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Abstract.

Localist modelsof, for example,the classificationof multidimensionalstimuli,
canrun into problemsif generalizationis attemptedwhenmany of the stimulusdi-
mensionsare irrelevant to the classificationtask in hand.A procedureis suggested
by which a localistmodelcanlearnprototyperepresentationsthat focuson the rele-
vantdimensionsonly. Thesepermitgoodgeneralizationwhich would belackingin a
simpleexemplar-basedmodel.

1. Introduction

The researchdescribedhererepresentsthe first stagesof developmentof a localist
neuralnetwork for supervisedlearningthatimprovesits classificationperformanceby
payingattentionto inputdimensionsrelevantto thetaskathand.Thework startedvery
muchasanappliedproblemwhich, aswill beseen,benefitsfrom a moretheoretical
analysisthanwasattemptedatfirst.

1.1 The Problem

Theprobleminvolvedtheclassificationof 50-dimensionalvectorsof realswhich had
previously beenderivedfrom gray-scaleimagesof faces.Thefaceshadbeenprepro-
cessedusing “morphing” techniquesso as to standardizethe imagesto a common
face-shape.The110faces,eachcomprising10000pixel values,werethensubjected
to a principalcomponentsanalysis(PCA),which allowedthefacesto berepresented
asa compressedvectorof 50 numbers.Eachnumberrepresentsa coordinatealong
anaxiscorrespondingto oneof those50 principalcomponents(PC)with thehighest
eigenvalues.Thedetailsof this preprocessing,andthemotivationbehindit, aregiven
in moredetail in [1].

Thefacesetcompriseda numberof subjects,eachposing7 differentexpressions,
namelyanger, disgust,fear, happiness,neutral,sadnessandsurprise.Thenumbersof
eachemotionwereapproximatelybalancedandwere17, 15, 15, 18, 14, 17 and14
respectively. Each50-dimensionalvectorcould thereforebe labelledby the identity
of the subjectandby the emotionposed.The taskwasto designa localist network
to learn to classify the facesinto categoriesdefinedby their emotionalexpression.



As will beseen,andasis perhapsintuitively obvious,this taskis moredifficult than
classifyingthefacesby identity.

Thedecisionto usea localistnetwork wasmotivatedby earlierwork (e.g.,[7] [8])
thathighlightedtheadvantagesof suchmodels.Of course,giventhat the taskis one
of classification,it wouldhavebeenpossibleto train,usingtheback-propagation(BP)
learningrule,a standardthree-layer(of units)network, with 50 input unitsand7 out-
put units eachonerepresentinga localist codingof the correctexpression-category.
Nonetheless,given the reservationsexpressedby myself andothers(see[8] andac-
companyingcommentary)with regardto theplausibilityof BPlearning,analternative
modelwassought.Similarly, asimpletwo-layernetwork trainedby thedelta-rulewas
avoidedin favourof anetwork constrainedsuchthateachcategorywasrepresentedby
anoutputunit whoseactivationwouldbemaximalfor aprototypicalcategorymember
— not a naturalconsequenceof applyingdelta-rulelearning.This constraintencour-
agedtheuseof a radial-basis-function(RBF)network, aswill bedescribedbelow.

2. A Naive First Step

A naive first step,that helpedto clarify the natureof the problem,was to attempt
a simplenearest-neighbourclassificationof a given testface-pattern.To be specific,
eachfacewasclassifiedaccordingto theemotionallabelof itsnearestneighbourin 50-
dimensionalspace.Performancewasextremelypoorfor thefollowingreason:because
eachsubjectposedeachexpression(with a few exceptions)it is likely thatthenearest
faceto that of subjectA posingexpression1 is that of subjectA posinga different
expression.In thesecircumstances,in which distancebetweendifferentexpressions
posedby thesamemodelis smalleron averagethandistancebetweendifferentmod-
elsposingthesameexpression,performanceof a nearestneighbourclassifieris guar-
anteedto be poor in the expressionclassificationtask.Onemight saythatsimilarity
betweenvectorsis dominatedby identity at the expenseof expression.This is intu-
itively plausible:It is notdifficult to imaginethat,evenin thefull 10000-dimensional
facespace,an imageof onepersonposingsurpriseis moresimilar to an imageof
thesamepersonposing,say, happinessthanit is to oneof anotherpersonposingsur-
prise.We cansee,therefore,that the task facedby the network is in somesenseto
learnto payattentionto thatsubsetof the50 dimensionswhich definesa subspacein
which expressionsof the sametype do indeedcluster, regardlessof the identitiesof
themodels.

In order to formalizethis idea,andtaking an RBF-typeapproach,I next tried a
simpletwo-layerclassifierwith 50 input nodesand7 outputnodeseachrepresenting
agivenexpression.Theweight, ����� , incomingto the � th outputnodefrom the � th input
node,representedthe meanvaluealongthe � th dimensionof patternsin class � . On
presentationof agivenpattern,� , for classification,theactivation, � � of the � th output
nodewasgivenby

� �
	��������� ��� ����������������� (1)

where� is aconstant,� and � arefunctionsto bedefined,����� representstheattention
paid by the � th outputnodeto the � th input dimensionand ����� is a measureequalto



� � ��� "!#��� � , theabsolutevalueof differencebetweenthe � th elementof theinputvector
andthecorrespondingweight.Thisideaof attentionalweightingis verysimilar to that
foundin Nosofsky’sgeneralizedcontext model([4]) andKruschke’sALCOVE model
([3])with oneexception:in themodeldescribedhere,eachoutputnodecanallocateits
attentiondifferently. Thisseemeda usefuldevelopmentsincethedimensionsrelevant
to theclassificationof oneemotionmight well differ from thoserelevant to theclas-
sificationof otheremotions.In the work of Nosofsky andKruschke, the attentional
parametershave beenenvisagedasallowing the “stretchingand “shrinking” of the
input spaceto permitmoreappropriateclassification.Heretheaim is for eachoutput
node(i.e., eachemotionclassifier)to learnto stretchandshrink its input spacein a
mannersuchthatpatternscorrespondingto thatemotionclassarewell clustered.

Thefirst network testedusedthesimplestversionof (1), namely

� � 	$�%&� � � ��� � ��� (2)

Thereweresevenoutputnodes,onefor eachexpressioncategory, andthebottom-up
weightvectorto a givennodewassetto the50-D meanvectorfor thecorresponding
category. Classificationof a testvectorwasimplementedby clampingthetestvector
at theinput andactivatingtheoutputnodesaccordingto (2). Thecategory of thetest
vectorwasassumedto bethatcorrespondingto themostactiveof theoutputnodes.

Attentionalweights,� ��� in (2), wereinitialized to unity sothattheclassifierstarts
asa 1-nearest-neighbourclassifierin an undistortedinput space.We thenattempted
to amelioratethe poor performanceof this classifier(describedearlier)by adjusting
only thevaluesof theattentionalweights.At first, this waseffectedby a learningrule
which canbequalitatively summarizedas:

1. presentpatternandclassifyby thenearestweightedprototype.
2. if classificationis correct reduceattentionto badly matchingdimensions(i.e.,

thosewith high � ��� ), increaseattentionto well matchingdimensions.
3. if classificationis incorrectincreaseattentionto badlymatchingdimensions,de-

creaseto well matchingdimensions.

The intuition underlyingthis procedurewasthat if a testpatternwasclassifiedcor-
rectly despitea largemismatch(i.e., � ��� ) alonga givendimension,thena sensitivity
to valuesalong that dimensionis not likely to be critical in calculatingthe activa-
tion of thenoderepresentingthatcategory. Conversely, for anerroneouslyresponding
categorynode,moreattentionshouldbepaidto badlymatchingdimensions.

Beyondanintuitive appeal,it canalsobeseenthatsucha procedureminimisesa
measureof errorwith respectto theattentionalweightsusingagradient-descent-based
rule.From(2), ' � �' �(��� 	)*� ��� (3)

which indicatesthat if we wish to increasetheactivationof a givennodein response
to aparticulartestpattern,thenweshouldsubtractavalueproportionalto ����� from the
correspondingattentionalweights.A largevalueof ����� will leadto a largedecrease



in attentionto thatdimension,a smallvalueof �+��� will leadto a smallattentionalde-
crease.Thequalitative procedureenumeratedabovesuggestsanincreasein attention
to well-matcheddimensionsunderthesecircumstances,ratherthana smalldecrease.
This canbeachievedby renormalizingthe attentionalweightsto a constantsum(or
length)aftereachweightchange.

The simple learningrule describedabove was testedextensively, usinga leave-
one-outcrossvalidationregime.(This regimeinvolves,for eachpatternin thetraining
set,training the network on all otherpatternsin the setandtestingthe resultantnet-
work’s performancewith the patternitself – this givesa goodtestof generalization
while maximizingthesizeof the trainingsetin eachcase.)While it provedpossible
to increaseperformanceon thetrainingsetusingtheattentionallearningrule, gener-
alizationperformancewaspoor. Theperformancenever approachedthe95%correct
for training patternsand78% correctfor untrained(leave-one-out)testpatternsthat
couldbeachievedusingastandardlineardiscriminantanalysison this dataset.

3. Theoretical Considerations

It wasdecidedto make a moredetailedtheoreticalanalysisof theproblem.In partic-
ular, classificationwasconceivedof asaBayesianmaximum-likelihooddecision.For
a multidimensionalNormaldistributioncentredon meanvector ,

!-��./�/	 0�21+34� d/2
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where !-��./� is a probability densityfunction and
5

is the covariancematrix. This
impliesthat
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where � is a constant.(It is oftenmoreconvenientto dealwith the logarithmof the
probability ratherthantheprobability itself, sincetheprobabilityvaluescanbecome
very small.Looking for a classwith themaximumlog posteriorprobability is equiv-
alent to seekingthe classwith the maximumposteriorprobability becausethe log
function is monotonicincreasing.)Variousassumptionscanbe madeaboutthe co-
variancematrix for a givencategory. For example,if we assumethattheoff-diagonal
elementsarezeroand that the on-diagonalelements(i.e., the variancesof eachdi-
mension)areequalto � 0�R � 7TS 0TR � 9�SVUWUWUVS 0�R �-XY� (wherethe secondsubscriptedindex
of ����� hasbeendroppedherebecauseweareonly talkingaboutthedistributionwithin
a singlecategory) then

JOK M !
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X
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wherè is thenumberof inputdimensions.Thusthelog probabilitydensityatagiven
vector . is given by a constantminusa linear combination(i.e., attentionalweight-
ing) of thedimensionwisedistancessquared,this timewith anadditionalnormalizing



factor
79ba X��\ 7 JLKNM �(� . If this function(with theconstant

JLKNM � termdroppedfor con-
venience)is allowed to replacethe previous activation function for outputnodesin
ourRBFnetwork then,givenatestvectorasinput,theoutputnodeswill respondwith
activationsequalto the posteriorprobability of eachclassgiven that testvector(as-
suminguniform priors) providing the our two assumptionsaretrue, that is, that the
covariancematrix is diagonal,andthattheattentionalweighton a givendimensionis
equalto the reciprocalof thevariancealongthatdimension.Picking themostactive
outputnodecorresponds,therefore,to a maximumlikelihooddecisionprocessthat
assumesuniformpriors.

Lookingat thepartialderivativeof
JOK M !
�2./� with respectto � � gives' JLKNM !-��.Q�' � � 	P01 �c0� � G� 9� � (7)

which is similar to theearlierpartialderivative but with theadditional 0�R � � term.A
learningrule basedon this partial derivative hasthe correctform suchthat � � tends
towardsthereciprocalof thewithin-classvariancealongthe � th inputdimension.This
is, of course,exactly asis requiredto satisfythesecondof our assumptionsabove.

Unfortunately, thefirst assumption,thatof diagonalwithin-classcovariancematri-
ces,is overly restrictive,evenin caseswhen,ashere,thefactthatthe50-Dvectorsare
themselvesderived from a PCA ensuresthat the covariancematrix taken acrossthe
whole110-patternsetis indeeddiagonal.Of courseit is possibleto usea full covari-
ancematrixandto performtheappropriatemathematicalcalculationsto givethevalue
of the posteriorlog probability of a givenclassbut the neuralnetwork implementa-
tion becomessomewhatcomplicateddueto theappearanceof unwantedcrossproduct
terms.Anotherwayaroundthisproblem,theoneadoptedhere,is to “whiten” eachof
theclasses,that is to preprocessthemembersof a givenclasssuchthat their covari-
ancematrix becomesdiagonal.Oneway of doingthis is to performclass-conditional
PCAs,that is, for eachclassperforma PCA usingonly membersof that class.For
eachclass,this resultsin a numberof linearcomponents(at mostonefewer thanthe
numberof patternsin theclass)representingarotatedspaceof reduceddimensionality
for which theclass-conditionalcovariancematrix is indeeddiagonal.

The structureof a network for implementingthis class-conditionalwhitening is
shown in Fig. 1. Eachclasshasa groupof preprocessingnodeswhich arededicated,
via PCA (or similar), to the representationof membersin that classin a whitened
space.Thereareanumberof self-organizingnetworkswhichcanperformPCA([2, 5,
6,9]), andthesemightbeemployedin thelearningof thelayer1 to layer2 connections
for eachclass.This wasnot donefor thepreliminarytestspresentedhere.A standard
PCA algorithm was run separatelyfor eachclassto producedirectly the valuesof
thecorrespondingnetwork weights.Becauseof therestrictionsof thePCA algorithm
availableandthefactthatthesmallestof theclassesonly contained14faces,thePCA
was run only on the first 13 valuesof the original 50-dimensionalpatternset (i.e.,
those13with thehighesteigenvalues),to give13-dimensionalvectorsat theoutputof
eachof theclass-specificpreprocessingmodules.Thelayer2 to Layer3 weightsthen
encodethemeanvectorsfor eachof thesevenclasses,takenacrossthepreprocessed
patternsfor thatclass.



Layer 3: Output nodes (one per category)

fully connected by adaptive

Layer 2: Preprocessed input

preprocessing weights

weights encoding
category means

Layer 1: Input pattern

Figure1: Thestructureof thenetwork

The classificationof a test face now involves the following: the reduced13-
dimensionalpatterncorrespondingto thefaceis clampedat layer1; eachof theclass-
specificpreprocessingmodulesthenprocessesthatvector, resultingin sevendifferent
13-Doutputvectors,onefor eachclass;thesevectorsarethenprocessedfurtherusing
attentionalweightswhich aresetto thereciprocalof thewithin-classvariancesin the
whitenedclass-specificspaces.Again, in thepreliminarytestingpresentedhere,these
weightswerecalculatedratherthanlearned.They should,however, be learnablevia
therule describedin (7). Eachoutputnodeactivatesto anextentequalto thelog pos-
terior probabilityof membershipof the correspondingclass.Picking the mostactive
of the outputnodesimplementsa maximumlikelihooddecision.Prior probabilities
canbe incorporatedinto themodelby addingthe relevantbiasto eachof theoutput
units.

4. Results

Preliminaryresultswereencouraging.Usingonly thefirst 13 of the50 dimensionsin
theoriginal inputpatternset,andthepreprocessingstrategy describedabove,training
patternperformanceof 95%correctwasachieved.Cross-validationperformanceus-
ing a leave-one-outmethod,resultedin 93%correct.As a caveatregardingthis latter
figure,wenotethatall thetrainingpatternswereusedin performingtheclass-specific
PCAsfrom which theweightsin thepreprocessingstageswerederived;likewise,all
patternswereusedin the settingof the class-specificattentionalweights(i.e.,recip-
rocalvariances).Theleft-out patternwasnot, however, usedin thecalculationof the
class-conditionalmeanvectorsfor thepreprocessedpatterns.93%correctis thuslikely
to beanoverestimateof thecrossvalidatedperformanceof thenetwork. Nonetheless,
for the reduced13-D input patterns,a linear discriminantanalysisgivesonly 65%
of trainingpatternscorrectanda crossvalidated(leave-one-out)performanceof only



42% correct.This suggeststhat the ability of the two-stagenetwork effectively to
modelfully generalwithin-classcovariancematrices,confersa considerableperfor-
manceadvantage,thoughat thecostof increasednetwork complexity.

5. Conclusion

The ideasandresultspresentedhereareonly preliminary, but they suggesta way in
which standardunsupervisedlearningprocedurescanbecombinedto give a network
whosegeneralizationabilities are much improved over simple localist alternatives,
suchasunrefinednearest-neighbourtechniques.Theenhancedclassificationrelieson
usinga subnetwork dedicatedto eachcategory, which producesasits outputthepos-
terior probability of thatcategory giventhe teststimulus.In doingso,the classifica-
tion network concentratesits “attention” on tranformeddimensionswhich show low
within-classvariance.Putanotherway, thesubnetwork dedicatedto a givenclassex-
aminestheteststimulusfor evidenceof invariantpatternsthatcharacterizethatclass.

In this preliminarywork, many implementationalshortcutshavebeentaken,such
astheexternalcalculationof class-specificPCsandsubsequentwithin-categoryvari-
ances.Ideally, further work would build suchfunctionality into the framework of a
fully self-organizingnetwork. One interestingpoint to note is that traditional PCA
pulls out first thoselinear combinationsthat “soak up” the mostvariancein the in-
put.Becauseof theirhighvariance,thesearethecomponentsto which thesubsequent
classificationprocesspaysleastattention.It might be betterto seekto extract first
(nonzero)linear combinationswith low variance,sincethesebestcharacterizewhat
is invariantabouta givenclass,andarethe dimensionsto which mostattentionwill
subsequentlybepaid.

Thenetwork trainedasdescribedabove, is ableto performclassificationof faces
into emotionalcategoriesequivalentto aBayesianmaximum-likelihooddecisionrule.
It assumesthat all facesin a given category comefrom a singlenormaldistribution
centredonthecategory-meanvector. Thisassumptionmightnotbeappropriate– there
maybemorethanonedifferent“type” of happy face.This suggeststhat thenetwork
might usefully be extendedby performingan early unsupervisedclusteringof faces
from a given class,with whiteningandcalculationof the log probability performed
separatelyfor eachclusterratherthanjust assumingthateachclassis equivalentto a
singlecluster. In theexamplepresentedhere,however, this proceduredoesnot seem
necessaryto permitgoodclassificationperformance.Whichever procedureis used,it
is clear that the preprocessingnetworks generatedfor the variousemotionalclasses
will not be appropriatefor otherclassicationtasks,of the facesinto, say, identity or
genderclasses.(Comparethe inappropriatenessfor a given task of hiddenunits in
a BP net trainedon anothertask.)If otherclassificationsarerequired,thentraining
canproceedasbefore,with preprocessingnetworksaddedaccordingly. Theresulting
network mightbedescribedasmodular, with separatesubnetworksdedicatedtowards
the recognitionof emotionsand identities.The doubledissociationsthat have been
foundin patientpopulations,betweenemotionandidentity recognition,andbetween
the recognitionof different emotions,might be seenas supportive of this modular
structure.
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