SEVA: A Smart Electronic Voting Application
Using Blockchain Technology

Jacob Abegunde and Joseph Spring, University of Hertfordshire UK
Hannan Xiao, King’s College London UK

Abstract—The development of electronic voting applications
remains an active area of research and this has led to the proposal
and implementation of many models based on blockchains.
However, most of the proposed models are partially decentralized
solutions, in which the blockchain is used as a storage media for
votes while the application is written in programming tools such
as HTML, CSS, and JavaScript. This makes them vulnerable to
attacks such as Denial of Service (DoS) attacks, Single Point of
Failure (SPF), and fraudulent record modification.

In this paper, we propose a fully decentralized electronic voting
application, SEVA, in which we placed the whole application
(code and data) in Ethereum to protect the application from vul-
nerabilities. Additionally, we propose a new consensus algorithm,
Proof of Smart Vote (PoSV) for SEVA, as a viable energy-saving
alternative to the energy-intensive Proof of Work (PoW). We
implemented and evaluated SEVA with PoSV and compared it
with a partially decentralized model of the application.

Index Terms—Fully Decentralized Application, Distributed
Security, Trustless System, Blockchain, Smart Contract, E-voting.

I. INTRODUCTION

recent developments in technology together with the
Rproliferation of smart devices has led to electronic voting
(e-voting) becoming an attractive alternative to paper ballot
systems [1], [2]. However, the credibility of most current e-
voting applications are yet to be established since they are
unable to satisfy all of the requirements for e-voting such
as resilience, non-repudiation, universal verifiability, receipt-
freeness, coercion free, robustness, transparency, and privacy.
This has resulted in a lack of trust and acceptability for such
applications.

In [3] and [4], it was conjectured that the privacy and
security of an electronic vote could be preserved in two ways,
firstly by encrypting the vote and secondly or by sending the
vote through an anonymous communication channel. Although
both methods are known to be good theoretically, they do not
offer a guarantee of protection for voting information, neither
do they meet the tamper-proof requirement for an e-voting
system. A well-funded adversary could have the capability to
decrypt communication as well as sniff anonymous channels
in order to eavesdrop or replay messages.

Hao et al, proposed a two-round anonymous general purpose
voting protocol for e-voting in 2010 [4]. It required no trusted
third parties or private channels, and participants could execute
the protocol by sending two rounds of public messages.
Subsequent work [5], was released in 2012 to address the
robustness and fairness problem identified in [4].

The work in [3] was released in 2014 as an improved
version of [S5] for large-scale elections. It was said to be
significantly more efficient in terms of the number of rounds,
computational cost, and bandwidth usage. However, the new

version still has drawbacks since it is based on the principle of
a centralized application. In order to address the deficiencies
of [3], subsequent work [6], in which votes were stored in the
blockchain was released in 2017 by the same group. However,
as a partially decentralized application, it is still vulnerable to
DoS and SPF.

Overall, most of the proposed blockchain e-voting applica-
tions described in [6]-[10] are partially decentralized solutions
in which the application code is developed with programming
tools such as HTML, CSS, and JavaScript, whilst utilizing
the blockchain as a storage media for votes. Although these
solutions protect the votes against fraudulent modification
since they are written in the blockchain, the application code
remains vulnerable to various attacks as discussed above.

A. Motivations

It follows from the above discussion that, an appropriate
e-voting solution must involve more than just vote encryp-
tion and sending votes through an anonymous channel. For
this reason, we propose a Smart Electronic Voting Applica-
tion (SEVA), a fully decentralized application hosted on an
Ethereum Virtual Machine (EVM) network that protects the
electronic voting application against vulnerabilities such as
those discussed above.

The trend towards smartness continues to rise through the
ongoing proliferation of smart devices and the deployment of
smart protocols in IoT (as discussed in [11]). This ongoing
trend towards smartness is the principal driving force for this
work, in addition to the desire to protect electoral processes
from adversaries.

B. Contribution

This work has three contributions. Firstly, the authors of e-
voting applications such as [9] and [10] have acknowledged
that their work is not fully decentralized. As far as we
know, existing similar applications fall into the same category
of partially decentralized solutions since they only use the
blockchain as a backend database for the storage of votes.
This work differs from such previous proposals in the sense
that it combines the code and the data on EVM by coding all
of the election functionalities into a smart contract for security
and redundancy. Thus it is referred to as fully a decentralized
solution.

Secondly, the Proof of Work (PoW) consensus mechanism
is considered to be inappropriate for an e-voting protocol
[12], due to its energy requirements and a block time of
approximately 10 minutes, as required by Bitcoin [13]. Simi-
larly, the Proof of Stake (PoS) consensus requires optimization

for the allocation of appropriate stakes for each vote. We
therefore propose a new consensus mechanism, Proof of Smart
Vote (PoSV) in this paper. To the best of our knowledge,
this consensus mechanism has not been proposed or used
elsewhere.

Thirdly, SEVA is a self-tallying e-voting application that
also includes a two-factor authentication (2FA) mechanism
in the form of a one-time password (OTP) as a security
enhancement. Although the use of 2FA with OTP is a basic
security standard in online authentication, very little is said
about its potential usage in e-voting as far as we know.

The rest of this paper is structured as follows. The relevant
background is discussed in section 2, followed by our pro-
posal and model in section 3. The system implementation is
presented in section 4, with the system evaluation in section 5
while the conclusion and future work are presented in section

6.
II. SYSTEM MODEL

A. A Fully Decentralized Application

The remote e-voting solution can be broadly categorized
into two approaches: the centralized e-voting application and
the decentralized e-voting application. The centralized applica-
tion model constitute single or multiple system(s) working as
one from single or multiple location(s) with a single service
point and single point of control. Its positive side includes
consistency, efficiency and affordability, however, such appli-
cations are vulnerable to attacks such as DoS attacks, SPF and
fraudulent record modification [1].

S

|
¢

Application server
and code in HTML,
JS, C3S etc

User
Each node 0
contains the °
data

Blockchain network
Fig. 1: Partially decentralized application workflow

An alternative model to the centralized model is the partially
decentralized model as shown in Fig. 1, where the data of
the application is hosted on peer-to-peer nodes which form a
blockchain network, whilst the code is developed using for ex-
ample HTML, CSS, and JavaScript. Although the blockchain
network provides protection for the data against DoS, SPF and
fraudulent modification of the records, the application code
remains vulnerable to such attacks.

As shown in Fig. 2, SEVA utilizes a fully decentralized
application model as a viable alternative to the partially
decentralized application model shown in Fig 1. In SEVA,
both the code and data of the application are hosted on an
EVM network which is a blockchain-based software platform,
to provide resilience, redundancy, and tamper-proof protection.

Each node
contains;
application
code and data

Blockchain network
Fig. 2: Fully decentralized application workflow

One of the features of the fully decentralized architecture is
that the data (votes) and the application code (smart contract)
are immutable, meaning that none of the blockchain nodes
can unilaterally make any change to the data or the code
[8]. The ledger records (votes) are arranged into blocks and
chained together using a hash function to form a public record
[7] while the application functions are coded into the smart
contract. This arrangement ensures that the data and the code
are held securely and are tamper-proof. We therefore believe
that this model is more suitable for the deployment of e-voting
applications than the centralized or partially decentralized
architecture.

B. System Entities

The proposed model consists of the following entities, each
with a distinct role.

Voters: the set of people who are eligible and authorized to
vote.

Candidates: the subset of voters who are standing for
electoral post as indicated on the ballot paper by the electoral
commission.

Electoral Commission (EC): an independent authority em-
powered by law to conduct elections and announce the results.

Political Parties: the different political parties that are
represented in the election.

Local Authority: the local constituency in which election is
to be held.

Blockchain Network: a non-trusted peer-to-peer network
that maintains records that are accessible to all of the stake-
holders.

Blockchain Admins: a team of system administrators, mem-
bers of the EC.

Mining Nodes: a set of nodes that are responsible for adding
records of votes to the public ledger.

Non-mining Nodes: a set of nodes whose role is to observe
and verify all election records and transactions.

Smart Contracts: software code that manages the election
process and performs vote tabulation and counting.

C. System Requirements

The voter registration (and voting) are divided into con-
stituencies. Voters can only register and vote in their con-
stituencies since the e-voting application will be deployed
on a constituency basis. In each constituency, the blockchain
network will be a permissioned network with an equal number
of mining nodes owned by each political party, the EC, and
the local authority. This is to increase transparency and reduce
the risk of a 51% attack through collusion [13].

Each voter will be automatically provided with an Ethereum
account (for voting) during the application run, once they are
authenticated successfully. Voters will have their Ethereum
accounts credited with ETH (Ethereum currency), to pay for
the gas needed to execute the smart contract. Voters will
connect to the application via their browser, hence there will
be no need for client software. The voting user interface
(website) will be protected using asymmetric cryptography
(SSL certificates), however, voters will be responsible for the
security of their devices when using the online application.

It is assumed that the EC has an accurate database of
registered voters which will be written to the blockchain and
will be updated regularly. It is also assumed that adversaries
are capable of monitoring public communication channels,
decrypting encrypted traffic, and performing general network-
level attacks such as eavesdropping, replay attacks, masquer-
ade attacks, DoS attacks, and record modification.

I1I. SYSTEM DESIGN
A. Smart E-Voting Model

Fig. 3 shows the architecture for the smart e-voting appli-
cation which consists of the user interface, the smart con-
tract, and the ledger record, combined on an EMV which
is a blockchain infrastructure on a peer-to-peer network of
nodes [8]. Intercommunication between nodes is via encrypted
multicast. The votes are stored in bundles of records called
blocks, which are chained together using a hash function to
form a ledger [8].

The user interface of the application is divided into an
administrative and voter interface. The administrative user
interface consists of nodejs which provides an administrative
interface to the EVM for coding and deployment of the smart
contract. The voters’ user interface consists of web3js, which
provides an interface with the smart contract to present the
voting menu to the voters.

All peer-to-peer nodes run the same application code as
smart contract and contain both the administrative and the
voters’ interface which communicates with the backend via

Command Line
Interface (CLIy

Q
\‘U Voter i

Web browser

Ethereum Virtual Machine

Admin interface Voting interface

i

Application code (smart contract) ‘

I I L,

RPC

vote1 voted vote7 vote10
vote2 —+— voie5 |+»— vote8 |+— votell
vote3 votet vote9 vote12

Blockl Block2 Block3 Blockd

Blockchain ledger

Fig. 3: Smart e-voting architecture

Remote Procedure Call (RPC). The application server (on
EVM) is viewed as a network of nodes that form the
blockchain network, in which each node contains the ledger
(data), the smart contract (application code), and the user
interface combined.

B. Smart E-Voting Phases

The smart e-voting process consists of three major phases:
the registration phase, the voting phase, and the tallying and
counting phase.

Registration Phase: The first step in any voting process is
the registration of voters. It involves the process of checking
and confirming the identity and eligibility of voters. It is done
periodically before the voting day. The end product of this
phase is the voter list. Voter registration usually closes before
the voting phase.

Voting Phase: The voting phase is subdivided into three
stages as follows: initialization, authentication, and voting.

The initialization process is carried out by the Electoral
Commission and involves preparing all the components of
the application for the election process. It involves blockchain
network preparation, deployment of the smart contract, and
publication of the election website address.

All eligible voters need to authenticate against the voting
application in order to cast their vote. The authentication
process requires a voter to provide the information used for
registration during the registration process: a pre-set voter
identification and password are required for the first stage of
the authentication process.

If the first stage of the authentication process is successful,
then a code (OTP) will be sent to the voter’s known mobile
number that was provided during the registration process.
Once the code is received on the voter’s mobile phone and
entered into the application, the 2-stage authentication process
is completed. A voting Ethereum account is then generated and
allocated to the voter.

The voting process involves the selection of the preferred
candidate from a drop-down list of candidates, (as shown in
Fig. 7a). After the selection of the preferred candidate, the
voter clicks on ’vote’ to cast their vote. The vote is tallied,
counted, and written to the blockchain by the smart contract.
The transaction is identified by a Transaction Identification
Number (TIN) which is the Ganache account number. The TIN
is written into a file to be sent to the voter’s registered mobile
phone number or email address, after the election. This TIN
could be used to trace and verify the vote after the election.

Tallying and Counting Phase: The tallying process refers
to the tabulation of votes according to the candidates voted
for. The counting process is the summation of votes for
each candidate as the votes are tabulated. In the application
simulation, the votes are tabulated and counted automatically
on the fly by the smart contract which implies that SEVA is
a self tallying e-voting application. However, the result is not
shown or published until the end of the voting window.

Initialization
i Authentication
Eligibility Check
(1,2,3.4)
Allocate &
Ethereum Eligible

Voter?

Account (5} Y

Cast Vote (8)

f |
Tally & Count
Vote (7)

k4

End

Fig. 4: Smart e-vote flowchart

C. Smart E-Voting Algorithm

Each steps of the smart e-voting algorithm is as shown in
Fig. 4. The algorithm is discussed below:

Step 1: Closing of voters’ registration record and initial-
ization of the application by the system administrators of the
electoral commission.

Step 2: Publishing of the smart contract and its web address
to declare the start of the election.

Step 3: The voting process begins when voters log in to the
electoral commission system to authenticate themselves.

Step 4: After a successful 2FA, the voter is granted permis-
sion to interact with the smart contract.

Step 5: A voting Ethereum (Ganache) account is allocated
to authenticated voters to cast their votes

Step 6: Voters select their preferred candidate and cast their
votes.

Step 7: Votes are automatically tallied and counted via the
smart contract on the fly and the results are displayed at the
end of the election.

D. Proof of Smart Vote (PoSV)

In order to prevent identity forging as in Sybil attacks
Ethereum uses proof of work (PoW) as a consensus mech-
anism which has been widely criticized in the literature for its
inefficient use of energy [1]. This is because for every block
to be mined in a PoW consensus, all of the mining nodes
are required to engage in intensive mathematical work and
this consumes a tremendous amount of energy. Although the
security of a decentralized application is partly credited to the
PoW, the same PoW is also responsible for the high transaction
fees, high latency, slow convergence, and scalability problems
associated with most decentralized applications [14]-[16].

Add the next 3
g vote to a block N

s it a blug
stake block

Select a blue
miner randomly
to mine block

L

Select a green
miner randomly
to mine block

Select a red
miner randomly —
to mine block

Is it a red
stake block?

| Discard any

invalid vote 20

Fig. 5: Proof of smart vote (PoSV) flowchart

An efficient consensus mechanism has therefore been an
ongoing area of research in blockchain technology which has
led to the proposal of various consensus mechanisms. The
most prominent of these is the Proof of Stake (PoS) which is
considered a viable alternative to PoW. In a PoS consensus,
the miner of a block is chosen based on the stake owned by
the participant. This implies that the miner with the largest
stake is chosen since it is rational for it to protect its stake by
mining the data according to the rule, while all other nodes
do the verification.

For the purpose of SEVA, PoW is considered to be heavy-
weight and too expensive whilst PoS needs to be optimized
to allocate stake to votes and blocks based on the party
of choice in the votes. Therefore, in order to improve the
efficiency, scalability, and security of the mining process, a
new concession mechanism, Proof of Smart Vote (PoSV) is
proposed, a modified version of PoS. The flowchart for the
PoSV is shown in Fig. 5.

In the PoSV mechanism, the mining privilege is allocated
to the mining nodes of the political party for which a voter
voted. For each block of votes to be mined, the mining node
is selected randomly from the nodes of the party that has the
greatest stake on the block to be mined. In other words, for a
block that contains predominantly 'red vote’ to be mined, the

miner is randomly selected from the list of 'red miners’, since
they have the largest stake in that block. This is consistent
with the protocol since mining of votes takes place after the
votes have been tallied and counted hence the stake of each
vote (and block) is known to the application before mining.

The PoSV is a modified version of PoS which is fine-tuned
for smart e-voting not only to reduce the energy wastage in
PoW, but to also reduce the convergence time and conse-
quently reduce the latency and improve the performance of
the application. To the best of our knowledge, PoSV is unique
to SEVA and has not been used elsewhere.

IV. SYSTEM IMPLEMENTATION
A. System Preparation

An Ethereum Integrated Development Environment (IDE) is
prepared for the development of SEVA. The IDE replaces the
need to implement the whole blockchain infrastructure [2]. The
necessary open-source software was downloaded, installed,
configured, and linked together to form the required IDE. The
IDE was then used in the writing, testing, and deployment
of the smart contract for SEVA, with the implementation
running on Ubuntu Linux. The core components of the IDE
are discussed below.

Nodejs and NPM: Node.js is a JavaScript platform for
general-purpose programming that allows users to build net-
work applications. Node.js is used for the application distri-
bution across network nodes.

Solidity Compiler: Solidity is the most popular program-
ming language for writing smart contracts on Ethereum. It
turns human-readable Solidity code into Ethereum bytecode,
which Ethereum network nodes can understand and execute.
It is a strongly typed object-oriented, high-level language for
implementing smart contracts [2].

Ganache: is a software utility used for simulating personal
blockchain accounts, developing and deploying smart con-
tracts. It is used to simulate client behaviour and to provide
RPC functions and features for communication between the
user interface, application code and the data.

Truffle Framework: The Truffle Framework is a testing
framework for the Ethereum IDE. It is a project management
tool used for testing, compiling, migration, and deployment of
smart contracts on an Ethereum network.

After the installation, configuration, and testing of the IDE,
the smart contract for the smart e-voting application is written
and compiled using solidity.

B. Smart E-Voting Application Simulation

The initial experimental setup is as shown in Fig. 6a. A
permissioned blockchain is considered in which there are
seven participating nodes representing different entities: the
three political parties (Blue, Green, and Red), the electoral
commission, the local authority, and two independent ob-
servers. The three political parties are considered as the biggest
stakeholders in the election. Therefore, a mining node is
allocated to each of them as follows: Bluel node for Blue
party, Greenl node for Green party and Redl node for Red

party. For equal representation, each political party is assigned
the same number of mining nodes in all our simulation runs.
The remaining four non-mining nodes are allocated as
follows: EC1 node is for the electoral commission, LA1 node
is for the local authority, whilst Ol and O2 nodes are for
the two independent observers. These are non-mining nodes
whose roles are monitoring and validation of transaction. For
transparency purposes, individual members of the public or
corporate bodies such as the press, and public observers can
host their non-mining monitoring nodes, to play the role of
observers and verifiers, as may be allowed by the stakeholders.
In order to satisfy the anonymity requirement, each vote on the
ledger is an encrypted record consisting of timestamp, TIN,
and the candidate or party of choice as shown in Fig. 6b.

%,

Y

(a) Node simulation

Time: 15/02/21:16:20:10 Time: 15/02/21:16:22:05 Time: 15/02/21:16:25:15
TIN: TIN: TIN:

Blue Candidate: Green Candidate: Red Candidate:
Joseph-Cons Party Jacob-Green Party Hannah-Labour Party
Votel Vote2 Vote3

(b) E-vote information
Fig. 6: Application simulation

The nodes’ addresses and authentication requirements were
set up in the configuration files. The number of voters consid-
ered in the first simulation run was ten based on ten Ganache
accounts. After setting up these parameters in the configuration
files, the written smart contract code was deployed and the
application web address and service port were published using
the truffle framework [12], [17]. Voters were then able to
access the user interface (voting menu) as shown in Fig. 7a,
and to cast their votes using their browsers. Fig. 7b shows the
administrative interface for verification of the configuration
and the Ganache accounts.

At the end of the voting window, the allocated Ganache
account was sent to the voter’s mobile phone or email address
as the Transaction Identification Number (TIN). The TIN can
be used to verify and confirm the vote but not the voter,
since the confirmation will only show the party, the candidate
of choice, and the timestamp of the vote. Thus, the voter’s
identity is anonymized and disassociated from the actual vote
to discourage coercion and vote-buying.

V. SYSTEM EVALUATION
A. Transparency Accuracy and Integrity

In order to evaluate the performance of SEVA with respect
to transparency, accuracy, and integrity, we need to show that:

SMART VOTING
PROTOCOL

¢ > ¢ O

H# Apps G Gmail @ YouTube R Maps EI Signintoyour.. @ NewTab

SMART VOTING
PROTOCOL

didate Votes
Party 0
urPaty 0
Joseph-Conservative-Party 0
Ocaict1eaccacoaa0be08a0200122b508754125 V.
OxBosict 1accacoaa0be0BaS02E0R20508754128
(0x62067314196998011931eeI98cC1 1291650771
0x589322045310a4Z51593507a008524 14609
0x200cedSe1a2113e Tcobxa0ee93d3805ca64046.

Jacob-G
Hannan

Ox31530091aa9654304900312116732601c205042

(b) Admin interface showing ten voting accounts
Fig. 7: Voting interface and admin interface

o votes are tallied as cast

e votes are recorded as cast

e votes are counted as cast

« the result is recorded and published as counted

At the end of the initial run of the simulation with three
mining nodes and ten voters, the voting result interface was
examined as shown in Fig. 8a, to ensure that it corresponds
with the votes cast at the user interface. On the voting
interface, four votes were cast for the candidate Jacob - Green
party, while three votes each were cast for candidates Hannan
- Red party and Joseph - Blue party. The displayed votes-count
on the report interface in Fig. 8a matches the votes cast in the
voting interface in Fig. 7a.

In addition to the above verification, the transaction logs
were examined to verify the backend process and the ledger
record. As shown in Fig. 8b, the backend log also reflected the
votes cast on the voting interface and displayed on the report
interface. This constitutes a double verification showing that
votes are tallied, counted, and recorded as cast.

B. Anonymity and Coercion-resistance

In evaluating anonymity and coercion-resistance features,
Fig. 7a and Fig. 7b show respectively, the user interface for
voters and the voting accounts generated for users. These
contained no voter identification information. Similarly, the
vote information which is written into the ledger by the smart
contract as shown in the transaction log in Fig. 8b contained
no voter identification information.

This combination shows that voter’s identification informa-
tion is not associated with the vote, and is replaced with the
Ganache account as designed. The votes could be verified
by the voter after the election using the TIN. However, the
absence of voter identification in the vote information will
make it difficult for voters to prove how they cast their vote to a
coercer for reward purpose. The verification confirms to voters
that their votes have not been altered, it does not confirm the

identity of the voters to a coercer, hence there is no motivation
to coerce.

® Google Chrome v

@ smart Vote x
e C ® 12700430

Apps G Gmail @ YouTube B Maps &

22 signintoyour.. @ NewTab

SMART VOTING
PROTOCOL

Candidate Votes
Jacob-Green-Party 4
Hannan-Labour-Party 3
Joseph-Conservative-Party 3
Ox588322045c30a4250503507 0085224114609V
Joseph-Conservatve-Party v |
[Vote |

Jacob@jacob-ThinkPad-X250: ~/projects/smart-voting

art-votir Jacob@jacob-ThinkPad-X250: ~/projects/smart-voting
$ npm start

@1.0.0 start /home/jacob/projects/smart-voting

Vote for Hannan-Labour-Party
te for Hannan-Labour-Party

(b) The log of first ten votes - counted on the fly
Fig. 8: Voting result and voting logs

22,500,000 Votes Count in 24Hrs
1000000

800000
600000

400000

MRk LLLLLLLL\

200000
1234567 89101112131415161718192021222324
Time (Hrs)

Vote Count

mJoseph - Conservative Party m Hannan - Labour Party mJacob - Green Party
(a) Graph of over 22 million votes count in 24 Hours

Voting ScoreBoard

JACOB - GREEN PARTY

HANNAN - LABOUR PARTY

Contestants

JOSEPH - CONSERVATIVE
PARTY

0 4000000

8000000 12000000

Joseph - Conservative| Hannan - Labour
Party Party
11250000 7875000

Jacob - Green Party

Series1 3375000

Vote Score

(b) Voting scoreboard at the close of the election
Fig. 9: Voting graph and voting scoreboard

C. Voters Scalability

In order to test the capability of SEVA in handling a large
number of voters (voters’ scalability), the number of nodes is
kept constant while the number of voters is increased gradually
from 10 to fourteen million, the size of registered voters in
the state of Florida in the year 2020. The number was then
increased to 22 million to match the number of registered
voters in the state of California, which had one of the highest
numbers of registered voters in the US in the year 2020,

according to the US voters’ registration record that is available
in the public domain. The output graphs and scoreboard for
the simulation election runs are as shown in Fig. 9a and Fig.
9b.

The casting of the votes for the simulations occurred at ran-
dom time interval to represent different voting time. The result
shows that the number of voters voting during different time
windows has no effect on the performance of the application
since it takes just a few seconds to cast a vote after successful
authentication. The votes cast were counted on the fly and kept
in memory pools while awaiting mining.

Resources utilization with block

>

TS, st

1 5 7 91113151719212325272931 333557

3941434547 495153

5557596163 656769

Block number

= iully decentralized (SEVA) patialy decetralzed

(a) Resources utilization graph for 3 mining nodes

Number of transaction per block

f’\—/‘afv"fVA‘ i ‘M"NV!

2 [
1
1

=

3 57 9111315171921232527 293133 3537 3041434547 495153555759 616365 6769
Blocknumber

——fully decemralized (SEVA) ~partialy decentralized

(b) Block transaction graph for 3 mining nodes
Fig. 10: Utilization and transactions

D. SEVA vs Partially Decentralized Application

In order to compare the robustness of SEVA with a partially
decentralized application, we simulated a partially decen-
tralized model that does not host the application code on
Ethereum, but stores votes in the blockchain network using
the same number of nodes. The resource utilization graph in
Fig. 10a shows lower resource utilization for SEVA than the
partially decentralized model as a result of the efficiency of
smart contract functionalities.

Similarly, in order to compare the efficiency of SEVA with
a partially decentralized model, the above simulation was
repeated with the same number of nodes. The number of
transactions per block are as shown in Fig. 10b and it indicate
a higher performance for SEVA in terms of the number of
transactions per block. In addition, the graph in Fig. 11a shows
a better performance for SEVA than a partial decentralized
model in terms of the number of blocks generated and mined
with time (throughput).

E. Mining Nodes Scalability

In order to increase the resilience of the application and
mitigate the risk of DoS and SPF, there is a need to increase the

System throughput (block generation per time)

Mumber of blocks
MWk

547 49515355 575961 63656769

Time (mins)

e f LIy decentralized (SEVA) = partially decentralized

(a) Throughput graph for 3 mining nodes

3

System throughput (block generation per time)

135 7 9111315171921232527293133353739414345474951 5355575961 63656769
s

Number of blocks

Time {mins)

—tully decentralized (SEVA) partialy decentralized

(b) Throughput graph for 30 mining nodes
Fig. 11: Throughput comparison

number of mining nodes. The increase in the number of mining
nodes is a test of nodes’ scalability. In order to investigate the
scalability of mining nodes in SEVA, the number of voters is
kept at twenty two million while the number of mining node
is increased to ten for each of the three political parties.

In this simulation run, it was observed that increasing the
number of mining nodes has no effect on the application
response time, however, the number of blocks generated per
time (throughput) is slightly lower for both SEVA and the
partially decentralized model as shown in Fig. 11a and Fig.
11b. However, the result still shows a better throughput for
SEVA than the partially decentralized model as shown in Fig.
11b.

We attributed this lower throughput to communication over-
head which increases with the number of nodes, but more test
results will be necessary to confirm this. A laptop of low-
end hardware configuration of 2.0GHz i5 Intel processor, 16G
RAM and 512G hard disk drive was used in the simulation
run, so we would expect a better performance on a high-end
machine.

The overhead of SEVA includes the time cost of develop-
ment and implementation, which is higher than the partially
decentralized model because of the need for Ethereum IDE
and coding of functionalities into smart contract. In addition to
this, the overhead of the processing power and communication
could make the application a bit expensive to implement and
run as the number of nodes increases. However, this could be
considered as the cost of security and hence constitute a trade-
off. The potential scalability issue is addressed by dividing the
election into smaller chunks known as constituencies, each of
which has independent blockchain networks and run a different
instance of the application.

F. Threat Analysis and Mitigation

SEVA consists of several distributed nodes working together
as one, which provides resilience against security attacks by
eliminating the possibility of SPF inherent in the centralized
and partially decentralized application models. For an attack
to have a significant effect on the application, a large percent-
age of the nodes will have to be attacked or compromised
simultaneously.

The two major attacks that could be staged against such an
application are DoS and record modification. The DoS attack
against mining nodes could be mitigated by increasing the
number of nodes. The higher the number of mining nodes,
the better the resilience of the blockchain network and hence
the application that runs on it.

In theory, an attacker will need sufficient resources to attack
51% of the nodes simultaneously for attacks such as DoS,
Replay, and record modification to have any significant effect
[13], [17]. Therefore, the larger the number of nodes in the
blockchain the better the security.

The record modification attack could manifest in the form
of a brute-force attack on the private key to create fake
transactions or modify existing ones. However, such transac-
tions would not pass the validation test until at least 51% of
the nodes collude to ratify the forged transaction [1], [12],
[13]. Therefore, manipulated ballots will be rejected by the
application due to failed validation processes and incorrect
signatures.

This implies that the voting records in the backend and the
application code written into smart contracts cannot easily be
changed since they are protected by the immutability features
of the blockchain. The randomly generated individual private
keys could be a target of a brute force attack, however, they
are 24 characters in length, hence brute-forcing keys within
the voting window will be a non-trivial task for even a well-
resourced adversary [18].

If on the contrary, it turns out to be a trivial task and the
adversary creates fake votes or modifies existing ones, such
action will render the fake votes or changed votes invalid and
hence they will be rejected by the application. In addition, the
votes have been counted on the fly before they are encrypted
and stored on the disk for verification and recounting purposes.

VI. CONCLUSION AND FUTURE WORK

The aim of developing SEVA is not to prevent attacks on
e-voting applications, since this would not be a realistic goal.
On the contrary, the aim is to make the job of the attackers
more difficult and less likely to succeed. In order to achieve
this, a fully decentralized voting application is proposed to
replace the current partially decentralized models by hosting
the application code and the data together on Ethereum for
resilience and security.

Finally, a perfect e-voting solution is still a matter for the
future, especially the one that will combine the receipt-free
feature with the ability of voters to verify their votes after
voting. The verifiability of the votes by voters is of a higher
priority to us at the moment, so our implementation includes

a voting receipt for voters to be able to verify that their votes
were tallied and counted as cast. Our next step is to find a way
to eliminate the receipt without removing the voters’ ability
to verify their votes.

REFERENCES

[1] David Khoury, Elie F. Kfoury, Ali Kassem, and Hamza Harb. Decen-
tralized voting platform based on ethereum blockchain. In 2018 IEEE
International Multidisciplinary Conference on Engineering Technology
(IMCET), pages 1-6, 2018.

[2] Shalini Shukla, A.N. Thasmiya, D.O. Shashank, and H.R. Mamatha.
Online voting application using ethereum blockchain. In 2018 Inter-
national Conference on Advances in Computing, Communications and
Informatics (ICACCI), pages 873-880, 2018.

[3] Feng Hao, Matthew N. Kreeger, Brian Randell, Dylan Clarke, Siamak F.
Shahandashti, and Peter Hyun-Jeen Lee. Every vote counts: Ensuring
integrity in large-scale electronic voting. USENIX Journal of Election
Technology and Systems (JETS), (3):1-25, August 2014.

[4] F. Hao, P. Y. A. Ryan, and P. Zielifiski. Anonymous voting by two-round
public discussion. IET Information Security, 4(2):62-67, 2010.

[5] Dalia Khader, Ben Smyth, Peter Y. A. Ryan, and Feng Hao. A fair
and robust voting system by broadcast. In Manuel J. Kripp, Melanie
Volkamer, and Ridiger Grimm, editors, 5th International Conference
on Electronic Voting 2012 (EVOTE2012), pages 285-299, Bonn, 2012.
Gesellschaft fiir Informatik e.V.

[6] Patrick McCorry, Siamak F. Shahandashti, and Feng Hao. A smart
contract for boardroom voting with maximum voter privacy. In Aggelos
Kiayias, editor, Financial Cryptography and Data Security, pages 357—
375, Cham, 2017. Springer International Publishing.

[7] Samuel Agbesi and George Asante. Electronic voting recording system
based on blockchain technology. In 2019 12th CMI Conference on
Cybersecurity and Privacy (CMI), pages 1-8, 2019.

[8] R. Hanifatunnisa and B. Rahardjo. Blockchain based e-voting recording
system design. In 2017 11th International Conference on Telecommu-
nication Systems Services and Applications (TSSA), pages 1-6, 2017.

[9] Wei Cai, Zehua Wang, Jason B. Ernst, Zhen Hong, Chen Feng, and

Victor C. M. Leung. Decentralized applications: The blockchain-

empowered software system. IEEE Access, 6:53019-53033, 2018.

Kevin Curran. E-voting on the blockchain. The Journal of the British

Blockchain Association, 1(2):4451, 2018.

Q. Wu, G. Ding, Y. Xu, S. Feng, Z. Du, J. Wang, and K. Long. Cognitive

internet of things: A new paradigm beyond connection. [EEE Internet

of Things Journal, 1(2):129-143, April 2014.

Awsan A. H. Othman, Emarn A. A. Muhammed, Haneen K. M. Mujahid,

Hamzah A. A. Muhammed, and Mogeeb A. A. Mosleh. Online voting

system based on iot and ethereum blockchain. In 2021 International

Conference of Technology, Science and Administration (ICTSA), pages

1-6, 2021.

[13] Jaewon Bae and Hyuk Lim. Random mining group selection to

prevent 51 In 2018 48th Annual IEEE/IFIP International Conference

on Dependable Systems and Networks Workshops (DSN-W), pages 81—

82, 2018.

Shiyao Gao, Dong Zheng, Rui Guo, Chunming Jing, and Chencheng Hu.

An anti-quantum e-voting protocol in blockchain with audit function.

IEEE Access, 7:115304-115316, 2019.

Sankarshan Damle, Sujit Gujar, and Moin Hussain Moti. Fasten: Fair

and secure distributed voting using smart contracts. In 202/ IEEE

International Conference on Blockchain and Cryptocurrency (ICBC),

pages 1-3, 2021.

Abhishek Kaudare, Milan Hazra, Anurag Shelar, and Manoj Sabnis.

Implementing electronic voting system with blockchain technology. In

2020 International Conference for Emerging Technology (INCET), pages

1-9, 2020.

Emre Yavuz, Ali Kaan Ko¢, Umut Can Cabuk, and Gokhan Dalkilig.

Towards secure e-voting using ethereum blockchain. In 2018 6th

International Symposium on Digital Forensic and Security (ISDFS),

pages 1-7, 2018.

[18] Wei Cui, Tong Dou, and Shilu Yan. Threats and opportunities:

Blockchain meets quantum computation. In 2020 39th Chinese Control
Conference (CCC), pages 5822-5824, 2020.

[10]

[11]

[12]

[14]

[15]

[16]

[17]

