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ABSTRACT 

Hopfield type associative memory networks usually use a 

bipolar representation.  It is also possible to use a binary 

0/1 representation, although in the standard model this 

lowers performance.  This paper reports an empirical 

investigation into the performance of both binary and 

bipolar associative memories, trained using the simple 

perceptron  learning rule.  Such networks normally have 

much better performance than the standard model.  It is 

found that the binary networks perform just as well as the 

bipolar networks, although they take significantly longer 

to train. 
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1.  Introduction 
 

High capacity associative memory models can be 

constructed from networks of perceptrons, trained using 

the normal perceptron training procedure [1, 2].  Such 

networks have a capacity much higher than that of the 

standard Hopfield network, and in fact their capacity is 

related to the capacity of a single perceptron.  A 

perceptron with N inputs can learn a maximum of 2N 

random unbiased patterns, and this capacity (  = 2) is 

increased if the training set is correlated [3].   

In the standard model the units in the network are bipolar, 

taking either the value +1 or –1.  It is also possible to use 

a binary, 0/1, network, and these two models can be 

shown to be functionally equivalent [4].  However the 

choice of representation can affect the speed and efficacy 

of the learning rule.  For example the standard covariance 

matrix (one shot Hebbian learning), together with 0/1 

states, gives only half the capacity of the same matrix 

with the bipolar representation [5]. 

The simple perceptron learning rule is quite different 

when the patterns to be learnt are binary as opposed to 

bipolar; with binary patterns, learning only takes place on 

active connections, that is on afferent connections from 

units in the +1 state.  In the bipolar case learning takes 

place on all incoming connections.  The binary perceptron 

network is therefore interesting as it does not have the 

biologically implausible nature of the bipolar learning. 

Here we conduct an comparative empirical investigation 

into the behaviour of bipolar and binary learning rules. 

The paper first introduces the basic model.  In Section 3 

the formal equivalence of bipolar and binary networks is 

demonstrated.  Section 4 discusses the four different 

forms of perceptron learning rules used, and Section 5 

describes the various performance measures. In Section 6 

the results are presented and the paper concludes with a 

discussion 

 

 

2.  Network Dynamics 

 
All the high capacity models studied here are 

modifications to the standard Hopfield network. The net 

input, or local field, of a unit, is given by: hi = wijS j
j i

 

where S is the current state and wij  is the weight on the 

connection from unit j to unit i.  We use S to denote a 

bipolar state, S = ±1 and  for a binary state,  = 0/1.   

The dynamics of the network is given by the standard 

update:  

 

 S i =

1 if hi > i
S

1 if hi < i
S

Si if hi = i
S

 

 
 

 
 

   where i
S  is the unit threshold   

 

or in the binary case: 

 

  i =

1 if hi > i

0 if hi < i

i if hi = i

 

 
 

 
 

   where i  is the unit threshold 

 

 Unit states may be updated synchronously or  

 asynchronously.  Here we use asynchronous, random 



order updates.  A symmetric weight matrix and 

asynchronous updates ensures that the network will 

evolve to a fixed point.  If a training pattern is one of 

these fixed points then it is successfully stored, and said 

to be a fundamental memory.   

 

 

3.  Equivalence of bipolar and binary 

networks 
 

Given a set of weights for either the bipolar or binary 

network, an identically functioning network with the other 

type of unit can be constructed [4].  For example if the 

units are bipolar (taking i
S

= 0  for simplicity) then the 

transformation to an equivalent network with binary states 

is accomplished with the mapping:  

i =
Si +1

2
, wij = 2wij

S
, i = wij

S

j

 

So that: 

 

 

 S i = 1

hi = wij
SS j

j i

> 0

wij
S (2 j 1)

j i

> 0

2wij
S

j

j i

> wij
S

j i

wij j

j i

> i

  i = 1

 

 

The networks therefore will have identical dynamics.  It is 

worth noting that with random uncorrelated training 

patterns the unit thresholds, i , will approach zero as the 

size of the network increases (being a sum of random 

numbers, and assuming the weights are scale free with 

respect to the size of the network) so that the network will 

work with binary units just as with bipolar units. 

 

 

4.  Learning 
 

To train a network of perceptrons to act as an associative 

memory, the input and output layers consist of the same 

set of neurons.  The weights can then be trained using any 

perceptron training procedure, so that the network auto-

associates.  See Figure 1. 

 

 

Weights trained to autoassociate

Recurrence used
in dynamics

 
Figure 1: A set of perceptrons, used as an associative memory. 

 

The actual training rule we use (in both cases, binary and 

bipolar) is the simple perceptron rule, with learning 

threshold T.  So if the training set consists of the patterns 
p{ }and if the network has N units the learning rule is: 

 
Begin with zero weights 
Repeat until all units are correct 

  Set state of network to one of the p 
  For each unit, i, in turn: 
   Calculate its net input hi

p.  

   If i
p = on and hi

p <T( ) or i
p = off and hi

p > T( ) 
   then change all the weights to unit i  
    according to: 

    

  

wij = wij +
j
p

N 1
 when i

p
= on and hi

p
< T( ) 

wij = wij
j
p

N 1
 when i

p
= off and hi

p
> T( ) 

The value i
p

= on denotes the ith bit of 

pattern p being +1

and the value i
p

= off denotes the value 

-1 or 0 according to the type of network

 

 

Here then the learning rate is 
1

N 1
, and is thus inversely 

proportional to the number of connections each unit 

makes, thereby ensuring the weights are scale free with 

respect to the size of the network.   

Now the key point to note is that with the binary 

representation no weight changes can occur on inactive 

inputs, since in this case j
p

= 0 .  However with the 

bipolar representation weights will change on every input 

weight, whenever a unit is incorrect.  This will therefore 



cause the two types of network to arrive at different 

weight matrices.   

Of course the perceptron convergence theorem guarantees 

that if a set of weights exist that solve the problem then 

the perceptron learning rule will converge upon it, 

regardless of the representation used, and an upper bound 

can be put on the number of steps, M, required [6].  In the 

bipolar case: M <
N 1( ) 1+ 2T( )

D2
, where D is the, 

training set dependent, difficulty of the learning task (the 

smaller the possible set of solutions the smaller is D, and 

the harder is the learning task).   

 

4.1 Weight Symmetry 

 

We also examine one further modification of the learning 

rule.  In the standard Hopfield network the weights are 

symmetric ( wij = w ji ), a sufficient condition for 

guaranteeing point attractors only.  The perceptron 

learning rule described above does not produce symmetric 

weights, but it is easy to modify it to do so [3].  The idea 

is simply to always change both wij  and w ji together, 

effectively halving the number of independent weights in 

the network.  Remarkably this does not reduce the 

capacity or performance of the network [7].  The 

symmetric training procedure is therefore: 

  

 
Begin with zero weights 
Repeat until all units are correct 

  Set state of network to one of the p 
  For each unit, i, in turn: 
   Calculate its net input hi

p.  

   If i
p = on and hi

p <T( ) or i
p = off and hi

p > T( ) 
    then change the weights to unit i and j 
    according to: 
 

    

  

wij = wij +
j
p

N 1

w ji = w ji +
j
p

N 1

 

 

 
 

 

 
 

 when i
p

= on and hi
p

< T( ) 

wij = wij
j
p

N 1

w ji = w ji
j
p

N 1

 

 

 
 

 

 
 

 when i
p

= off and hi
p

> T( ) 

 

 

 

5.  Performance Measures 
 

We compare the performance of the two types of 

representation empirically.  We use random, unbiased 

(equal probability of ±1 or 0/1) training sets of various 

sizes.  We report four measures of performance as 

described below. 

 

5.1 Stability Measure 

 

The learning rules drive the net inputs of the units in the 

network to the correct side of the learning threshold T. 

Increasing T may improve the attractor performance of 

the network [8]. Some care must be taken though, since if 

we consider a network in which all the training patterns 

are stable, that is hi >T or hi < T  as appropriate, for all 

patterns, and units, i, then any uniform, upward scaling of 

the weight matrix will increase the magnitude of the hi  
but will obviously not increase the attractor performance. 

In fact the optimal attractor performance is achieved when 

the threshold is maximised with respect to the size of the 

weights. For this reason the relevant characterization is 

the normalised stability measure, defined as: 

i
p

=

hi
p

w i

 if  i
p

= 1

hi
p

w i

 otherwise

 

 

 
 

 

 
 

 

where wi  is the incoming weight vector to unit i. The 

minimum of all the i
p

 therefore gives a measure of the 

likely attractor performance [9] and we take = min
i,p

i
p( )  

 

5.2 Attractor Basin Size 

 

The key performance indicator in this type of network is 

the size of the basins of attraction of the trained patterns.   

Throughout  this work the measure used is the mean 

normalised radius of these basins denoted as R [10].   

The way this has been estimated throughout the work 

presented here is as follows.   

For each of a set of sample states (50 here) a fixed 

fraction, m0, of the state is made identical to the 

corresponding part of one of the stored patterns, 
p
 , and 

the rest of the state is random. Each of these sample states 

is then required to relax, under the dynamics of the 

system, to the correct 
p
.  An incremental search is 

undertaken for the smallest value of m0 for which this 

happens. Initially a low value is taken for m0 and 

consequently it needs to be incrementally increased until 

all of the sample states relax to a 
p
 .  Averaging the final 

values of m0 over different sets of stored patterns yields: 

R = 1 m0  

As is pointed out in [11] for finite size associative 

memories, another factor needs to be considered.  Each of 

the initial states used in this calculation may overlap one 

of the other stored patterns more closely than the original 
p
, and to compensate for this the definition of R is 

modified to: 

R =
1 m0
1 m1

 

where m1 is the overlap with the closest of the other 

stored patterns.  The double average for m1 is taken over 



the 50 different starting points and over the different sets 

of patterns. 

 

p1 p2
r

r

p4

p3

 
Figure 2:  Calculating R.  In this figure p1, p2, p3 and p4 are 

patterns in the training set.  The closest pattern in the training set 

to p1 is p2, at a distance of 2r.  Optimal performance occurs 

when all vectors within the hypersphere centred on p1 and 

radius r, are attracted to p1.  If all patterns stored in a network 

exhibit this performance, its normalised average basin of 

attraction, R, is 1 

 

A value of R = 1 denotes perfect attractor performance 

and a value of 0 signifies that any single bit flip of a 

trained pattern will not be corrected.   

 

5.3  Training Times 

 

The next performance measure we report is the training 

time required to learn the training set.  This is quantified 

as the number of epochs (complete presentations of the 

training set) needed for convergence of the training 

process. 

 

5.4 The Weight Symmetry 

 

The final measure we report  is the symmetry of the 

weight matrix for the non-symmetric rule.  This is 

calculated as: =

wij

i, j

w ji

wij
2

i, j

. For a symmetric matrix this 

takes the value +1.  For an anti-symmetric matrix it takes 

the value –1 and for a random set of weights it will be 

roughly zero. 

 

 

6.  Results 
 

In this section we evaluate the binary and bipolar 

networks trained both symmetrically and non-

symmetrically.  All the networks used consist of 100 

units.  The loading on the network is varied from 10 

patterns to 75 in steps of one.  At each loading the 

networks are evaluated with 50 random training sets of 

uncorrelated data.  We denote the four types of network 

as shown in Table 1: 

 

Network 

Type 

Non-Symmetric 

Weights 

Symmetric 

Weights 

Bipolar Bipolar-NS Bipolar-S 

Binary Binary-NS Binary-S 

 
Table 1: The names given to the four different networks. 

 

6.1 Training Times 

 

Figure 3 shows the number of epochs required to train the 

networks.  It is firstly apparent that the binary networks 

take longer to train than the bipolar ones. This is 

unsurprising as at any given presentation of a training 

pattern fewer weight changes are made in the binary 

learning.  It is also clear that in both types of network, 

symmetric networks can be trained more quickly than the 

non-symmetric ones.  Again this is not surprising: 

symmetric networks have only half the number of 

independent weights of the equivalent non-symmetric 

model. 
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Figure 3: The training time, in epochs, for each of the four 

different types of network. 

 

 

6.2 Stability Values 

 

As described earlier the minimum value of the normalised 

stability measures, , indicates how well the network is 

likely to perform.  Figure 4 shows the  values for all four 

types of network. 
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Figure 4: The  values for the four types of network.  The 

Bipolar networks have almost identical  values, upper pair of 

lines, with the Binary networks having values half that of the 

Bipolar networks, lower pair of lines. 

 

It can be seen that the symmetric and non-symmetric 

learning rules produce very nearly identical kappa values 

(the plots very nearly coincide).  The binary networks 

produce kappa values that are almost exactly half that of 

the bipolar nets; this is in accord with the network 

equivalence mapping described in Section 2 in which the 

weights of the binary network are twice the size of the 

bipolar equivalent. 

 

6.3 Size of the Basins of Attraction 

 

As described earlier the key performance measure for 

associative memory networks is the size of the basins of 

attraction of the trained memories.  Figure 5 shows the 

measured R values.  It is immediately apparent that all 

four variations of the model produce almost identical 

values for R, at all loadings.  
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Figure 5: The R values for the four types of network.  Four very 

similar plots. 

 

Figure 6 shows, for interest, the relationship between R 

and  for one of the network types 
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Figure 6: The value of R as  varies, for the Bipolar-NC 

network. 

 

For much of the range of  the relationship is linear, 

showing how well  predicts actual attractor performance. 

 

6.4 Symmetry 

 

For the non-symmetric networks it is interesting to 

examine the weight symmetry as described in Section 4.4.  

Figure 7 gives the results for the Binary-NS and Bipolar-

NS rules. 
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Figure 7: Symmetry values for the weight matrix of the four 

types of network. 

 

As we have reported elsewhere [12] the non-symmetric 

learning rules produce very symmetric weights, with the 

symmetry decreasing with loading.  It is interesting to 

note that the Binary network has slightly lower symmetry 

than the Bipolar network.   

 

 

7. Discussion 
 

As observed in Section 3, a trained bipolar network can 

be transformed into an exact binary equivalent, so one 

further question can be asked:  is the binary learning rule 



simply finding this scaled set of weights?  To answer this 

question we calculated the correlation coefficient between 

the weights in the four types of network discussed here.   

 
Loading BinNS/BipNS BinS/BipS BinNS/BinS BipS/BipNS 

10 0.93 0.92 0.98 1.00 

20 0.95 0.94 0.97 0.99 

30 0.96 0.94 0.96 0.98 

40 0.96 0.94 0.94 0.95 

Table 2: The correlation of the weights in 50 unit networks 

trained at various loadings.  The results are averages over 10 

runs. 

 

It can be seen in Table 2 that there is a high degree of 

weight correlation between the bipolar and binary net 

(columns 2 and 3) but they are not identical.  Indeed there 

is higher correlation between the weights in the 

symmetric/non-symmetric models (columns 4 and 5). 

Associative memories with binary representations are 

interesting as the learning rule is less biologically 

implausible than the corresponding bipolar rule.  Here we 

have shown that in binary networks, trained using 

standard perceptron learning, perform just as well as their 

bipolar equivalent.  Their only drawback is that the 

training times are significantly increased. 

One further, and important point should be noted.  In the 

bipolar networks there is a symmetry between the +1 and 

–1 states, so that each fundamental memory has a 

conjugate state, with reversed polarity, that acts as an 

equally significant attractor.   For example if the state 

Si{ } is stable, then i• Si = sign wij S j
j

 

 

 
 

 

 

 
 
 so that 

i• Si = sign wij S j( )
j

 

 

 
 

 implying that Si{ } is also 

stable.  Therefore when bipolar networks are started in  

random initial states they will relax to fundamental 

memories, and their inverses, with equal frequency.   

The binary networks, however, do not have this problem: 

+1 and 0 are not symmetric.  We find that when a binary 

network is started in a random state, a fundamental 

memory is found with the same frequency as the 

combined frequency of finding fundamental memories 

and finding their inverses, in the bipolar network.  The 

complete elimination of unwanted inverse states is a 

notable benefit of the binary representation. 
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