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Abstract. Nuclear reactions proceed differently in stellar plasmas than in the laboratory
due to the thermal effects in the plasma. On one hand, a target nucleus is bombarded by
projectiles distributed in energy with a distribution defined by the plasma temperature. The
mostly relevant energies are low by nuclear physics standards and thus require an improved
description of low-energy properties, such as optical potentials, required for the calculation of
reaction cross sections. Recent studies of low-energy cross sections suggest the necessity of a
modification of the proton optical potential. On the other hand, target nuclei are in thermal
equilibrium with the plasma and this modifies their reaction cross sections. It is generally
expected that this modification is larger for endothermic reactions. We show that there is a
large number of exceptions to this rule.

1. Introduction

Stellar plasmas are characterized by their composition and temperature. The energy distribution
of nuclei according to the temperature is given by a Maxwell-Boltzmann (MB) function. This
function peaks at comparatively low energy and thus the astrophysically relevant interaction
energies of nuclei are low by nuclear physics standards. This is a challenge for experimental and
theoretical nuclear physics, especially when dealing with charged-particle induced reactions.
The thermalization of nuclei is very fast, even compared to reaction timescales. This populates
excited states and reactions can proceed from the ground state and the excited states, contrary
to reactions in the laboratory which only include targets in the ground state. The resulting
change in the effective cross section is called stellar enhancement and usually given by the ratio
of the stellar cross section to the ground state one, f = σ∗/σg.s.. The stellar enhancement factor
f can only be studied theoretically.

2. Coulomb suppression of the stellar enhancement factor

Stellar reaction rates are obtained by folding stellar cross sections with the MB distribution of
the projectiles. It can be shown [1, 2] that stellar rates obey reciprocity whereas rates based on
laboratory cross sections do not. Since excited states in both the target and the final nucleus
contribute, it is easy to see that more transitions beyond the g.s. transitions are involved in
the final nucleus of an exothermic reaction compared to its target nucleus [2, 3, 4] and thus
fendo > fexo. When studying an astrophysically relevant reaction in the laboratory, f should be
as close as possible to Unity. Therefore, it seems advantageous to study exothermic reactions.
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Figure 1. Targets for selected reactions with fendo < fexo. Natural and longlived nuclides are
shown to guide the eye.

Closer inspections reveals [3, 4] that the above rule is not appropriate in all cases. If
transitions from excited state are systematically suppressed, there can be cases for which
fendo < fexo although the endothermic reaction in principle may allow more transitions from
excited states. Charged particle compound reactions provide such a suppression mechanism.
With increasing excitation energy, the relative energy of the transitions between excited states
and the compound state is decreasing. With a sufficiently high Coulomb barrier, the transitions
from excited states are efficiently suppressed. We found [3, 4] that the stellar enhancement
factor of the endothermic direction fendo is lower than the one for the exothermic direction fexo

for more than 1200 reactions. This includes some reactions at or close to stability relevant in the
p-process and reactions on highly unstable nuclei in the r-, rp-, and νp-process paths. Examples
are shown in Fig. 1, detailed lists of reactions are given in [4].

3. The low-energy optical potential for protons

Measuring low-energy cross sections for charged-particle reactions is problematic due to the
Coulomb barrier causing the astrophysically relevant cross sections to be tiny. Even more
problematic is the standard way to obtain information on optical potentials through elastic
scattering experiments. The scattering cross section at low-energy becomes indistinguishable
from Rutherford scattering. Accordingly, the database for reactions involving protons and αs
at astrophysically relevant energies is incomplete.

Proton capture rates at 2−4 GK are important in the γ-process which is thought to produce
the majority of p-nuclei. An important difference to cross sections at higher energies is in the
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FIG. 11. Astrophysical factor as function of proton energy

Figure 2. Astrophysical S-factors for (p,γ) reactions on 70Ge (left) and 74Se (right; all data are
from [5]) compared with theoretical values obtained with different optical potentials: ”standard”
potential (JLM, [6, 7]), our new potential (mod JLM), and the potential by [9] (Bauge).

fact that the cross sections of the p-process are mostly sensitive to the particle widths instead
of the γ-widths. This is due to the Coulomb barrier, reducing the charged particle width at low
energy to values below those of the γ-width. A series of (p,γ) and (p,n) reactions was measured
at γ-process energies recently (see, e.g., [5, 3] and references therein). The latter reactions are
especially useful for testing the proton potential because the neutron width will (almost always)
be larger than the proton width at all energies.

Several optical potentials were tested against the data and it was found that a modification
of a widely used microscopic potential reproduces the data best. This is the potential by [6]
with low-energy modifications by [7] (JLM) which were especially provided for applications in
nuclear astrophysics. This microscopic potential is derived by applying the Brueckner-Hartree-
Fock approximation with Reid’s hard core nucleon-nucleon interaction and adopting a local
density approximation.

Despite of overall good agreement, systematic deviations at low energy are still found (see,
e.g., Fig. 2, more examples are shown in [5]). By variation of the optical potential we found that
an increase by 70% in the strength of the imaginary part considerably improved the reproduction
of the data in Hauser-Feshbach calculations (denoted by “mod JLM” in the figures). This
increased absorption is allowed within the previous parameterization because the isoscalar and
especially the isovector component of the imaginary part is not well constrained at low energies,
as also noted by [6, 7, 8, 9, 10].

Also shown are results obtained with another recent, Lane-consistent new parameterization
of the JLM potential (Bauge [9]). It yields worse agreement at low energy but it does neither
include the additional modifications of [7], nor can it constrain the imaginary isovector part well
at low energy [8, 9, 10] because it was fitted to data at higher energy.

Simultaneously with the (p,γ) data, also (p,n) data is described well by our newly modified
potential, as shown in [5]. It also works well when comparing to even more recent data (see Fig.
3) which was derived independently [3, 4]).

Required input to the calculation of the optical potential is the nuclear density distribution.
Fig. 3 also shows the dependence of the results when employing a droplet model density [11] and
one from an Hartree-Fock-Bogolyubov model [12]. For the reactions considered here, the droplet
description yields better agreement to the data in both absolute scale and energy dependence
of the theoretical S-factor. Therefore, all other shown results make use of this description if not
explicitly mentioned otherwise. For comparison, Fig. 3 also shows the results when employing
the optical potentials of [8, 9] with both densities. In the original work, HFB densities were



 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.5  2  2.5  3  3.5  4  4.5

S
-f

ac
to

r 
[M

eV
b]

E [MeV]

exp
JLM,droplet

JLM,HFB
modJLM,droplet

modJLM,HFB

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 1.5  2  2.5  3  3.5  4  4.5

E [MeV]

exp
Bauge,HFB

Bauge,droplet
BaugeLane,HFB

BaugeLane,droplet

Figure 3. Astrophysical S-factors of 85Rb(p,n)85Sr (exp. data from [3]) compared with theory
using different optical potentials and nuclear densities. Shown are results with nuclear density
from a droplet model [11] and from a HFB model with Skyrme interaction [12], applied in the
calculation of the ”standard” potential [6, 7] and our new modified version of this potential (left
panel) as well as the potential of [9] (Bauge, right panel).

employed [8, 9].
Summarizing, it was found that an improved reproduction of low-energy proton-induced data

can be achieved by utilizing the potential of [6, 7] with a 70% increase in the strength of the
imaginary part. This is not to say that the potential of [6, 7] should generally be changed but
rather that there is room for a possible energy-dependent modification of the imaginary potential
strength, acting at low proton energies. This can either be achieved by adapting (refitting) the
parameterization of [6] or by externally applying an enhancement factor of the imaginary part
which decreases with increasing energy.
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