
A Leibniz Notation for Automatic
Differentiation

Bruce Christianson

Abstract Notwithstanding the superiority of the Leibniz notation for differential
calculus, the dot-and-bar notation predominantly used by the Automatic Differenti-
ation community is resolutely Newtonian. In this paper we extend the Leibnitz no-
tation to include the reverse (or adjoint) mode of Automatic Differentiation, and use
it to demonstrate the stepwise numerical equivalence of the three approaches using
the reverse mode to obtain second order derivatives, namely forward-over-reverse,
reverse-over-forward, and reverse-over-reverse.

Key words: Leibniz, Newton, notation, differentials, second-order, reverse mode.

1 Historical Background

Who first discovered differentiation1? Popular european2 contenders include Isaac
Barrow, the first Lucasian Professor of Mathematics at Cambridge [5]; Isaac New-
ton, his immediate succcessor in that chair [21]; and Godfrey Leibniz, a librarian
employed by the Duke of Brunswick [19]. The matter of priority was settled in
Newton’s favour by a commission appointed by the Royal Society. Since the report
of the commission [2] was written by none other than Isaac Newton himself3 we
may be assured of its competence as well as its impartiality. Cambridge University

Bruce Christianson
School of Computer Science. University of Hertfordshire, College Lane, Hatfield England Europe,
b.christianson@herts.ac.uk

1 Archimedes’ construction for the volume of a sphere probably entitles him to be considered the
first to discover integral calculus.
2 Sharaf al-Din al-Tusi already knew the derivative of a cubic in 1209 [1], but did not extend this
result to more general functions.
3 Although this fact did not become public knowledge until 1761, nearly fifty years later.

1

2 Bruce Christianson

thenceforth used Newton’s notation exclusively, in order to make clear where its
loyalties lay.

However, if instead we ask, who first discovered automatic differentiation, then
Leibniz has the best claim. In contrast with Newton’s geometric and dynamical
interpretation, Leibniz clearly envisaged applying the rules of differentiation to the
numerical values which the coefficients represented, ideally by a mechanical means,
as the following excerpts [19, 18] show:

Knowing thus the Algorithm (as I may say) of this calculus, which I call differential calcu-
lus, all other differential equations can be solved by a common method. . . . For any other
quantity (not itself a term, but contributing to the formation of the term) we use its differen-
tial quantity to form the differential quantity of the term itself, not by simple substitution,
but according to the prescribed Algorithm. The methods published before have no such
transition4.

When, several years ago, I saw for the first time an instrument which, when carried, auto-
matically records the number of steps taken by a pedestrian, it occurred to me at once that
the entire arithmetic could be subjected to a similar kind of machinery . . .

Although Leibniz did devise and build a prototype for a machine to perform
some of the calculations involved in automatic differentiation [18], the dream of a
mechanical device of sufficient complexity to perform the entire sequence automat-
ically had to wait until 1837, when Charles Babbage completed the design of his
programmable analytical engine [20]. Babbage, who was eventually to succeed to
Newton’s chair, had while still an undergraduate been a moving force behind the
group of young turks5 who forced the University of Cambridge to change from the
Newton to the Leibniz notation for differentiation. Babbage described this as rescu-
ing the University from its dot-age [3].

There is no doubt that by the time of Babbage the use of Newton’s notation was
very badly hindering the advance of British analysis6, so it is ironic to reflect that
we in the automatic differentiation community continue to use the Newton notation
almost exclusively, for example by using a dot to denote the second field of an active
variable.

4 The word Algorithm derives from the eponymous eighth century mathematician Al-Khwarizmi,
known in latin as Algoritmi. Prior to Leibniz, the term referred exclusively to mechanical arith-
metical procedures, such as the process for extraction of square roots, applied (by a human) to
numerical values rather than symbolic expressions. The italics are in the latin original: “Ex cognito
hoc velut Algorithmo, ut ita dicam, calculi hujus, quem voco differentialem.”
5 The Analytical Society was founded by Babbage and some of his friends in 1812. So successful
was their programme of reform that eleven of the sixteen original members subsequently became
professors at Cambridge.
6 Rouse Ball writes [4] “It would seem that the chief obstacle to the adoption of analytical meth-
ods and the notation of the differential calculus arose from the professorial body and the senior
members of the senate, who regarded any attempt at innovation as a sin against the memory of
Newton.”

A Leibniz Notation 3

2 The Leibniz Notation

Suppose that we have independent variables w,x and dependent variables y,z given
by the system

y = f (w,x) z = g(w,x)

2.1 The Forward Mode

In Newton notation we would write the forward derivatives as

ẏ = f ′wẇ+ f ′xẋ ż = g′wẇ+g′xẋ

It is quite straightforward to turn this into a Leibniz notation by regarding the
second field of an active variable as a differential, and writing dx,dy etc in place of
ẋ, ẏ, etc.

In Leibniz notation the forward derivatives become7

dy =
∂ f
∂w

dw+
∂ f
∂x

dx dz =
∂g
∂w

dw+
∂g
∂x

dx

where dw,dx are independent and dy,dz are dependent differential variables8.

2.2 The Reverse Mode

For the reverse mode of automatic differentiation, the backward derivatives are writ-
ten in a Newton style notation as

w̄ = ȳ f ′w + z̄g′w x̄ = ȳ f ′x + z̄g′x

This can be turned into a Leibniz form in a similar way to the forward case. We
introduce a new notation, writing by,bz in place of the independent barred variables
ȳ, z̄, and bw,bx in place of the dependent barred variables w̄, x̄.

bw = by
∂ f
∂w

+bz
∂g
∂x

bx = by
∂ f
∂w

+bz
∂g
∂x

7 Since y≡ f (w,x) we allow ourselves to write ∂ f
∂x interchangeably with ∂y

∂x .
8 Actually the tradition of treating differentials as independent variables in their own right was
begun by d’Alembert as a response to Berkeley’s criticisms of the infinitisimal approach [6], but
significantly he made no changes to Leibniz’s original notation for them. Leibnitz’s formulation
allows for the possibility of non-negligable differential values, referring [19] to “the fact, until
now not sufficiently explored, that dx, dy, dv, dw, dz can be taken proportional [my italics] to the
momentary differences, that is, increments or decrements, of the corresponding x, y, v, w, z”, and
Leibnitz is careful to write d(xv) = xdv+ vdx, without the term dxdv.

4 Bruce Christianson

We refer to quantities such as bx as barientials. Note that the bariential of a de-
pendent variable is independent, and vice versa. Differentials and barientials will
collectively be referred to as varientials.

The barientials depend on all the dependent underlying variables so, as always
with the reverse mode, the full set of equations must be explicitly given before the
barientials can be calculated.

2.3 Forward over Forward

Repeated differentiation in the forward mode (the so-called forward-over-forward
approach) produces the Newton equation

ÿ = f ′′wwẇẇ+2 f ′′wxẇẋ+ f ′′xxẋẋ+ f ′wẅ+ f ′xẍ

and similarly for z̈. This has the familiar9 Leibniz equivalent

d2y =
∂ 2 f
∂w2 dw2 +2

∂ 2 f
∂w∂x

dwdx+
∂ 2 f
∂x2 dx2 +

∂ f
∂w

d2w+
∂ f
∂x

d2x

and similarly for d2z.

2.4 Forward over Reverse

Now consider what happens when we apply forward mode differentiation to the
backward derivative equations (the so-called forward-over-reverse approach). Here
are the results in Newton notation

˙̄w = ˙̄y f ′w + ȳ f ′′wwẇ+ ȳ f ′′wxẋ+ ˙̄zg′w + z̄g′′wwẇ+ z̄g′′wxẋ

and here is the Leibniz equivalent

dbw = dby
∂ f
∂w

+by
∂ 2 f
∂w2 dw+by

∂ 2 f
∂w∂x

dx+dbz
∂g
∂w

+bz
∂ 2g
∂w2 dw+bz

∂ 2 f
∂w∂x

dx

with similar equations for ˙̄x and dbx respectively.
What happens when we repeatedly apply automatic differentiation in other com-

binations?

9 The familiarity comes in part from the fact that this is the very equation of which Hademard
said [15] “que signifie ou que représente l’égalité? A mon avis, rien du tout.” [“What is meant,
or represented, by this equality? In my opinion, nothing at all.”] It is good that the automatic
differentiation community is now in a position to give Hadamard a clear answer: (y,dy,d2y) is the
content of an active variable.

A Leibniz Notation 5

3 Second Order Approaches involving Reverse Mode

For simplicity, in this section we shall consider the case10 of a single independent
variable x and a single dependent variable y = f (x).

3.1 Forward over Reverse

Here are the results in Newton notation for forward-over-reverse in the single vari-
able case. The reverse pass gives

y = f (x) x̄ = ȳ f ′

and then the forward pass, with independent variables x and ȳ, gives

ẏ = f ′ẋ ˙̄x = ˙̄y f ′+ ȳ f ′′ẋ

The Leibniz equivalents are

y = f (x) bx = by
∂ f
∂x

and

dy =
∂ f
∂x

dx dbx = dby
∂ f
∂x

+by
∂ 2 f
∂x2 dx

3.2 Reverse over Forward

Next, the corresponding results for reverse-over-forward. First the forward pass in
Newton notation

y = f (x) ẏ = f ′ẋ

then the reverse pass, applying the rules already given, and treating both y and ẏ
as dependent variables. We use a long bar to denote ADOL-C style reverse mode
differentiation [13], starting from ẏ and y

x = y f ′+ ẏ f ′′ẋ ẋ = ẏ f ′

In Leibnitz notation the forward pass gives

10 The variables x and y may be vectors: in this case the corresponding differential dx and bari-
ential by are respectively a column vector with components dx j and a row vector with com-
ponents byi; f ′ is the matrix Ji

j = ∂ j f i = ∂ f i/∂x j , and f ′′ is the mixed third order tensor
Ki

jk = ∂ 2
jk f i = ∂ 2 f i/∂x j∂xk.

6 Bruce Christianson

y = f (x) dy =
∂ f
∂x

dx

and for the reverse pass we treat y and dy as the dependent variables. We denote
the bariential equivalent of the long bar by the letter p for the moment, although we
shall soon see that this notation can be simplified. This gives

px = py
∂ f
∂x

+ pdy
∂ 2 f
∂x2 dx pdx = pdy

∂ f
∂x

3.3 Reverse over Reverse

Finally we consider reverse over reverse. The first reverse pass gives

y = f (x) x̄ = ȳ f ′

the dependent variables are y and x̄. We denote the adjoint variables on the second
reverse pass by a long bar

x = y f ′+ ȳ f ′′ x̄ ȳ = f ′ x̄

and we shall see shortly that the use made here of the long bar is consistent with that
of the previous subsection. In Leibniz notation, the first reverse pass corresponds to

y = f (x) bx = by
∂ f
∂x

with the dependent variables being y and bx. Denoting the barientials for the second
reverse pass by the prefix p, we have

px = py
∂ f
∂x

+by
∂ 2 f
∂x2 pbx pby =

∂ f
∂x

pbx

In general we write differentials on the right and barientials on the left, but pbx
is a bariential of a bariential, and so appears on the right11.

4 The Equivalence Theorem

By collating the equations from the three previous subsections, we can immediately
see that all three of the second-order approaches involving reverse differentiation
produce structurally equivalent sets of equations, in which certain pairs of quantities
correspond. In particular, where v is any dependent or independent variable,

11 If x is a vector then pbx is a column vector.

A Leibniz Notation 7

v = ˙̄v v̇ = v̄ v̄ = v̇

or, in Leibniz notation

pv = dbv pdv = bv pbv = dv

allowing the use of p-barientials to be eliminated.
However, we can say more than this. Not only are the identities given above true

for dependent and independent varientials12, the same correspondences also hold
for the varientials corresponding to all the intermediate variables in the underlying
computation. Indeed, the three second-order derivative computations themselves are
structurally identical.

This can be seen by defining the intermediate variables vi in the usual way [14]
by the set of equations

vi = φi(v j: j≺i)

and then simulating the action of the automatic differentiation algorithm, by using
the rules in the preceding subsections to successively eliminate the varientials cor-
responding to the intermediate variables, in the order appropriate to the algorithm
being used.

In all three cases, we end up computing the varientials of each intermediate vari-
able with exactly the same arithmetical steps

pbvi = dvi = ∑
j: j≺i

∂φi

∂v j
dv j pdvi = bvi = ∑

k:i≺k
bvk

∂φk

∂vi

and

pvi = dbvi = ∑
k:i≺k

{
dbvk

∂φk

∂vi
+bvk ∑

j: j≺k

∂ 2φk

∂vi∂v j
dv j

}
We therefore have established the following

Theorem 1. The three algorithms forward-over reverse, reverse-over-forward, and
reverse-over-reverse are all numerically stepwise identical, in the sense that they not
only produce the same numerical output values, but at every intermediate stage per-
form exactly the same floating point calculations on the same intermediate variable
values.

Although the precise order in which these calculations are performed may depend
on which of the three approaches is chosen, each of the three algorithms performs
exactly the same floating point arithmetic. Strictly speaking, this statement assumes
that an accurate inner product is available as an elemental operation to perform
accumulations, such as those given above for dvi,bvi,dbvi, in an order-independent
way.

A final caveat is that the statement of equivalence applies only to the floating
point operations themselves, and not to the load and store operations which surround

12 Recall that this term includes all combinations of differentials and barientials.

8 Bruce Christianson

them, since a re-ordering of the arithmetic operations may change the contents of
the register set and cache.

Historically, all three of the second-order methods exploiting reverse were im-
plemented at around the same time in 1989: reverse-over-reverse in PADRE2 by Iri
and Kubota [16, 17]; reverse-over-forward in ADOL-C by Griewank and his col-
laborators [12, 13]; and forward-over-reverse by Dixon and Christianson in an Ada
package [7, 10]. The stepwise equivalence of forward-over-reverse with reverse-
over-reverse was noted in [9] and that of forward-over-reverse with reverse-over-
forward in [8].

The stepwise equivalence of the three second order approaches involving the
reverse mode nicely illustrates the new Leibnitz notation advanced in this paper, but
also deserves to be more widely known than is currently the case.

References

1. Al-Tusi, S.A.D.: Treatise on Equations. Manuscript, Baghdad (1209)
2. Anonymous: An account of the book entitled commercium epistolicum collinii et aliorum, de

analysi promota; published by order of the Royal Society, in relation to the dispute between
Mr. Leibnitz [sic] and Dr. Keill, about the right of invention of the method of fluxions, by some
called the differential method. Philosophical Transaction of the Royal Society of London 342,
173–224 (January and February 1714/5)

3. Babbage, C.: Passages from the Life of a Philosopher. London (1864)
4. Ball, W.W.R.: A History of the Study of Mathematics at Cambridge. Cambridge (1889)
5. Barrow, I.: Lectiones Opticae et Geometricae. London (1669)
6. Berkeley, G.: The Analyst; or, A Discourse Addressed to an Infidel Mathematician, Wherein

it is examined whether the Object, Principles, and Inferences of the modern Analysis are more
distinctly conceived, or more evidently deduced, than Religious Mysteries and Points of Faith.
London (1734)

7. Christianson, B.: Automatic Hessians by reverse accumulation. Technical Report NOC
TR228, Numerical Optimisation Centre, Hatfield Polytechnic, Hatfield, United Kingdon
(1990)

8. Christianson, B.: Reverse accumulation and accurate rounding error estimates for Taylor series
coefficients. Optimization Methods and Software 1(1), 81–94 (1991). Also appeared as Tech.
Report No. NOC TR239, The Numerical Optimisation Centre, University of Hertfordshire,
U.K., July 1991

9. Christianson, B.: Automatic Hessians by reverse accumulation. IMA Journal of Numerical
Analysis 12(2), 135–150 (1992)

10. Dixon, L.C.W.: Use of automatic differentiation for calculating Hessians and Newton steps.
In: Griewank and Corliss [11], pp. 114–125

11. Griewank, A., Corliss, G.F. (eds.): Automatic Differentiation of Algorithms: Theory, Imple-
mentation, and Application. SIAM, Philadelphia, PA (1991)

12. Griewank, A., Juedes, D., Srinivasan, J., Tyner, C.: ADOL-C: A package for the automatic
differentiation of algorithms written in C/C++. Preprint MCS-P180-1190, Mathematics and
Computer Science Division, Argonne National Laboratory, Argonne, Illinois (1990)

13. Griewank, A., Juedes, D., Utke, J.: Algorithm 755: ADOL-C: A package for the automatic
differentiation of algorithms written in C/C++. ACM Transactions on Mathematical Software
22(2), 131–167 (1996). URL http://doi.acm.org/10.1145/229473.229474

14. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation, 2nd edn. No. 105 in Other Titles in Applied Mathematics. SIAM, Philadel-
phia, PA (2008). URL http://www.ec-securehost.com/SIAM/OT105.html

A Leibniz Notation 9

15. Hadamard, J.: La notion de différentiel dans l’enseignement. Mathematical Gazette XIX(236),
341–342 (1935)

16. Kubota, K.: PADRE2 Version 1 Users Manual. Research Memorandum RMI 90-01, Depart-
ment of Mathematical Engineering and Information Physics, Faculty of Engineering, Univer-
sity of Tokyo, Tokyo, Japan (1990)

17. Kubota, K.: PADRE2, a Fortran precompiler yielding error estimates and second derivatives.
In: Griewank and Corliss [11], pp. 251–262

18. Leibniz, G.W.: Machina arithmetica in qua non additio tantum et subtractio sedet multiplicatio
nullo, division veropaene nullo animi labore peragantur. [An arithmetic machine which can be
used to carry out not only addition and subtraction but also multiplication with no, and division
with really almost no, intellectual exertion.]. Manuscript, Hannover (1685). A translation by
Mark Kormes appears in ‘A Source Book in Mathematics’ by David Eugene Smith, Dover
(1959)

19. Leibniz, G.W.: Nova methodvs pro maximis et minimis, itemque tangentibus, quae nec fractas,
nec irrationales quantitates moratur, et singulare pro illis calculi genus. [A new method for
maxima and minima as well as tangents, which is impeded neither by fractional nor irrational
quantities, and a remarkable type of calculus for them.]. Acta Erutitorium (October 1684)

20. Menabrea, L.F.: Sketch of the analytical engine invented by Charles Babbage, with notes by
the translator Augusta Ada King, Countess of Lovelace. Taylor’s Scientific Memoirs 3, 666–
731 (1842)

21. Newton, I.: Philosophiae Naturalis Principia Mathematica. London (1687)

