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Abstract 

This paper aims to identify an optimum bone fracture stabilizer. For this purpose, three design 

variables including the ratio of the screw diameter to the plate width at three levels, the ratio of the 

plate thickness to the plate width at three levels, and the diameter of the bone at two levels were 

selected for analysis. 18 3D verified finite element models were developed to examine the effects 

of these parameters on the weight, maximum displacement and maximum von Mises stress of the 

fixation structure. Considering the relations between the inputs and outputs using multivariate 

regression, a genetic algorithm was used to find the optimal choices. Results showed that the 

diameter of the bone and the amount of load applied on it did not have a significant effect on the 

normalized stresses on the structures. Furthermore, in all ratio of the plate thickness to the plate 

width, as the ratio of the screw diameter to the plate width increased, the amount of stress on the 

structure decreased. But, by further increasing the ratio of the screw diameter to the plate width, 

the amount of stress on the structure increased. On the other hand, by increasing the value of the 

ratio of the plate thickness to the plate width, the maximum amount of stress on the structure 

decreased. Finally, optimal solutions in terms of the weight and the maximum amount of stress on 

the structure were presented. 

mailto:nourani@sharif.edu
mailto:nourani@sharif.edu


2 
 

Keywords: Locking Plate; Optimization; Genetic algorithm; Finite element method; Bone 

fracture. 

 

Nomenclatures 
Diameter of the screws, mm d 
Thickness of the plate, mm t 
Width of the plate, mm w 
von Mises stress, MPa v.M 

Normalized data,  
𝑋

𝑋𝑚𝑎𝑥𝑖𝑚𝑢𝑚
 Normalized.  

Failure load, N  𝐹𝑓𝑎𝑖𝑙𝑢𝑟𝑒 

Applied force on the bone, N 𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑 

Coefficient of determination 𝑅2 

Constant parameter α 
Stress, MPa σ 
Ultimate stress, MPa 𝜎𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 

 

1. Introduction 

Bone diaphysis fracture is a common orthopedic problem that may be caused by aging or other 

problems such as malnutrition, genetic disorders, traumatic injuries or accumulation of damages.1–

3 Generally, in young people (i.e. under the age of 30), this fracture is more likely to occur as a 

result of severe accidents, while in elderlies it would mostly happen because of falls.4 Using 

locking compression plates (LCPs) is a common method to stabilize internal bone fractures. These 

plates would allow for early ossification, whereas in the neutral plates, first a callus forms and then 

the ossification occurs. Therefore, they have a great advantage over other plates.5–7 However, an 

important challenge with this type of plates is the risk of fixation failures as widely reported by 

many investigators. Some studies have been done about this risk and the failure loads of these 

plates under various conditions have been estimated. For example, ref. 8 investigated the effect of 

a gap between the LCP and bone on the failure load of the fixation structure. The results showed 

that with increasing the gap from 0 to 5 mm, the failure load decreased by about 62%. Ref. 9 
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statistically examined an LCP that were used as a fixation for distal femur fractures. The results 

showed that 12.5% of the total fractures occurred in the first 6 weeks and 50% of them occurred 

after 6 months. According to this report, analyzing the strength of implants before surgery can be 

very helpful as the failure of the plates after surgery would cause serious problems for the patient. 

Multi-objective optimization has been widely used as a way to achieve the optimum solutions 

for designing and improving performance of various structures; e.g. designing thin-walled 

structures under compressive loads.10,11 Ref. 12 investigated the optimal location and number of 

screws to reduce the maximum displacement of LCP structures by using particle swarm 

optimization (PSO) algorithm. The results showed that by increasing the number of screws up to 

6, with 3 screws at the top of the fracture side and 3 screws at the bottom side, the maximum 

displacement of structure significantly reduced. However, further growth in the number of screws 

had no significant effect on the maximum displacement. Mouzen et al. 13 observed that 

configuration of screws had a greater effect on the quality of fixation than did the plate material. 

Wee 14 simulated the plate-screw fixation system so that the bone was modeled with a 

homogeneous cylinder; the results showed that the distance between the screws had a significant 

effect on the stresses of the plate and screws. 

Considering the outcomes of the studies mentioned above, since post-surgery failures of the 

plate is probable, it has been suggested to establish a finite element (FE) analysis before an 

operation to prevent unexpected implant failures.15 FE analysis and other numerical simulations 

have been widely used as a reliable and low-cost method for recognizing and studying various 

phenomena such as impact and crushing problems.16–19 

Recently, with the benefit of 3D printers, many implants made of titanium, ceramic etc. can be 

customized according to the patient bones anatomy/geometry.20 Therefore, key design parameters 

and their influences on the quality of fixation should be investigated.  
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Up to now, evaluating the simultaneous effects of the ratio of screw diameter to plate width, 

ratio of plate thickness to plate width and bone diameter on the stress distribution have not been 

investigated. Therefore, the main objective of this study is to propose non-dominated solutions in 

terms of structure weight and maximum von Mises (v.M) stress using a multi objective 

optimization algorithm.   The optimization algorithm utilized in the study is commonly used in 

many fields of research due to its efficiency and ability to incorporate a large number of variables. 

The method generally consists of four stages of initialization, crossover, selection and mutation.21 

The framework presented in this study can be applied to other types of plates as well. 

 

2. Materials and Methods 

SolidWorks (Dassault Systèmes) software was used to model the bones, screws and plates. The 

threads of the screws were omitted following the approach of refs. 22,23,24 and they were modeled 

with a diameter changing from 2 to 15 mm and a length of 32 to 70 mm, according to the thickness 

of the plate and the diameter of the bone. The bones were modeled as a hollow cylinder 14, 24,25 

with a thickness of 1.5 mm, and a 10 mm transverse gap from the fracture edge was assumed in 

the models.8 Figure.1 shows a schematic of the plate. The width of the plate was chosen so that the 

ratio of the screws diameter to plate width (d/w) was equal to 11%, 46% and 86% for screw 

diameters of 2, 8 and 15 mm, respectively. Also, the ratios of the plate thickness to the plate width 

(t/w) were 11%, 57% and 114%.  

Figure 1. 

 

After that, the full factorial design using Minitab software with 18 iterations were performed 

to identify the functional system and find the optimal solutions (Table 1). The functional system 

included the maximum v.M stress on the plate, maximum v.M stress on the screws, maximum 

displacement and the weight of the fixation structure (i.e. weight of screws and plate). In Table 
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1.A, the values of the design variables in each model are listed. In order to reduce the number of 

models, the amount of plate length, number of holes and distances between the centers of plate 

holes were considered fixed. 

Table 1. 

 

The commercial finite element software, Abaqus (Simulia, Dassault Systems) was used for 

analysis. Isotropic linear elastic materials were assigned for bone, plate and screws. 14,24 The 

interaction between all components was considered as “tie”.24 Poisson's ratio and modulus of 

elasticity were respectively defined to be 0.3 and  210 GPa for plate/screws and 0.3 and 17 GPa 

for the bone.26 A 0.2 MPa compression pressure was applied to the upper part of the bone, while 

the distal part of the bone was fixed.24 The loading conditions selected in this paper were in 

accordance with the load on the bones of the lower limbs in real conditions, and this type of loading 

has been used in many numerical and experimental studies (e.g. 24). Two groups of bones with two 

different diameters of 20 and 40 mm were used to investigate the effect of the bone diameter and 

the amount of applied load on the outputs. The equivalent force applied to the center of pressure 

was 17.4 N for the smaller bones and 36.2 N for the larger ones. Since weight bearing on a broken 

bone changes over time, the values of dimensionless v.M stress were obtained using two different 

load values. These load values are corresponding to the initial stages of healing in which a person 

uses a cane or other aids, as too soon weight bearing may lead to problems. 27 

Quadratic tetrahedral three-dimensional stress type elements (C3D10) were used to mesh the 

two parts of the bone, and linear hexahedral elements (C3D8R) were utilized for the screws and 

plates. Finally, a convergence analysis showed an almost independence of the parameters of 

interest on the mesh size (i.e. less than 5% for displacement and v.M stress). For plate with 

thickness of 2, 10 and 20 mm, the element size was selected 0.3, 0.4 and 0.6 mm, respectively, and 
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for screws with diameters of 2, 8 and 15 mm, the element size was selected 0.2, 0.4 and 0.5 mm, 

respectively. Figure 2 shows the CAD and meshed model created in this study. 

 

Figure 2. 

 

After FE modeling, the non-dominated sorting genetic algorithm (NSGA-II), which is a multi-

objective optimization algorithm, was applied to find the optimal solutions. There were two design 

variables  including d/w and t/w, and two objectives (cost functions) which were the weight of the 

fixation system and the maximum v.M stress on the structure. These cost functions were obtained 

based on the multivariable regression coefficients from normalized data. Table 2 summarizes the 

GA cost functions, constraints and optimization parameters obtained from a trial and error and 

ref.28. Also, a population size of 300 was considered by computing several population sizes and 

comparing the outcomes.  

Table 2. 

 

3. Results 

3.1.Model Validation 

Ahmad et al. 8 investigated the effect of the gap between the plate and bone on the failure load 

of the fixation structure. The results showed that the amount of failure load decreased when the 

gap increased. In the current study, Ahmad's model was used as a reference for validation. The 

effect of distance on the maximum v.M stress was studied using a 3D FE analysis under similar 

loading conditions as applied in Ahmad's model. The results of FE analysis showed that with 

increasing the plate distance from the bone, the maximum stress on the structure increased.  



7 
 

While in Ahmed's model 8 the amount of failure load was reported, in this study the maximum 

v.M stress was evaluated. According to Equations 1-3, the maximum amount of stress on the 

structure is inversely related to the amount of failure load:  

𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑

𝐹𝑓𝑎𝑖𝑙𝑢𝑟𝑒
=

𝜎

𝜎𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒
       (1) 

𝐹𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 𝜎𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 × 𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑 ×
1

𝜎
       (2) 

𝐹𝑓𝑎𝑖𝑙𝑢𝑟𝑒 =  𝛼 ×
1

𝜎
     (3) 

where 𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑 and 𝐹𝑓𝑎𝑖𝑙𝑢𝑟𝑒 represent the applied force on the bone and the failure load, 

respectively. 𝜎 and 𝜎𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 are the values of the maximum v.M stress and ultimate stress. 𝛼 is 

a constant coefficient obtained by equations 1 and 2. Normalized values of the inverse of maximum 

v.M stresses and failure loads were used to compare the results. The normalized values of failure 

load, the inverse of the maximum v.M stress and displacement are obtained by dividing these 

values by the largest value of failure loads, inverse stresses and distances, respectively. As shown 

in Fig. 3, the two models were in close agreement. Also, R-squares calculated from a linear 

regression of the models of this study and ref. 8 were 0.96 and 0.94, respectively, suggesting a 

linear behavior in both models.  

 

Figure 3. 

  

 

3.2.Main and Interaction Effects  

Fig. 4 illustrates the normalized amount of the maximum v.M stresses on the structure and the 

ratio of the maximum v.M stress on the plate to the screw, for two bones with diameters of 20 and 

40 mm. The amount of equivalent force applied on these two bones is 17.4 and 36.2 N, 
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respectively. According to these figure, the size of the bone has not a significant effect on the  

maximum v.M stress and the ratio of maximum stress on plate to screw. Also, the maximum 

difference between the values obtained from two different sizes of bone was less than 10%. 

Therefore, the size of the bone and the amount of load on it did not have a significant effect on the 

results. As a result, only the outputs of the bone with a diameter of 40 mm have been used in the 

coming analysis. 

Figure 4. 

 

Figure 5a illustrates the effect of t/w and d/w ratios on the plate normalized stress. By 

increasing d/w from 11% to 46%, the maximum stress on plate decreased by about 8.3%, while by 

further growth in d/w from 46% to 86%, the stress increased by about 232%. This trend shows that 

increasing the diameter of screw does not necessarily reduce the stress on the plate.  

Figure 5. 

The effect of increasing t/w ratio on both stresses and maximum displacements was similar; 

i.e. by increasing this ratio from 11% to 114%, the amounts of normalized v.M stress on the plate, 

normalized v.M stress on screw, maximum displacement and the maximum v.M stress on structure 

decreased by 96%, 83%, 99% and 92% respectively (Figs. 5a-d). As the d/w increased from 11% 

to 46%, the amounts of the maximum v.M stress on the screws, maximum displacement and the 

maximum v.M stress on the structure decreased by about 83%, 15% and 56% respectively. By 

further growth in d/w from 46% to 86%, the amount of maximum v.M stress on screw declined by 

about 23%, while the amounts of maximum displacement and maximum v.M stress on the 

structure increased by about 64% and 232%, respectively (Figs. 5b, 5c and 5d). 

According to Fig. 6, in all t/w levels, with the growth of d/w to a certain level, the amount of 

stress on the structure reduced, while by further increase in d/w, the amount of stress on the plate 

increased. On the other hand, by increasing the value of t/w in all d/w ratios, the maximum amount 
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of stress on the structure declined. Therefore, it was observed that the maximum v.M stress on the 

structure depends on the values of t/w and d/w, and a similar behavior can be seen in each t/w; i.e. 

at any ratio of t/w, by changing d/w from 0.11 to 0.46, the maximum v.M stress on the structure 

decreased, while by further growth in d/w from 0.46 to 0.86, v.M stress increased. 

Figure 6. 

 

Figure 7 demonstrates the effect of different t/w and d/w values on the maximum v.M stress 

on the plate. According to this figure, with increasing the thickness of the plate, the amount of 

stress on the plate decreased. Also, in general, increasing the diameter of the screw first reduced 

the stress and further increasing the diameter elevated the stress on the plate. In addition, it is worth 

to note that a structure with a lower weight did not always have a more v.M stress. For example, 

the least amount of v.M stress was observed for t/w=114% and d/w=46% (see Fig. 7f), while the 

heaviest model is shown in Fig. 7i with a larger maximum stress with respect to that of Fig. 7f. 

The largest amount of v.M stress was related to the plate with the least thickness and the largest 

screw (Fig. 7g), while the minimum weight was related to Fig.7a. 

Figure 7. 

 

3.3.System identification  

In order to identify the fixation structure, the mathematical relation between design variables 

(t/w and d/w) and three outputs were obtained using a multivariate regression. As mentioned 

before, the bone diameter had no significant effect on the normalized outputs. Therefore, the 

analysis was performed using two design variables. Table 3 shows the regression characteristics.  

 

Table 3. 

 



10 
 

Based on Table 3, the cost functions 1 (the weight of the structure) and 2 (the maximum v.M 

stress on the structure) in terms of two variables were obtained (equations 4 and 5).  

 

𝑊𝑒𝑖𝑔ℎ𝑡 =  0.5109(𝑥) + 0.5568(𝑦) − 0.0774    (4) 

 

𝑀𝑎𝑥. 𝑣. 𝑀 𝑠𝑡𝑟𝑒𝑠𝑠 =  0.2649(𝑥) − 2.0828(𝑦) − 0.0449 (
𝑥

𝑦
) + 0.0324 (

1

𝑥
) + 1.4164(𝑦2) +

0.1572 (
𝑦2

𝑥
) + 0.4170           (5) 

 

where x=t/w and y=d/w. 

 

 

 

3.4.Optimization: 

In order to find the optimal solutions in terms of the maximum stress and weight of the fixation 

sturcture, an optimization process was performed. The aim was to obtain a system which can 

withstand high stresses with a minimum weight. Multivariable regression formulas, which were 

obtained from Table 3, were used to define the cost functions. The NSGA-II results converged 

after 105 generations and the outcome of analysis is plotted in Fig. 8. Figure 8a illustrates all the 

optimal and non-optimal solutions. The optimal or non-dominated solutions are the solutions that 

provide a suitable compromise between all cost functions, and these solutions are not dominated 

by any other solutions. These non-dominated solutions represent the answers that the structure can 

withstand a certain amount of stress with the lowest possible weight. Figures 8b-d demonstrate the 

stress contours on the fixation structure and values of t/w, d/w, normalized weight and normalized 
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stress for 3 different points. According to these figures, as the amount of weight increased by about 

64%, the maximum amount of stress decreased by more than 50%. 

Figure 8. 

 

In Table 4, the values for normalized weight, normalized maximum stress, t/w and d/w for 

three different ranges of optimal answers are given. According to this table, the range 1 is related 

to solutions which the normalized weight of the fixation system was under 10% while the 

maximum normalized stresses are between 31% and 50%. The solutions in range 2 demonstrate 

the points with more normalized weight amount and less maximum normalized stress than those 

of range 1. Third range demonstrate the points with the minimum amount of the maximum v.M 

stress on the structure. In this range, the amount of normalized weight was between 52% and 71%, 

while the maximum normalized stresses were less than 1%. 

 

Table 5. 

 

 

Figure 9 shows the normalized values of the difference between the maximum v.M stresses on 

the plate and on the screws, and the normalized maximum v.M stresses on the structure in different 

weights. According to this figure, the lower the maximum stress difference on the plate and screw, 

the lower the maximum stress on the structure. This is because when the plate and screws are made 

by the same material, it would be more efficient to have a relatively equal amount of stress on the 

screws and plate since the yield strengths for these two parts are equal. In other words, at a certain 

weight, approaching only one of the fixation parts to its yield point would not be optimal. As a 

result, according to this diagram, point C had the lowest maximum stress value, and also, the 

difference between the stress on the plate and on the screws was less than that for the other points. 
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The normalized weight and the maximum normalized stress of this point were equal to 72% and 

0.6%, respectively. Also, t/w and d/w ratios were 114% and 46%, respectively. Point B was the 

second minimum point in terms of the maximum stress and the difference between the stress on 

the plate and on the screw. While the weight of the point B was less than that of point C, the 

maximum stress of Point B was more than the maximum stress in Point C. Point B had 41% of the 

maximum weight of the structure and 1.8% of the maximum v.M stress with the t/w=57% and 

d/w=46%.  

 

Figure 9. 

 

4. Discussion 

4.1. Analysis of results 

The results of the simulations performed in this study had a good agreement with results of 

ref. [6]. According to Fig. 3, with increasing the normalized distance from the lowest value of zero 

to the maximum value of 1, the amount of failure load in the Ahmad’s model decreased by about 

64% and in this study, it decreased by about 52%. Furthermore, the obtained linear regression 

equations had R2 values of more than 94%, indicating that both Ahmed’s model 8 and the model 

developed in this study had a similar linear trend. The model of this study used some simplified 

assumptions such as the tie constraint between the components (i.e. plate-screw and bone-screw), 

which caused small differences compared to the results of ref. 8.  

The main effects diagram as shown in Fig. 5a explains that with the growth in t/w ratio, the 

maximum stress on the plate declined. This is due to increase of the cross-sectional area of the 

plate. However, it is important to note that due to cost and medical restrictions, increasing plate 

thickness is not always possible.  
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In Figs. 5a-c and 6, it was illustrated that by increasing the value of d/w by more than 45%, 

the maximum v.M stress on the plate, maximum displacement and maximum stress on the structure 

increased due to the concentration of stress on the edge of the plate. Hence, it is recommended to 

design the plates and screws such that this ratio becomes about 50%.  

Figure 5b illustrates the effect of d/w and t/w values on the maximum v.M stress of the 

screws. By increasing the screw diameter, its cross-sectional area increased and the amount of 

stress on it reduced. With the growth in t/w, the maximum stress on the screws decreased. This is 

because the contact area between the screws and the plate increased, and as a result, the maximum 

amount of stress on the screw decreased. In other words, as the plate thickness reduced, the force 

was applied to a smaller contact area between the plate and screws, and hence the stress on the 

screws increased. 

As previously mentioned, the bone diameter had no significant effect on the normalized 

outputs. Also, it did not have any effect on the weight of the fixation structure. Therefore, the 

problem was formulated without the bone diameter, and two other variables including t/w and d/w 

were considered. Figure 8 shows that there was no a unique optimal solution in terms of the weight 

of the fixation system and the maximum stress. The reason for this is that the minimum weight 

and the maximum stress on the fixation structure were in inverse relationship with each other. In 

other words, it was not possible to find one point that had both the lowest weight and the lowest 

amount of stress. Also, according to this diagram, the amount of the maximum stress did not 

always decrease by increasing the weight of fixation system. For example, at a constant t/w, by 

increasing the diameter of screws, the weight of the system increased but due to stress 

concentration on the plate, the maximum v.M stress increased too.  

Since the fracture of the stabilization system would cause many problems for the patient, the 

first goal is to design a structure that greatly reduces the failure risks; i.e. a fixation system which 

can withstand higher forces would be desirable. Therefore, according to Fig. 8, ranges 2 and 3 are 
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considered optimal points in which the maximum normalized stress on the structure was less than 

4%. The values of d/w for the optimal ranges were between 37% and 59% and the values of t/w 

were more than about 30%. For the cases where minimizing the weight is the main objective, the 

solutions of range 1 with normalized weight of less than 10% are proposed.  

 

4.2 Limitations 

In this work, the width and the length of the plate were assumed constant for all the models to 

reduce the number of simulations and computational costs. Furthermore, in order to simplify the 

model, only compressive loading was used to carry out the computer modelling. Although 

compression load is the most important and greatest force on the bones, the human body are under 

various loading conditions such as tension, compression, torsion, and shear. Also, the 

passive/active forces of muscles and tissues around the bone were neglected and the bone was 

modeled with a hollow cylinder. 

 

5. Conclusion 

A plate-screw fixation structure for the purpose of bone fracture was analyzed. To come with 

an optimal design, three design variables including the ratio of the screw diameter to the plate 

width (d/w), the ratio of the plate thickness to the plate width (t/w) and the size of the bone were 

the selected parameters for analysis. Results showed that by increasing the value of t/w, the 

maximum v.M stress on the structure always decreased, while with the growth in the d/w ratio 

more than a specific amount, the maximum stress on the structure increased. Furthermore, the 

diameter of the bone did not have a significant effect on the normalized stresses. In other words, 

the optimal solutions found in this study were independent of the bone diameter and the amount 

of force applied on it. Finally, the optimal solutions in terms of the weight and the maximum 

amount of stress were obtained from an optimization process by a NSGA- II.  
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Appendix 

The Table 1A shows the model number and the value of design variables for each model. 

The models that have similar t/w and d/w values, have the same model number. It should be 

mentioned that the models number in the Fig. 4 are based on this table. 

Table 1A. 
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Figure 1. Two of design variables (t and d) and the plate dimensions.  

 

 

Figure 2. Fixation structure: (a) the CAD model and (b) the meshed model.  

 

 



20 
 

 

Figure 3. Comparison of failure loads obtained from FE of the current study with that of Ahmad et al.8 as a function of 
dimensionless gap between the plate and bone. 

 

 

Figure 4. The effect of bone size on the (a) maximum normalized v.M stress on the structure and (b) the ratio of maximum v.M 
stress on plate to maximum v.M stress on screws. The maximum difference between the results for two bone diameters was 
about 10%. 
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Figure 5. Main effects plots with mean normalized data for: (a) maximum plate stress, (b) maximum screw stress, (c) maximum 
displacement, and (d) maximum stress on the structure. 

 

 

Figure 6. Interaction plot for the maximum v.M stress on the structure.  

 

Figure 7. The v.M stress contours on the plate in different t/w and d/w ratios. f had the lowest and g had the highest v.M stress 
on the plate. The lightest and heaviest models were a and i, respectively. The scale of deformations is 1:1 and the stress values 
are in MPa. 
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Figure 8. Resultant Pareto Front of the optimization and stress contours for three representative configurations: (a) All solutions 
and Pareto Front, (b) point A, (c) point B, and (d) point C. Points A–C are sample solutions from all solutions. *Normalized values.  

 

 

Figure 9. Normalized values of the difference between the maximum v.M stress on the plate and on the screws, and the 
normalized maximum v.M stresses on the structure in different weights. Point B and point C are the points in which the 
minimum amount of normalized maximum v.M stress on the fixation system was less than 2%. 

 

 


