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ABSTRACT

This paper presents a very simple one variable model, apparently not
previously studied, of a bank account with no random elements yet which
displays chaos. Interest is periodically added to the account and when the
balance exceeds a pre-set limit then a fixed amount is removed into another
account. ,The owner of the account is not required to make any additional
deposits or withdrawals, nor is the rate of interest required to change for
chaotic behaviour to be observed in the balance in the account. In the process
of investigating this model we aim to introduce ideas from chaos theory to
a wider audience. No previous knowledge of chaos theory or dynamical
systems is assumed and all technical terms used from these areas are
explained, these include: strange attractor, Lyapunov exponent, ergodicity,
mixing, dense set, invariant set, measure zero, countable and uncountable
infinities. The three defining properties of a chaotic system are presented
and are shown to be possessed by the model.

1 INTRODUCTION

Chaos theory is part of the broader field of dynamics. In dynamics one
studies the behaviour of a system whose state changes over time; the system
can be anything from a lifeless pendulum to the heartbeat of a person
receiving their first kiss, it can be the Earth’s climate or the motion of a
comet , it can be the fluctuations on the stock exchange or the spread of
disease amongst a population. Hence people working in dynamics have no
shortage of material and can cross subject boundaries whenever it suits them.
In the natural sciences there has been a tremendous growth in chaos-related
research; one bibliography references 7000 papers and books on the subject
(Zhang Shu-yu 1991). Robert May’s review paper in Nature (1976) appears
to have been very influential in drawing researchers into the subject. May is
a population biologist and was able to show how a simple quadratic model for
the size of a biological population could display very complicated behaviour.
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Turning now to economics, here there have been two main approaches: set up
a mathematical model and then show it is chaotic (see for example De Grauwe
and Vansanten (1990)) or, study a set of observations taken over time (a time
series) and then try to show that the data come from a chaotic system. The
latter type of investigation was widely applied to financial and macroeconomic
data after the stock market crash of October 1987. One attraction for
economists is that irregular behaviour need not be represented by adding
random shocks into a model, instead it may be inherent in a model which is
deterministic i.e. does not include any random inputs. (There is now a rather
technical textbook applying chaos theory to economics by Medio 1992; an
extensive list of references can be found in Parker and Stacey (1994), see also
the collection of papers in Anderson et al 1988, and Baumol and Benhabib
1989). The impact of chaos theory in the area of business does not appear to
have been very great so far, this may be due to the lack of a relevant and
sufficiently simple model for people to comprehend. Nevertheless there have
been some applications, ranging from Stacey’s (1991) broad framework view
of business organizations as feedback systems, to the more technical such as
the unpredictability of the value of the internal rate of return (of a series of
cash flows) provided by numerical methods (Osborne 1990).

2 THE MODEL

We shall be looking at the balance in a bank account at regular intervals of
time (¢ = 0,1,2,3,etc.). Let the initial amount placed in the account be x, , the
owner of the account will not deposit any more money into the account - it is
not necessary to include such ‘a complication to observe complicated
behaviour. The balance in the account at time ¢ is represented as x,. In
dynamics this is referred to as the state of the system at time ¢, and the set of
all possible values of this variable is called the state space. The account gains
interest periodically at a rate i per period (this is represented as a decimal e.g.
11% is represented as 0.11). The interest is allowed to stay in the account.
Notice that the state of our system only changes once per period, hence we are
dealing with a discrete (time) system and not a continuous one. The interest
rate is kept fixed as we watch the system evolve over time; once again this
keeps things simple and emphasises the fact that chaos does not need a
complicated system to appear. We will of course investigate the behaviour for
different rates of interest i.e. the interest rate is a parameter.

We only need a one-dimensional mathematical model for this system because
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only one quantity is varying:

X+l - A~+~.v X

If we know the balance at time ¢ then we nm.: cmm. %wm equation .8 nm_nw_wmﬁ :_M
one period later and then keep ao-mnn_v;:m. (“iterating’) the ancm:o:.ﬁo :_ﬂ_ .
balance for any time thereafter. This is an mx.mBE.m of what is calle .
recurrence relation or difference equation. Ours is a ::.mmq anw_ Unomr_w_a i
we plotted a graph of x,,, against x, we would get a straight line whose maonm
is ]+i. Unfortunately linear models cannot produce chaos so we nee rﬁ.o
introduce one more feature. Suppose that the account owner does not wish is
balance to rise above some threshold amount and that to Eo<m5m§_m
happening funds are ‘sometimes Qm:mwm.ﬂaa out of the account. . MSE
customers often fise such a ‘sweep’ facility to transfer Bo:wv\.oE of a lo
urrefit account into a high interest savings account; 1t 1S also known
as a (conditional) standing order. For oo:<o=§.6m we shall Bamw%.ﬂms the
account balance in terms of this threshold or BS,QB:B amount to << ic ,Mo
give a value of 1. This means that we are measuring x, as a proportion of the
maximum balance. For example if the maximum is £100 then a value of x,
= (.7564 represents 0.7564*£100 = £75.64 in the account. Hence o,:n _.wSmm
space is the set of all points or values from 0 to 1, cmomcwo x, can only ﬁ“mo_m
this range. We shall assume that the g:w does .woﬁ deliberately nocw &
values e.g. to the nearest penny, at each time period, so that mqoa m_scm
accumulate by this means. This apparently 1nnocuous assumption Wi

discussed further in a later section.

interest ¢

The precise rule for our sweep is that if, i.ro: the .SSRQ.W added in w:o
balance exceeds 1, then 2 fixed amount s is swept away 58. some ot Mﬂ
account. We shall treat s as another parameter to see :o.i it affects ﬂ.m
evolution of our system over time. Note that s is measured in the same units

as X,

Our model is therefore:
X = (1F0) %,
X = (140) x, - 8

if (1+i)x, does not exceed 1
if (1+i)x, exceeds 1

When choosing the sweep quantity s we need to ensure that it is not .oxnmmamnw_
by the amount accumulated as interest (ix,) in any one vm:.oa, otherwise 1t M_
not be fulfilling its function. The largest accumulation of interest occurs when
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the balance i i i
e is at its maximum value of x, = 1, so the condition we need is: from the lowest value of x,,; On the second graph segment. The balance can
e never again- fall below this amount, SO all future behaviour will occur in the
= range from l-s t0 1. This set of points is called the ‘attractor’ in dynamics
The graph is shown in figure 1. As it is wadle 56 L 11 . 45 vm.o.mcmm voﬁa omaam this set get %wmmmw into it and mms never leave. The
example of what is called a piecewise-linear ma w inear pieces it is w.: initial carmSo.E in the nwsmm 08 1-s is referred to as Umim ‘transient’. E our
said to be discontinuous because of the gap dong nm:AOn map). The map is case the :m:m_o& behaviour 1s .ﬁrm <<m:. _Soiﬂ., mwonSo growth .mmmon:ma
vertical dashed line is to aid the eye and does not n% the two segments. .G.:m with moavocsa interest. What _m.BoR interesting 1S what happens in the long
s o mmedsl of ‘& ‘discrete: - fime systens®; | ons:vmn of the mapping.) term i.e. the mo&w:w:m,msﬁ behaviour or ,:.,oso: on the msﬁmoﬁoﬂ.x wm_o.i sz
continuously over time but suddenly at mvmommo. _..n. o. mn.mmm do son. occur shall be considering the case when Emﬂm is any form Om. Evmmﬁ._:m (periodic)
imierest rate iakes the slope:(of both pazalis] so points in time. ?Qnmmw:m the pattern and then the case when there is o v.m:m_‘: Aormoso.v. w:ﬂ though we
sweep quantity affects the vertical gments) increase. Varying the can Bmxo.moam very important deductions simply by considering the slope of
. ical drop between the segments. The condition our mapping. :
w.w i Moz%m.ﬁ:m second segment to intersect the box (the unit square) on the
mmwﬁﬁwmﬁw“%cwww than M the top of the square. For every value of x, there ; THE FUTURE IS SENSITIVELY DEPENDENT ON THE
S X SO e future will be uniquely determined. However, PRESENT
that Smnmoﬂmw nm_mﬁ“w<<”“m Mmm_zm H.x:_ (greater Em_.g 1-s5) .90 graph shows The m_omo. or .mnm&m:n of our Bmv%m is everywhere the mm:.:ﬁ itis 1+i , so for
cannot tell which of the two moEm_mp a.wﬁ oo:_a.:m,\o mEm: rise to it and we w:.%. nom‘_:.é interest rate .Sm slope is m.ﬁowﬁﬁ than 1. Oo:w_.aaﬂ Z<o very close
otit e mrevidna Wistord RO 1 y a_ so. This :.:E_mm that we cannot work WE:.& points on the horizontal axis (i.e. two accounts E_& m:s:m:. g.: not
P - p o any data we are given, even though we have identical balances), suppose ﬂrn.a#mﬁm:om between them is d, z:.m is the
: difference in the accounts. By going up to the plotted graph and horizontally
Figure 1 to the vertical axis we shall see that after one time step the distance between
1 : them has grown; it grows by a factor (1+i) to become (1+i)d. After two steps

it will be (1+i)’d and after ¢ steps (1+1)'d. Thus nearby points diverge not by
a constant or fixed amount at each step (this would correspond to simple
interest), but geometrically - this is a much faster type of growth. We have
X : thus dermonstrated one of the hallmarks of chaotic systems: sensitive

; dependence on initial conditions. In dynamics the rate of divergence is
expressed in terms of the exponential function so we write (1+i) =eM, The
exponent (or power) A is called the Lyapunov exponent, and must be positive
for sensitive dependence on initial conditions to be present. In our case (1+)
= ¢* so A = In(1+i) which is always positive.

We have just demonstrated local exponential divergence of nearby points i.e.
" the divergence in the first few steps. We have yet to throw in the
X : complication of the sweeping mechanism - this will make the time series for

our two accounts even more dissimilar. Our two initially similar accounts

may start by differing only by a penny, this difference will of course grow
because that penny will accumulate interest, but there will eventually come a

wnwzmamn making an initial deposit which grows over time until it exceeds the
threshold. After the first sweep the balance must be at least 1-s5; this is clear
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with small incidents which lead to greater things.
Figure 2

o_mwmwm.zom BETWEEN 2 INITIALLY CLOSE POINTS
(initial difference less than 1 part in 8000)

;o.ﬁ
...mma_.wﬁnwwwuumwﬂ&,ﬁwuﬂmdmu I 8 9y 97
-10+
.154
time

( Parameter values: i =0.10, s =0.18)

ME. mv\“\ma. also n_Ommmmwmm a property known as ‘mixing’. This requires that

iven two intervals of points, one can s :
: J always find initial val in th

interval which eventuall ints i : ann

y lead to points in the second i i
. terval. This b
shown to be true for our att i . oo
ractor - but obviously we cann

or o) . ot ever return from

””m attractor to points in the transient region (from 0 to 1-s). To demonstrate

! m:?.wmm:mm ommssc:m consider an interval of width d, this gets magnified at

ach iteration of our mapping by a fact ] s
or (1+i) and so will
the whole of the attractor. H i v Mok
. Hence from our interval, which itrari
1 A can be arbitraril
small, we can reach any other interval in the attractor. This means that msmEM
i . ) !
sww range of possible starting points, however tiny, there exist points which
ill eventually explore the whole of the attractor in the sense that they can get

—gg_w ~Omm to N:w 1ven @O Q Hv
EU C int mCO: a sequence C_ 0 S OW— 0& a aﬂ e
m ) ints 1 — ns
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MH“ ,M”M“ ””w Mﬂoaow“Mmawm”ﬁMM”m ””Rm:o_a and is swept down whilst the
MMMMMMMMWQJ:NMHm“:mﬂ%“wo%hcnozwmmﬁ M:ﬂm_m-w%ﬂw“”“ /MNUMN m”“ﬂmﬁm m&mm
oard - as a ball rol i in it i

MMM_MJ Mmsvwm“ WW_ M:nmwmmo”wﬂocﬁmw if :.%wa mnvawn.%noaimﬂ M:M:MMM%& %wﬂ»““
%MMM; MMMM“MMW a slight &m,oam:“ mm:mm.GVMMM_WMMMM&MM%MMMHQBMWM_MM
a near-miss and a collision. Human behaviour too is filled

4 PERIODIC BEHAVIOUR

In what follows we will make use of the 45 degree (diagonal) line which joins
the origin to the opposite comner of the unit square. If we choose our
parameters (i and 5) so that this line crosses the plotted lines on the graph then
the point of intersection would correspond to what is called a fixed point or
equilibrium point. At such a point we have that x,,, = x, SO that the balance
in the account stays the same from one time to the next and so never changes.
This occurs when the amount gained as interest (ix,) is exactly equal to the
amount swept away (s). Setting these equal to each other shows that the
starting balance for this to occur is xt = s/i, however since we have ruled that
s > i, the only equilibrium point we have which does not exceed 1 is x =1
(which occurs when the interest gained is precisely equal to the amount swept

away).

Let us now plot the relationship which shows us where each starting value will
lead to in two time steps i.e. we wish to plot x,,, versus x,. On a computer
spreadsheet this can be done by taking a large number of equally spaced
starting values between 0 and 1 and calculating where they will be in one time
step and then using these latter values in the mapping again to find where they
will be in one further step. The graph now shows three or four segments, each
with slope (1+i)% What do these segments correspond to? Moving from left
to right, the first corresponds to those initial points (balances) which do not
grow sufficiently to experience a sweep in two Steps; then come the points
which grow in the first step and then get swept down in the second step;
thirdly we have values which are large enough to experience a sweep in the
first step’but not in the second; and finally there are the points which are
swept down in both steps (this latter segment will not be present if s is much
greater than i because if the drop in value is very great the balance will not
then grow sufficiently to have to be reduced again).

We can choose our parameter values so that there are intersections with the
diagonal; there can only be two such points because the first and last segments
can never cross the diagonal. The intersection points satisfy the condition x,,,
= x, , this means that we have a cycle of period 2 i.e. it repeats every two time
steps. The account balance will oscillate regularly between the two values
corresponding to the points of intersection. For example if i = 0.1 and x,= 0.9
then x,,, = 0.99, multiplying this by (1+i) gives 1.089, so if we choose s =
0.189 we will be returned back to 0.9 to repeat the cycle. There are points
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o : ; .
: WM u_Mmao _%_ mS this repeating sequence and get stuck there (e.g. 0.67618
_m.m&zm. 5.8 m__.m..zw.: o,v_\,w_mmm wwm ,vw?nmao&o. points in the qm:wmm:”.ammo:,
. -cycle. e other possibility is th i
i : : at there are no -
:v\o es, this occurs .;. § >> i, so that after a large first drop the bal e
ave a chance to rise up above the diagonal. ateiadcl

Figure 3

If next we pr

Pl Mﬂoomm_ama to construct the graph relating values at time ¢ to values

i .mnm ater we would find that the maximum number of segment
s again, so that we may have up to eight of them. Thus the :c:mcnn omw

intersections with the diagonal ma
. . y exceed three. i
different period-3 cycles may be present. U S

Is e
N Mrwvwnwowswn __:.%ﬁww to Emo length of owm_om@ Can you have cycles which repeat
ekl wﬁmnm. ,:.3 answer is that you can have cycles of any length
e <m _oém. ow this can be, imagine a low starting balance (near x =
s QQH o _Mﬂmnmmﬁ rate so that it takes a long time to approach the
) om:w then choose the sweep amount so that it returns you to
i P you mm.ﬁoa at; you will then of course find that all points
visited before will be revisited in the same order ad infinitum. Now
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if there are cycles of any integer length then there must be an infinite number
of them because the number of integers is infinite. Hence there must be an
infinity of periodic points in the range 0 to 1. Obviously, longer cycles
involve more points to be visited and so increasing the cycle length will cause
the points to be more tightly squeezed together in the range 0to 1. For any
arbitrarily small sub-interval we can always find a periodic point within it
(imagine doubling the cycle length repeatedly until this occurs); the technical
expression for this property is that the periodic points form a ‘dense set’.
Does this mean that the proportion or ‘measure’ of all possible starting points
that are periodic is 1? The surprise is that not only is the answer ‘no’, but that,
horror of horrors, the proportion is actually zero! This means that the
probability of randomly choosing a starting point which is periodic is zero.
How can this bé so? The answer lies in the fact that some infinities are larger
than others.. Let’s leave aside our bank account and allow ourselves to think
abstractly for a while to demonstrate this.

Consider the set of all numbers in the interval from 0 to n, and compare this
with the set of all the integers from O to n, obviously the first set is larger
because it includes whole intervals of points between any two adjacent
integers, therefore it is infinitely larger and the integers are of measure
(proportion) zero. (The strict definition says that a set of points has ‘measure
zero’ if it can be covered by a set of intervals whose total length is arbitrarily
small. Clearly this cannot be done for the continuous intervals between
integers because they have a measurable width.) This argument remains true
for any value of n, so we can let  be infinite. We then conclude that the set
of all positive integers , although infinite, is as nothing compared to the set of
all positive numbers. To distinguish between these two types of infinity,
mathematicians refer to the smaller one as being ‘countable’ and the larger one
as being ‘uncountable’. The integers are countable in the sense that one can
at least embark on the process of counting them up even though it would take
forever. (Any infinite set where there is a 1-to-1 association with all the
integers is said to be a ‘countable’ infinity.) But when we move from isolated
points to intervals or continuous ranges of numbers then we do not even know
how we would start counting all the numbers they contain. Any countable set
will have measure zero; to show this cover the first point by an interval of
arbitrarily small width w, the second by one of width w/2, the third by w/4 (
we are halving the width each time). The total width is 2w and so is arbitrarily
small and so the set has measure Zero. One further result we shall use is that
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any set which can be split into a countable number of subsets , each of which
is countable, must itself be a countable set. We now apply these results from
number theory to our cycles: we have cycles of length » for every integer n,
hence we have a countable number of cycle lengths. For a given length of
cycle there are a given number (countable) of points which can form part of
such a cycle (these were the points of intersection with the diagonal).
Therefore the total number of all periodic points is countable and so is of
measure Zzero.

5 CHAOTIC BEHAVIOUR

It follows from the last paragraph that most starting values do not lead to any
form of periodic behaviour, therefore most points lead to irregular or chaotic
behaviour. This means that the account balance will, in theory, forever jump
about and never ever have the same value twice for however many centuries
or millennia or aeons the account is kept open. The reason you cannot ever
revisit any previous point is that you would then have to repeat the behaviour
subsequent to that point (because we have a deterministic system), and this
would form a cycle. Thus our attractor consists of two sets of points which
always remain distinct: you cannot start off on a cycle (also called periodic
orbit/trajectory/motion) and move to chaotic behaviour, neither can you move
from chaos and end up being periodic. Sets with this property are said to be
invariant, once you are in such a set you remain in it for all time. Our
attractor differs from classical steady states (fixed point equilibria, limit
cycles) in that it contains cycles of all periods as well as an aperiodic regime,
moreover it displays sensitive dependence -on initial conditions - for these
reasons it is called a strange attractor.

A system is said to be chaotic if it possesses the following three properties:

1. Sensitive dependence on initial conditions

[39]

Dense set of periodic points
3. Mixing

(Instead of mixing, Devaney (1987) and Barnsley (1993) use the equivalent
property of transitivity in their definitions of chaotic systems.)
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We have demonstrated all thfee of these properties for our bank model.

6 THE SAWTOOTH MAP

There is a special case of our model that
a model of anything real but as an wc_mﬁmoﬁm i
insi is i arameter values of /=12 =1. :
e _mﬂwvm&rwmvcamm:ws@ (except perhaps over a long period of time
inflation) and sweeping away the full
ever that this would not bring the
y exceeded.

has been previously studied, not as
dynamical system used for gaining
In our context an

interest rate o )

or in a country experiencing hyper-

threshold amount is also unlikely - note :o.& AEok

balance to zero since a sweep only occurs if m:o threshold __m. stric g

The graph of this so-called ‘sawtooth map’ shows two linear seg

Gl i =2 if 2x, does not exceed 1,
(

Xl = .
X = 2%, -1 if 2x, does exceed 1.

Figure 4

Xerl

i i i d keeping only the
doubling the value at each %Bzg an y
e Bl e mmmioﬂ i.e. any integer part is discarded; Bm%mBmﬂQm:m
express this as x,,; = 2x, modulo 1. The effect of one mvv:.ow:os of this MS.@
is M._B the 58_‘5!& of points 0 to 0.5 (half the horizontal axis o% ME.. mﬁa.% w M
i 1. and the other half of the interva
stretched to cover the full interval 0 to 1, e
ikewi igl i ] has been stretched to double 1
treated likewise. So the original 582m. ;
_”wm% cut in the middle and the second piece placed on top of the first. It is

fractional part of th
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because this is akin to rolling and cutting pastry that this is sometimes called
a kneading transformation. Interesting properties of this map become apparent
if we work in binary. The initial value is then a string of noughts and ones
preceded by a decimal point, moreover any such string, finite or infinite, will
correspond to some initial value in the range 0 to 1. The application of the
map merely shifts the decimal point one place to the right and any whole
number part is discarded. This implies that at each time step the most
significant digit in the data is being thrown away. On a digital computer a
shift of the decimal point can be executed with no computational round-off
error.  The other name for this map is the Bernoulli shift; a Bernoulli process
being one where there are two possible outcomes - in our case corresponding
to landing in the left or right half of the interval, and this is determined by
whether the next binary digit is a zero or one respectively. In a sense we have
the entire future behaviour displayed before us in the sequence of ones and
noughts, there is no calculation to be done apart from shifting the decimal
point to the right. One thing that this map makes abundantly clear is that any
error in specifying the initial value will gradually creep up to haunt you in a
big way, e.g. an initial error in the tenth binary digit will, after nine time steps,
appear as the most significant digit, placing you in the wrong half of the
interval. The effect of finite precision in stating the initial value means that
the binary representation will end with a series of zeros and so the motion will
inevitably terminate at a fixed point at x = 0

If the initial binary value is made up of a repeating pattern of noughts and
ones then we have periodic behaviour e.g. ifx,=2/3 (=0.1010101...in binary),
then x; = 1/3 (= 0.0101010...in binary), x, = 2/3, etc., the repeating sequence
of length two in the binary representation manifests itself a cycle of period-2.
Of course perfectly repeating patterns are rare and so, as we saw earlier we
would not expect to hit on a cycle or periodic sequence by chance. It is
fascinating to observe here that the numbers which have perfectly repeating
sequences are precisely those which, in everyday parlance, are called fractions
(but are technically referred to as rationals) i.e. can be written m/n where m
and n are whole numbers. By contrast, irrational numbers have infinitely
many digits with no pattern (think of n for example) and they correspond to
chaotic or aperiodic evolution. It follows from our earlier argument that
irrationals must greatly exceed the rationals, they are uncountable, whereas the
rationals are countable; almost all numbers are irrational. In fact we would
expect the digits 0 and 1 in our binary representation to appear equally and
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randomly. This implies that the series of points Rvamm:::w ﬁ_:m m<o_”:_nM:ﬁMM
i : ill uniformly, but irregularly, explo
this special form of the system wi nly, . i
ie. i lit this range into a num
hole of the 0 to 1 range i.e. if we sp . .
MMcm_-m._Nma bins then on average the system will spend equal amounts of time
i is i i haviour.
in each bin. This is called ergodic be ou ‘ .
_m:cwvamm:m_% despite the chaos, the simplicity of this mapping allows us to

write down a general solution:
x,=2'x, modulo 1

This gives the balance at any future time ¢, for any initial value xom m_BEM
i e

double the value ¢ times and throw away the ::mmm.n Eﬁ.. It E_Vi MMMBom

clear that the chaos actually comes from the data - in the irregular string

digits that make®up x,.

7 THE EFFECT OF ROUND-OFF ERROR ek iy
Computers cannot store most numbers exactly, some SEM, 5@: _wﬁ .
i i the storage
imi t of memory that is set aside for
because of the limited amoun e
i For instance the number 0.1 when
any number fed into them. T
i -endi equence of noughts an .
binary becomes a never-ending s ! by gt =l
y i imate this by storing only a limite
bank’s computer will approxima b) . .
these binary digits. It follows from this that only certain :cBMQw omm: Nﬂ
! 1 no
these are called the machine numbers.
stored exactly on the computer, : S
i t of stepping stones between
case we can think of these as a se it L
1 j bout. Because there is a limite
which our bank balance jumps a i e
j time and end up
lly jump on one a secon
these storles we shall eventua . &
repeating a cycle; therefore we cannot expect to sit at our computer and Emv
a truly non-repeating sequence. For similar reasons random number
- ve
generators on computers eventually cycle back to repeat numbers they mm °
in the past. So by using a digital computer we are forced to observe M. «w
of behaviour which for our model we have demonstrated to be Mo excee M:m v\ﬁ
i d be pointed ou
t to observe it at all! It shoul
rare that we should not expec : g
i be very long because there ar
however that the cycle times may ]
i ds when we look at plots of tim
machine numbers. In other words wher at] : i
will not immediately be able to distinguish an aperiodic series from one

an extremely long cycle time.

Suppose we do some algebra and deliberately calculate our starting balance so
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Emﬁ it is a periodic point. Can the computer be relied upon to keep it in its
intended cycle? Once again the surprising answer is ‘no’. Any error in
specifying the initial value, or any unanticipated round-off errors arising in
computing future values will get magnified (compounded). In the jargon of
dynamics the periodic points would therefore be classed as unstable - the

slightest disturbance and you are thrown off the cycle you thought you were
on.

Figure 5

Effect of error in a period-2 cycle

100

x(t)

1 11 21 31 41 51 61 71 81 m.:
time

(The balance x, is expressed as a percentage of the maximum level.)

The fact that the bank is likely to record balances to the nearest penny will
have the same effect as having a finite quantity of values which the balance
can take on. This too will restrict us to eventual cycling - and much sooner
.Emz any cycling implied by the much larger set of machine numbers. For
instance suppose the maximum amount permitted in the account is £100. This
means that there are only 10 000 different values (to the nearest penny) that
the balance can show. |

8 CONCLUSION
Hrmm paper has explored the behaviour of a model of a simple bank account
incorporating a sweep facility. Despite the fact that only one deposit is ever
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made into the account and that no cheques are drawn and no interest rate
changes are assumed, a wealth of possible behaviours are exhibited by the
balance in the account over time. Depending on the initial conditions one can
demonstrate the existence of cyclic patterns of any given period, however it
was shown that periodic behaviour is far from typical (akin to a thrown coin
landing on its edge) and that one would almost always expect future changes
in the account to show no repeating cycles i.e. irregular or chaotic evolution.
The initial conditions which give rise to periodic and irregular behaviour do
not fall into nicely separated ranges, instead the periodic points are densely
scattered among the infinitely more numerous chaotic points.

It was pointed out that the limited memory of any computer places a
restriction on how many different numbers can be represented in any given
range. It then follows that the computed balance will eventually fall on a
previously visited value and will then be required to repeat from there on.
Nevertheless, the quantity of numbers representable on a modern computer is
so great that one is unlikely to notice such cycles, because they would be very
long indeed. More serious would be rounding to the nearest penny, this would
reduce the richness of the dynamics that theory predicts: aperiodic behaviour
and very long cycles would not be observed.
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