-
ing them directly (Steuber and Willshaw, 1999; Steuber and
De Schutter, 2002; Steuber and Willshaw, 2004).

In the present work, we evolve spiking neuron networks
to recognize temporal input patterns without adjusting sig-
nal conduction delays. To evolve the networks, we modified

the GReaNs (the name stands for Gene Regulatory evolving
artificial Networks; Wróbel and Joachimczak, 2011) artifi-
cial life platform to allow for spiking nodes (Wróbel et al.,
2012a). GReaNs has been used previously to evolve gene
regulatory networks for tasks including controlling multi-
cellular development in three dimensions (e.g., Joachimczak
and Wróbel, 2008, 2012a,b), processing signals (Joachim-
czak and Wróbel, 2010b), and controlling animats (Joachim-
czak and Wróbel, 2010a; Wróbel et al., 2012b).

The next section briefly describes how the spiking neural
networks (SNNs) are encoded in an evolving linear genome
in GReaNs. We then follow with the description of the task
for which the networks were evolved—recognition of a pat-
tern of spikes, with varying levels of noise affecting spike
times. We end by discussing the results and the way in which
the networks perform the computation.

Evolving spiking neural networks encoded in a
linear genome

The encoding of spiking neural networks (SNNs) in GRe-
aNs is inspired by the encoding of gene regulatory networks
in biological linear genomes (Wróbel et al., 2012a). Linear
genomes are lists of genetic elements (Fig. 1), in our case
each is a vector of 4 numbers that can mutate during evolu-
tion (type, sign, coordinate 1, coordinate 2). There are two
main types of elements, which we call: P and G. P elements
correspond to post-synaptic terminals (and are inspired by
promoters in biological genomes). G elements correspond
to pre-synaptic terminals (and are inspired by ggenes). A
chain of P elements followed by a chain of G elements en-
codes a node in the network (one spiking neuron). Each
node must have at least one P element followed by at least
one G element.

Synaptic weights depend on the position in an abstract
affinity space of points specified by elements’ coordinates.
If a G element and a P element specify points that overlap,
the synaptic connection has maximum weight. The larger
the distance, the lower the weight (using the inverse ex-
ponential function), provided the distance is below a pre-
specified threshold (to prevent full connectivity). The ele-
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ments’ sign defines if the synapse is excitatory (if the signs
are the same) or inhibitory (if they are different).

In addition to P and G elements, I and O elements in the
genome encode inputs and outputs, respectively, working as
clamped pre- and post-synaptic terminals. The connectivity
between I and P elements, and G and O elements is speci-
fied as described above for the connections between G and
P. No other connections (or directions) are allowed. Impor-
tantly, the number of pre-synaptic and post-synaptic termi-
nals is not limited in GReaNs (neither for the network, nor
individual neurons). The number of neurons in the network
is also not limited in the model (but we have limited—and
varied—it in the experiments described in this paper).
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Figure 1: The structure of the genome in GReaNs. Each
genetic element (left part) has integer value for type (P, G,
I, or O), sign (1 or -1; the signs of two elements determine
if a synapse is inhibitory or excitatory), and the coordinates
(which determine the weights of the synapses). The genome
(right part) is a chain of genetic elements.

Genetic algorithm
The genome is evolved with a genetic algorithm, in which
genetic operators are applied on the level of the elements
(here: with probability 0.0005—change of type, probability
0.0005—change of sign, with probability 0.02—sampling
two random values from a Gaussian distribution centred at
0, and adding one value to each coordinate), and at the level
of the whole genome (here: adding a chain of random el-
ements, deleting a chain of elements, duplicating a chain
elsewhere; each of these operators is considered at each el-
ement in the parent genome, with probability 0.1, and then
the length of the chain is sampled from a logarithmic dis-
tribution with mean 10, and the site of duplication from a
uniform distribution).

The genetic algorithm is initialized with a population with
random genomes. In this paper, the population size was con-
stant throughout all evolutionary runs (300 genomes). All
elements in the initial populations had coordinates sampled
from a Gaussian distribution, and all the initial genomes in
each experiment encoded a network with five intraneurons,
encoded by the chains of P and G elements with the length
sampled from a Gaussian distribution (with mean = 1, and
standard deviation = 1; if the length smaller than 1 was sam-
pled, it was set to 1).

To calculate the fitness of the genomes (see below), the
performance of the network encoded by each genome is

tested. After selection (size two tournament), a new pop-
ulation is created, by applying the genetic operators de-
scribed above to the best genomes, plus recombination
(here: with probability 0.5 per genome, one-point cross-over
with a random genome from the parent population, sam-
pled uniformly). In the experiments described here, we used
elitism—the five best genomes were copied (when new gen-
erations were formed from the old) without applying any
genetic operators. Crossover and mutations were applied
to 100 genomes, and only mutations—to the remaining 195
genomes. All the evolutionary runs in this paper were halted
after 1000 generations.

Evolving networks of Leaky Integrate and Fire
neurons for temporal pattern recognition
In this paper, we use Leaky Integrate and Fire (LIF) (Dayan
and Abbott, 2005) neurons. GReaNs allows to use also
Adaptive Exponential (Gerstner and Brette, 2005) neurons
(Wróbel et al., 2012a), but they were not employed in the
experiments described here.

LIF is one of the simplest and most commonly used spik-
ing neural models. The rate of change of membrane poten-
tial is specified by the equation

V̇ =
gL(VR − V ) + gE(Erev,E − V ) + gI(Erev,I − V )

C
(1)

where V is the membrane potential, VR = -65.0 mV is the
resting potential, gL= 0.05 µS is the leak conductance, gE
is the conductance of the excitatory synapses, gI is the con-
ductance of the inhibitory synapses, Erev,E = 0 mV is the
reversal potential of the excitatory input, Erev,I = -70.0 mV
is the reversal potential of inhibitory input, and C = 1 nF is
the capacitance of the membrane.

When the postsynaptic potential of a neuron reaches the
threshold voltage (Vth), the neuron fires a spike and the
value of the membrane potential is changed to the reset volt-
age (Vreset).

In the GReaNs implementation of LIF neurons, the post-
synaptic conductance increases by a small value propor-
tional to the weight of the synapse when the pre-synaptic
neuron (or input) spikes, and then the conductance decays
exponentially:

ġ =
−g
τ

(2)

where τ = 5.0 ms, the decay time constant, is the same for
both the excitatory and inhibitory synaptic conductance.

In the genetic algorithm, we used the following error
function as the fitness measure (rewarding lower values):

ferr = 1−
min(Sdesired, αS1)− β

6∑
i=2

Si

Sdesired
(3)
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Si is the number of spikes generated by a network when it is
connected to the pattern number i during the period between
250 and 1000 ms, Sdesired is the desired number of spikes
to be generated by the network when it is connected with
the correct pattern (here: 250), while α and β are constant
fractions (here: α = 1, and β = 0.2).

In other words, the task for which the networks are
evolved is the recognition of the correct pattern, rewarded
by the the first term, min(Sdesired, αS1), in the numerator.
The correct pattern used in the experiments described here
comprised three spikes, each spike arriving from one imput:
one spike from input 1 at 50 ms, one from input 2 at 150 ms,
and one from input 3 at 250 ms. We will call this pattern 1-
2-3. Network activity in response to the other five patterns,
with the same spike timings, but a different order (for ex-
ample, 2-3-1, in which the first spike is from input 2), were

penalized by the second term, β
6∑

i=2

Si.

When evolving pattern recognition in the presence of
noise in the input, temporal noise was added to spike times
(by adding a temporal shift, sampled from the Gaussian dis-
tribution centered at zero, and with the standard deviation
10, 20, or 30 ms). We performed 10 independent evolu-
tionary runs for each setting (the size of the network, and
the level of noise; 160 runs in total). During evolution, the
networks were evaluated one time when they were evolved
without noise (with all the patterns, six simulations in to-
tal), or 100 times when they were evolved with noise (600
simulations in total)—and the ferr value was calculated as
the average of these 100 values. After the runs ended, the
champions were tested in the same fashion, to obtain the
performance of the best among the champions, the average
(among 10) and the standard deviation.

Results
To investigate the effect of network size on performance,
we studied the evolution of networks limiting the maxi-
mum number of neurons allowed. In GReaNs, there are no
constraints on the size of the genome, and thus the size of
the network (even though available computational resources
may restrict the feasible network size in practice). In the ex-
periments described here, we simply ignored the rest of the
genome after decoding the required number of nodes (intra-
neurons, inputs, and outputs).

For the simplest network, with only one neuron (Fig. 2),
there is only one possible topology, since the direct connec-
tion between inputs and output was not permitted. To detect
the 1-2-3 pattern, this single neuron needs to have a strong
excitatory connection to the output (so that the output will
start spiking when there is a spike at 50 ms in input 1), and
an excitatory recurrent connection from the intraneuron to
itself so that it continues spiking. We could not, however,
evolve networks with just one interneuron that would be ro-
bust to noise (Table 1)—for the reason that will become clear

after analyzing the behavior of robust networks with more
interneurons.

The networks evolved with the maximum number of two
interneurons can evolve robustness to noise (Table 2) and
their functioning can be analyzed in detail. Our analysis of
champion networks from 10 independent evolutionary runs
with the temporal noise of 10 ms allows us to classify them
into three categories:

Category 1 In 3 out of 10 champions, one interneuron (A)
acts as a detector of a spike in input 2; once this interneu-
ron starts firing at high frequency (because of a recurrent
connection), the second interneuron (B) goes to a plateau
state—the membrane potential is higher than the resting po-
tential, but still sub-threshold—interneuron B will start spik-
ing once a spike from input 3 arrives. Because of this plateau
state, the activation of the interneuron B does not depend on
the time between spikes in input 2 and input 3 (which allows
for the robustness to noise). Input 1 inhibits both interneu-
rons, so they remain silent with input patterns 2-3-1 or 2-1-3.
With 1-2-3, interneuron B starts spiking at 350 ms (100 ms
after the spike on input, at 250 ms), allowing for robustness
to noise on input 1.

Category 2 In 5 out of 10 champions, one interneuron (A)
starts spiking after the spike in input 1, and thanks to the
positive feedback loop, it keeps firing, putting the other in-
terneuron (B) in a plateau state. When the spike from in-
put 2 arrives, interneuron A starts firing at a higher rate,
putting interneuron B in a higher plateau state. Only a small
stimulus—a spike from input 3—is now required so that in-
terneuron B starts spiking, and thus also the output. Here
also the plateau state allows for robustness to noise—the
times between spikes in input 1 and 2, or 2 and 3 have no
effect on the pattern recognition.

Category 3 In 2 champions out of 10, one interneuron (A)
acts as a detector of the time interval between spikes in in-
put 1 and 2. If this interval is higher than the network was
evolved for, the pattern is not recognized. Otherwise, once
interneuron A puts the second interneuron in the plateau
state, any timing of the spike in input 3 is sufficient for cor-
rect pattern recognition. This means, however, that although
the networks in category 3 have zero error when tested with
10 ms noise (for which they were evolved), they are robust
to higher noise levels only on the timing of the spike in in-
put 3—in contrast to the networks in the categories 1 and
2, which are robust to higher noise levels on the timing of
spikes in all the three inputs.

Even though just two interneurons allow for robustness to
noise, allowing for more increases the performance (Tables
3, 4). Although these networks are too large to allow for
the analysis as detailed as above, their functioning depends,
similarly, on recurrent feedback loops that put some neurons
in a high firing rate, and others at sub-threshold plateaus, so
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Figure 2: The final SNN with three inputs (cyan) each with only one spike at the times: 50 ms, 150 ms, and 250 ms, respectively,
one interneuron (black), and one output (purple). The neurons are connected with both excitatory connections (green) and
inhibitory connections (red). Line thickness indicates total synaptic weight.

Figure 3: A champion SNN with two interneurons that belongs to category 1. The network has three inputs (cyan), which spike
(in the correct patttern) at times 50 ms, 150 ms, and 250 ms, respectively; two interneurons (black), and one output (purple).
The neurons are connected with both excitatory connections (green) and inhibitory connections (red). Line thickness indicates
total synaptic weight.
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Figure 4: A champion SNN with two interneurons that belongs to category 2. The network has three inputs (cyan), which spike
(in the correct patttern) at times 50 ms, 150 ms, and 250 ms, respectively; two interneurons (black), and one output (purple).
The neurons are connected with both excitatory connections (green) and inhibitory connections (red). Line thickness indicates
total synaptic weight.

Figure 5: A champion SNN with two interneurons that belongs to category 3. The network has three inputs (cyan), which spike
(in the correct patttern) at times 50 ms, 150 ms, and 250 ms, respectively; two interneurons (black), and one output (purple).
The neurons are connected with both excitatory connections (green) and inhibitory connections (red). Line thickness indicates
total synaptic weight.
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Table 1: Evolution of robustness to noise in temporal pattern recognition in LIF networks with one intraneuron. The networks
evolved with various levels of noise in the input (Gaussian noise added to spike times, centered at zero and with indicated
standard deviation, sd) were tested with the same (or different) level of noise that (than) was used during evolution. The first
value shows the performance of the best network in 10 runs, the values in brackets are averages ± sd.

Testing Temporal noise during evolution
sd=0 ms (no noise) sd=10 ms sd=20 ms sd=30 ms

sd=0 ms (no noise) 0 (0.09± 0.06) 0.05 (0.056± 0.012) 0.05 (0.07± 0.04) 0.049 (0.08± 0.076)
sd=10 ms 0.017 (0.48± 0.21) 0.198 (0.25± 0.06) 0.2 (0.23± 0.1) 0.196 (0.235± 0.1)
sd=20 ms 0.042 (0.55± 0.2) 0.29 (0.39± 0.05) 0.22 (0.27± 0.09) 0.216 (0.271± 0.093)
sd=30 ms 0.11 (0.56± 0.18) 0.4 (0.49± 0.06) 0.25 (0.37± 0.09) 0.229 (0.361± 0.081)

Table 2: Evolution of robustness to noise in temporal pattern recognition in LIF networks with two intraneurons. The networks
evolved with various levels of noise in the input (Gaussian noise added to spike times, centered at zero and with indicated
standard deviation, sd) were tested with the same (or different) level of noise that (than) was used during evolution. The first
value shows the performance of the best network in 10 runs, the values in brackets are averages ± sd.

Testing Temporal noise during evolution
sd=0 ms (no noise) sd=10 ms sd=20 ms sd=30 ms

sd=0 ms (no noise) 0 (0.026± 0.052) 0 (0.04± 0.07) 0.05 (0.18± 0.2) 0 (0.08± 0.12)
sd=10 ms 0 (0.36± 0.22) 0 (0.12± 0.1) 0 (0.18± 0.066) 0 (0.145± 0.09)
sd=20 ms 0.04 (0.41± 0.21) 0 (0.21± 0.16) 0.01 (0.2± 0.1) 0(0.17± 0.11)
sd=30 ms 0.08 (0.47± 0.19) 0.05 (0.31± 0.17) 0.06 (0.28± 0.11) 0.07 (0.27± 0.11)

Table 3: Evolution of robustness to noise in temporal pattern recognition in LIF networks with five intraneurons. The networks
evolved with various levels of noise in the input (Gaussian noise added to spike times, centered at zero and with indicated
standard deviation, sd) were tested with the same (or different) level of noise that (than) was used during evolution. The first
value shows the performance of the best network in 10 runs, the values in brackets are averages ± sd.

Testing Temporal noise during evolution
sd=0 ms (no noise) sd=10 ms sd=20 ms sd=30 ms

sd=0 ms (no noise) 0 (0± 0) 0 (0.06± 0.13) 0.05 (0.09± 0.11) 0.05 (0.06± 0.02)
sd=10 ms 0 (0.4± 0.25) 0 (0.07± 0.09) 0.006 (0.18± 0.06) 0.03 (0.18± 0.05)
sd=20 ms 0 (0.42± 0.25) 0 (0.13± 0.12) 0.03 (0.23± 0.07) 0.07 (0.2± 0.05)
sd=30 ms 0.04 (0.5± 0.23) 0.054 (0.24± 0.15) 0.07 (0.33± 0.01) 0.08 (0.29± 0.08)

Table 4: Evolution of robustness to noise in temporal pattern recognition in LIF networks with 10 intraneurons. The networks
evolved with various levels of noise in the input (Gaussian noise added to spike times, centered at zero and with indicated
standard deviation, sd) were tested with the same (or different) level of noise that (than) was used during evolution. The first
value shows the performance of the best network in 10 runs, the values in brackets are averages ± sd.

Testing Temporal noise during evolution
sd=0 ms (no noise) sd=10 ms sd=20 ms sd=30 ms

sd=0 ms (no noise) 0 (0± 0) 0 (0.02± 0.06) 0 (0.06± 0.08) 0 (0.16± 0.08)
sd=10 ms 0.03 (0.4± 0.29) 0 (0.02± 0.06) 0 (0.05± 0.08) 0 (0.165± 0.08)
sd=20 ms 0.14 (0.46± 0.25) 0 (0.04± 0.08) 0 (0.08± 0.1) 0.01 (0.18± 0.08)
sd=30 ms 0.4 (0.54± 0.2) 0.07 (0.14± 0.01) 0.02 (0.17± 0.1) 0.05 (0.24± 0.09)
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that they start firing when a spike from the next input arrives
in the correct order.

Discussion
We can conclude from the analysis of the behavior of the
SNNs with various numbers of interneurons that the feed-
back loops play a crucial role in transferring the network
from one plateau state to another, until it becomes active.
We can now also understand why the networks with just one
interneuron cannot reach 0 error when noise is present dur-
ing the evolution.

Importantly, once robustness evolved, the networks re-
mained robust to higher and lower noise levels in the input
than they experienced during evolution (Tables 2, 3, 4). This
is in contrast to the results of the experiments on the robust-
ness of multicellular development to noise on the activity of
non-spiking nodes in the artificial gene regulatory networks
evolved with GReaNs (Joachimczak and Wróbel, 2012a). In
future work we plan to evolve robustness to noise introduced
to the membrane potential of interneurons and/or the delays
in the connections between them. Another interesting issue
for further research is the relation between the evolvability
and robustness to noise. Evolvability requires that mutations
result in small phenotypic changes—a property related to ro-
bustness to noise, and to graceful degradation in the presence
of damage (see e.g., Voigt et al., 2005).

The ability to recognize temporal input patterns is a char-
acteristic that is shared by biological organisms at all levels
of complexity. Temporal patterns of sensory inputs range
from spatio-temporal gradients of nutrients in bacteria and
protozoa to speech recognition in humans and echolocation
in bats. In particular, vertebrate brains are believed to per-
form a large number of diverse temporal pattern recogni-
tion tasks (for review, see Bialek et al., 1991; Gerstner et al.,
1996; Laurent, 1996; Thorpe et al., 1996; Rieke et al., 1997;
deCharms and Zador, 2000; Ahissar and Arieli, 2001; Hux-
ter et al., 2003; Joris and Yin, 2007; Isaacson, 2010).

Often, neural systems that perform temporal pattern
recognition are thought to combine a conincidence detec-
tion mechanism with the ability to generate arrays of finely
tuned time delays (Hopfield, 1995; Steuber and Willshaw,
1999; Steuber and De Schutter, 2002; Steuber and Willshaw,
2004; Steuber et al., 2006; Maex and Steuber, 2009). Ani-
mals are able, however, to recognize temporal patterns in the
presence of large amounts of noise, and it is unclear how ro-
bust an array of finely tuned delay lines would be against
noise in the temporal inputs patterns.

In the present work, we have investigated potential mech-
anisms of noise-robust temporal pattern recognition by
evolving spiking neural networks for pattern recognition
tasks, both in the presence and absence of noise. Our main
result is that a spiking neural network can develop as a tem-
poral pattern recognition device without being able to adjust
signal propagation delays. Even without providing delay

lines, the temporal pattern recognition in the evolved net-
works is based on coincidence detection. But it is a particu-
lar form of coincidence detection—one that involves the se-
quential activation of a small number of neurons in the net-
work. Moreover, positive feedback loops are the essential
elements in these networks that provide robustness against
temporal noise. Our results show that very small networks
of spiking neurons can be able to perform surprisingly com-
plex computational tasks in a noisy environment.
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