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Abstract

The propose of this study was to assess the feasibility of using myoelec-
tric signals acquired using an off the shelf device, the Myo armband from
Thalmic Lab.

Background:
With the technological advances in sensing human motion, and its poten-
tial to drive and control mechanical interfaces remotely, a multitude of input
mechanisms are used to link actions between the human and the robot. In
this study we explored the feasibility of using human arm’s myoelectric sig-
nals with the aim of identifying a number of gestures automatically.

Material and methods:

Participants (n = 26) took part in a study with the aim to assess the ges-
ture detection accuracy using myoelectric signals. The Myo armband was
used worn on the forearm. The session was divided into three phases, fa-
miliarisation: where participant learned how to use the armband, training:
when participants reproduced a number of requested gestures to train our
machine learning algorithm and recognition: when gestures presented on
screen where reproduced by participants, and simultaneously recognised us-
ing the machine learning routines.

Results:
One participant did not complete the study due to technical errors during the
session. The remaining (n = 25) participants completed the study allow-
ing to calculate individual accuracy for grasp detection using this medium.
Our overall accuracy was 65.06%, with the cylindrical grasp achieving the



highest accuracy of around 7.20% and the tripod grasp achieving lowest
recognition accuracy of 60.15%.

Discussions:

The recognition accuracy for the grasp performed is significantly lower com-
pared to our earlier work where a mechatronic device was used. This could
be due to the choice of grasps for this study, as it is not ideal to the placement
of the armband. While tripod, cylindrical and lateral grasps have different
finger and wrist articulations, their demand on supporting forearm muscles
(mainly biceps and triceps) is less definite and therefore their myoelectric
signals are less distinct. Furthermore, drop in accuracy could be caused
by the fact that human muscles and consequently the myoelectric signals
are substantially variable over time. Muscles change their relative intensity
based on the speed of the produced gesture. In our earlier study, the gesture
production speed was damped by the worn orthosis, leading to normalising
the speed of gestures. This is while in our current study, hand motion is not
restricted. Despite these, the recognition accuracy is still significant.

Future work:

There are remaining questions related to the feasibility of using myoelectric
signals as an input to a remote controlled robot in a factory floor as it is
anticipated that such a system would enhance control and efficiency in pro-
duction processes. These questions therefore require further investigations
regarding usability of the armband in its intended context, to ensure users
are able to effectively control and manipulate the robot using the myoelec-
tric system and enjoy a positive user experience. Future studies will focus
on the choice of gestures, so that they are distinct and better identifiable,
but also on other key human factors and system design features that will
enhance performance, in compliance with relevant standards such as ISO
9241-210:2010 (standards for human-system interaction ergonomic design
principles) . Furthermore, aspects of whether a machine learning algorithm
should use individually learned events in order to recognise an individual’s
gestures, or if it is possible to use normative representation of a substan-
tial set of learnt events, to achieve higher recognition accuracy remains an
interesting area for our future work.
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1 Practitioner summary

With the technological advances in sensing human motion, and its potential to
drive and control mechanical interfaces remotely, a multitude of input mecha-
nisms are used to link actions between the human and the robot. In this study we
explored the feasibility of using human arm’s myoelectric signals with the aim of
identifying a number of gestures automatically. We deployed machine learning
tools to train and later identify gestures, and achieved an accuracy of around 65%.
This indicates potential feasibility while highlighting areas for improvement both
in accuracy and utility of such approaches.

2 Introduction

The problem of detecting hand posture has been approached using various meth-
ods such as vision-based and glove-based approaches. Vision based approaches
often involve detecting the fingertips and inferring joint-articulations using inverse
kinematic models of the hand and wrist skeleton (Chaudhary et al., 2013). Glove
based approaches reduce the computation time by having a more-direct measure-
ment of the articulations. Our earlier work using an electromechanical glove, the
SCRIPT device, showed promising results in detecting pinch, lateral and cylin-
drical grasps. The glove measured the movements of hand and wrist which was
fed to developed machine learning algorithms based on Support Vector Machines
(SVM), that achieved a detection accuracy of around 91% in identifying the type
of gesture performed. The methods held for identifying gestures for people recov-
ering from neurological conditions such as stroke. (Leon et al., 2014a,b)

Another possible approach is to utilise myoelectric signals recorded from hand
and wrist muscles in detecting gestures. Tavakolan et al. (2011) used SVM for
pattern recognition of surface electromyography signals of four forearm muscles
in order to classify eight hand gestures. They concluded that it was feasible to
identify gestures using the four locally placed electrodes. Similarly, Wang et al.
(2013) used linear discriminant analysis to achieve an average accuracy of around
98% in detecting 8 hand gestures using two electrodes placed on the forearm.
Our study focuses on assessing the feasibility of using a commercially off the
self device, the Myo armband from Thalmic labs, in detecting a number of hand
gestures.

Outline The remainder of this article is organised as follows. Section 3 gives
account of previous work, followed by the material and methods used in the cur-
rent study. Our results are described in Section 4. Finally, Section 5 gives the
conclusions.



3 Material and Methods

Machine learning techniques are used in a variety of biomechanical and biomedi-
cal assessments. (Oskoei and Hu, 2008; Begg et al., 2005; Foubert et al., 2012). In
our earlier work, we utilised the Support Vector Machines (SVM) in order to au-
tomatically and quickly identify a grasp intention. Participants in the study worn
a robotic glove which was used to record the motion of their hand and wrist, and
their sensed motion was used in training and recognition of intended gestures.
(Leon et al., 2014b). Our study showed acceptable accuracy of around 91% in
detecting four grasps, tripod, lateral, cylindrical and rest positions as shown by
figure 1.

Figure 1: left to right: tripod, lateral, cylindrical and rest grasps presented with
SCRIPT glove

In current study, we aimed at applying machine learning to identify gestures
using a commercially off the shelf device, the Myo armband from Thalmic Lab!.
The Myo armband is depicted in Fig 2. It benefits from 8 proprietary Electromyo-
graphy (EMG) electrodes placed equi-distally around the arm utilising an ARM
Cortex M4 processor to communicate via Bluetooth 4. The device offers haptic
feedback as well as position tracking using accelerometers, gyroscope and magne-
tometers. Unlike earlier studies where individual electrodes are applied to flexor
and extensor muscles, the Myo armband offers the possibility of positioning the
electrodes at a relatively fixed location with respect to one another. This was
thought to have an impact on reducing the variability caused by electrode place-
ment. An application was developed using ROS, Robot Operating System?, that
allowed for reading from individual electrodes and conducting this experiment.
ROS was used to allow for future testing of the interface with robots.

Uhttps://www.thalmic.com/en/myo/
ZWWW.108.0rg



Figure 2: Myo armband from Thalmic Labs

3.1 Experiment Design

An experiment was designed consisting of three phases. During phase A, par-
ticipants made themselves familiar with the arm band and its operation. During
this time, participants tried 4 gestures that are currently detected by the device
software. These gestures were closed fist, hand open with fingers spread, wrist
fully flexed and wrist fully extended as depicted in Fig 3. When participants are
confident in using the device, they then moved to the next phase.

{

Figure 3: Gestures used for familiarisation with Myo. Left to right: Closed fist,
fingers spread, wrist flexed and wrist extended

In phase B, known as the training phase, participants tried one of the four
gestures in Table 1 were presented in random order on screen. Each image was
presented for 5 seconds, and electrode readings logged at 60Hz. Once all of the
four gestures were performed 5 times, participants moved to the next phase of the
study.

In phase C, or the recognition phase, the same gestures used in Phase B are
shown on screen. This time produced gesture is recognised using a machine learn-
ing algorithm (detailed under 3.3) and the resulting gesture code is labelled as
{0,1,2,3} and logged alongside the presented gesture codes at 60Hz. Overall,



Table 1: Gestures used in training (A) and recognition (B) phases

Grasp code Grasp Type
0 Closed fist
1 Tripod grasp
2 Lateral grasp
3 Cylindrical grasp

considering the three phases, a typical experiment session is shorter than 15 min-
utes.

3.2 Participants and Experiment setup

The experiment protocol was approved by the University of Hertfordshire’s ethics
committee under the approval number COM/PGR/UH/02057. A total of 26 par-
ticipants accepted to take part in the study. All participants offered written consent
prior to participation. Participants sat in front of a 21 inch monitor, wearing the
Myo armband on their dominant arm. The forearm was rested on a Saebo MAS
arm support to limit additional muscle contractions. The experimental setup is
offered in Fig 4.

Figure 4: Experimental setup

During the experiment, due to technical issues, one participant did not com-
plete the study. All remaining participants (n = 25) completed the three phases of
the study.



3.3 Methodology

Our earlier study with SCRIPT device showed promising results for using ma-
chine learning in identifying gestures with an electromechanical glove. In the
current study we thought to assess the utility of another approach in machine
learning, the k-nearest neighbour’s method. This is an instance-based classifica-
tion mechanism where values of a new observation are compared to the training
samples with the goal of finding a predefined number of training samples, k, with
the closest distance to the observation. The distance parameter is often the Eu-
clidean distance between the observation and the training data (Friedman et al.,
1977; Dasarthy, 1991; Shakhnarovich et al., 2006).

We used the python machine learning kit? to apply this algorithm in order
to label observations with their recognised labels from Table 1. The number of
nearest neighbours was set to 15 (k = 15). To remember the training data, an
indexing approach known as "’KD Tree’ is used for fast indexing. When a queried
gesture was close to a cluster of trained gestures, the trained gesture’s label was
used to label the query gesture. As the queried gesture was initialised by following
onscreen instruction to produce a gesture, it was possible to link the recognised
gesture to the one intended.

4 Results

Each participant repeated the four gestures in Table 1 for a minimum of 5 times
during the recognition phase of the experiment. Each of the gestures were recorded
for 5 seconds under each repetition. The logged data coded participant ID, re-
quired gesture, detected gesture and the distance calculated for the nearest 15
neighbours. By comparing the required gesture to the detected gesture, it was
possible to calculate the recognition accuracy for each participant and each ges-
ture.

Figure 5 shows the overall accuracy (M = 65.06,SD = 5.01) for each partici-
pant in the study.

Figure 6 shows the detection accuracy variations between different gestures.

Figure 7 shows the variation between different gesture detection accuracies
performed by different participants.

Table 2 shows the average accuracy values for each gesture.

3http://scikit-learn.org/stable/index.html
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Figure 5: Overall recognition accuracy for study participants
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Figure 6: Recognition accuracy variation between different gestures

5 Discussions and Conclusions

STILL WORK IN PROGRESS The overall recognition accuracy and the accuracy
of recognising each grasp type is significantly lower than our earlier study where
a mechatronic device is used to capture human arm and wrist articulations. The
variations in accuracy could be due to a number of factors.

A) The differences between gestures captured by angular recording of fingers
and wrist articulations are incomparable to that captured by recording the myo-



Table 2: Mean and standard deviation of recognition accuracy for different grasp
types

Grasp code | Grasp Type | Mean Recognition Accuracy | SD
0 Fist 66.45 10.89
1 Tripod 60.64 10.91
2 Lateral 57.31 9.75
3 Cylindrical 66.57 11.09

electric signals from the forearm. The 4 chosen gestures trained and recognised
present very similar muscle involvements specially when captured using the elec-
trode arrangements around the arm. The success of the Tavakolan et al. (2011)
and Wang et al. (2013) could be indeed due to the freedom in electrode place-
ment. In our study, we did not discriminate between electrodes placed on flexor
and extensor muscles and such information cab be used to improve the machine
learning. This could also be due to the choice of machine learning approach. We
intend to explore this by applying multiple machine learning approaches to the
data to assess if recognition accuracy changes.

B) Differences between the results from SCRIPT device and the current study
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Figure 7: Recognition accuracy variation between different gestures



could also be due to damping effects of a worn exoskeleton compared to free hand
movements captured here. Due to the freedom of the hand to move at its natural
speed, there are larger variations in EMG recordings that are caused by change in
relative intensity of involved muscles.

5.1 Role of human factors

The current study involved a limited consideration of human factors because the
early focus of this research programme is to first develop the technical feasibility
of the myoelectric system. Having achieved this, a number of human factors
design issues can now be explored. For example, it will be important to explore
aspects of the system that impact on usability, user experience and acceptance and
well-being as well as performance. These investigations will focus on making
sure applications in specific contexts conform to current standards for technical
and ethical design and application.
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