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A B S T R A C T

With the rapid development of artificial intelligence, it has important theoretical and practical
significance to construct neural network models and study their dynamical behaviors. This ar-
ticle mainly focuses on the bionic model and chaotic dynamics of the asymmetric neural net-
work as well as its engineering application. We first construct a memristor-coupled asymmetric
neural network (MANN) utilizing two asymmetrical sub-neural networks and a coupled multi-
piecewise memristor synapse. Then, the chaotic dynamics of the proposed MANN is stud-
ied and analyzed by using basic dynamics methods like equilibrium stability, bifurcation dia-
grams, Lyapunov exponents, and Poincare mappings. Research results show that the proposed
MANN exhibits multiple complex dynamical characteristics including infinitely wide hyper-
chaos with amplitude control, hyperchaotic initial-boosted behavior, and arbitrary number of
hyperchaotic multi-structure attractors. More importantly, the phenomena of the infinitely wide
hyperchaos and the hyperchaotic multi-structure attractors are observed in neural networks for
the first time. Meanwhile, applying the hyperchaotic multi-structure attractors, a color image en-
cryption scheme is designed based on the proposed MANN. Performance analyses show that the
designed encryption scheme has some merits in correlation, information entropy, and key sen-
sitivity. Finally, a physical circuit of the MANN is implemented and various typical dynamical
behaviors are verified by hardware experiments.

1. Introduction
The human brain which exhibits many special dynamics is considered an extremely complex dynamical system [1].

In order to research brain dynamics, various neural network models have been established by emulating the biological
structure and working mechanism of the brain [2], [3]. Among these models, Hopfield neural network (HNN) is
commonly used as a typical paradigm due to its particular network structure and abundant brain-like chaotic dynamics
[4]. Over the past decades, chaotic dynamics based on the HNNs has been extensively studied by researchers from
various perspectives.

In the early days, the study on the chaotic dynamics of the HNNs mainly focused on the original HNN models with
few neurons. For example, various dynamical behaviors like chaos [5], hyperchaos [6], chaotic bursting firings [7], and
coexisting attractors [8] have been found in some original HNNs with two, three, or four neurons. Since the memristor
was found in 2008 [9], the memristive HNNs have attracted much attention in the investigation of chaotic dynamics.
The memristor is a novel nonlinear circuit component, which owns the special property of memory function [10,11] and
chaotic characteristic [12,13]. Therefore, a mass of memristive HNNs have been constructed by employing memristor
to simulate biological neural synapses [14–16]. Due to the introduction of memristor synapses, memristive HNNs can
generate complex dynamical behaviors closer to brain dynamics. For instance, utilizing a linear memristor as a synapse
in an HNN with two neurons can make memristive HNN exhibit complex multistability [17]. With a multi-stable
memristor synapse introduced into an HNN with four neurons, extreme multistability was discovered in a memristive
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HNN [18]. Hidden extreme multistability was found in a memristive HNN by introducing a hyperbolic memristor
synapse into the HNN [19]. Moreover, complicated multi-scroll attractors were detected from a memristive HNN with
a multi-piecewise memristor synapse [20]. In particular, a recent study showed that a memristive symmetric neural
network with two sub-neural networks can generate complex brain-like hyperchaotic initial-boosted behavior [21].
This means that the coupled neural networks have complex dynamical behaviors closer to the brain. Also, some re-
sults show that the memristive neurons and memristive neural networks exhibit more complex collective dynamics
[22–24]. Meanwhile, the circuits of memristive neural networks show higher efficiency and lower power due to the

use of real nano-memristor devices [25, 26].
On the other hand, more and more researchers focus on the application of the HNNs in various artificial intelli-

gence fields such as machine learning [27], image recognition [28], and information security [29]. In particular, the
application of chaotic signals generated by the HNNs to image encryption has attracted increasing attention from many
researchers. Chaotic signals with inherent randomness and ergodicity can be applied to generate pseudo-random num-
bers [30–32]. Many studies have shown excellent encryption performances in image encryption algorithms based on
the HNNs with complex chaotic behaviors. For example, using a hyperchaotic HNN to generate a keystream, a ro-
bust hybrid image encryption algorithm was designed [33]. By utilizing chaotic HNNs to generate diffusion matrixes,
some color image encryption algorithms were proposed [34–36]. Furthermore, a medical image encryption scheme
was realized, in which a multi-stable HNN is used to produce the key [37]. Recently, several image encryption schemes
based on memristive HNNs with multi-scroll attractors or initial-boosted behavior have been presented [20, 21, 38].
Due to their complex dynamical behaviors, these encryption schemes show better security performances than previous
schemes.

From the above review, it becomes clear that three issues still need further consideration. Firstly, the existing
studies mainly focus on the neural networks or symmetric neural networks. In fact, the real biological neural systems
are asymmetrical [39]. Although there are some findings on the dynamics of asymmetric neural networks [40–42],
the chaotic dynamics of the asymmetric neural networks has not been studied in depth. Thus, the study on chaotic dy-
namics of the asymmetric neural networks is significant and valuable. Secondly, the previous researches of the HNNs
mainly focus on one of the dynamical characteristics such as hyperchaotic behavior, multi-scroll behavior, coexisting
behavior, or initial-boosted behavior. The phenomenon of multiple dynamical behaviors simultaneously generated
by a neural network has not been explored. The brain’s nervous system can exhibit multiple dynamical behaviors
such as resting state, spiking firing, bursting firing, and chaos, which has the features of multistability [43]. There
is no doubt that compared with neural network models without multistability, neural networks with multistability are
closer to the real nervous system. Therefore, concurrently generating multiple dynamical behaviors through a neural
network is worthy of in-depth study. Finally, many existing dynamical phenomena like chaotic and hyperchaotic
attractors, coexisting attractors, and multi-scroll attractors have been found and applied in different HNNs. However,
hyperchaotic multi-structure attracotrs have not been reported in HNNs. More importantly, compared with the existing
dynamical behaviors, the hyperchaotic multi-structure attracotrs may have more complex dynamical characteristics,
and the complex dynamics come from the fact that the brain is a high-order complex dynamical system [44]. The
higher complexity of dynamical behaviors, the greater the randomness of chaotic signals, resulting in better security
when the hyperchaotic multi-structure attracotrs are used in information encryption. Hence it is greatly significant to
explore chaotic phenomena from high-order neural network models.

Motivated by the above analyses, this article researches the chaotic dynamics of the asymmetric neural network
and its application in image encryption. To the best of our knowledge, this is the first time that the chaotic dynamical
behaviors of the asymmetric neural networks are investigated. The main novelty and contributions of this study are
summarized as follows:

1) A novel bionic MANN model for exploring chaotic dynamics is constructed. Unlike the previous models in
[17–21], this model is modeled by using two asymmetric sub-neural networks to emulate two different encephalic
regions.

2) Multiple chaotic phenomena including infinitely wide hyperchaos with amplitude control, hyperchaotic initial-
boosted behavior, and hyperchaotic multi-structure attractors are obtained from the proposed MANN.

3) Based on the hyperchaotic multi-structure attractors, a novel color image encryption scheme is presented. Com-
pared with similar schemes in [33–36, 46], the proposed encryption scheme has lower correlation, higher information
entropy, and higher key sensitivity.

4) Last but not least, an analog neural network circuit is implemented and hardware experiment is performed to
verify the observed chaotic dynamics including various chaotic attractors.
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The rest of the article is organized as follows. Section 2 describes the modeling process of the MANN. Section 3
reveals the chaotic dynamics of the proposed MANN. A chaos-based image encryption scheme is designed in Section
4. Section 5 presents the circuit implementaion. Section 6 summarizes the article.

2. MANN model description
This section first designs two sub-neural networks then introduces a flux-controlled multi-piecewise memristor,

and finally constructs a memristor-coupled asymmetric neural network model.

2.1 Design of sub-neural networks
HNN with brain-like network structure and rich chaotic dynamics is regarded as an ideal brain neural network

model [7, 8]. An original HNN with 𝑛 neurons can be represented by [4]

𝐶𝑖𝑣̇𝑖 = −
𝑣𝑖
𝑅𝑖

+
𝑛
∑

𝑗=1
𝑤𝑖𝑗 tanh(𝑣𝑗) + 𝐼𝑖 (𝑖, 𝑗 ∈ 𝑁∗) (1)

where 𝑣𝑖, 𝐶𝑖 and 𝑅𝑖 are the membrane potential, capacitance and resistance of neuron 𝑖, respectively. 𝑤𝑖𝑗 and 𝐼𝑖 are
the synaptic weight coefficient and external bias current, respectively. Additionally, tanh(.) is the neuron activation
function. It follows that different sub-neural network models can be designed by selecting different number of neurons
and suitable synaptic weight coefficients. Here, one sub-neural network with four neurons and another sub-neural
network with three neurons are proposed by adopting the trial and error method. Let 𝐶𝑖=1, 𝑅𝑖=1, 𝐼𝑖=0 (𝑖=1, 2, 3, 4),
the proposed two asymmetric sub-neural networks can be respectively expressed as follows

⎧

⎪

⎨

⎪

⎩

𝑥̇1 = −𝑥1 + 1.8 tanh(𝑥1) + 3.4 tanh(𝑥2) − 0.5 tanh(𝑥3) − 12 tanh(𝑥4)
𝑥̇2 = −𝑥2 + tanh(𝑥2) + 20 tanh(𝑥3) − 0.5 tanh(𝑥4)
𝑥̇3 = −𝑥3 + 0.5 tanh(𝑥1) − 4 tanh(𝑥2) + 1.8 tanh(𝑥3) + 4𝑡𝑎𝑛ℎ(𝑥4)
𝑥̇4 = −𝑥4 + 0.82 tanh(𝑥1) + 0.5 tanh(𝑥3) + 2 tanh(𝑥4)

(2)

{

𝑦̇1 = −𝑦1 + 0.1 tanh(𝑦1) + 0.5 tanh(𝑦2) − 2.5 tanh(𝑦3)
𝑦̇2 = −𝑦2 + 3 tanh(𝑦2) + 3 tanh(𝑦3)
𝑦̇3 = −𝑦3 + tanh(𝑦1) − 3 tanh(𝑦2) + tanh(𝑦3)

(3)

where 𝑥𝑖 and 𝑦𝑖 denote the membrane potentials of neurons 𝑋𝑖 and 𝑌𝑖, respectively.

2.2 Introduction of memristor synapse
Memristors have been widely applied to emulate neural synapses because of their synapse-like adjustability and

memory [45]. Recently, Lin et al presented a flux-control multi-piecewise memristor model [46], and it is described
as

{

𝑖 = 𝑊 (𝜑)𝑣 = (𝑎 + 𝑏𝜑)𝑣
𝑑𝜑∕𝑑𝑡 = 𝑐𝑣 − 𝑑ℎ(𝜑) (4)

where 𝑎, 𝑏, 𝑐 and 𝑑 are four memristor parameters. 𝜑 represents the inner state variables and 𝑊 (𝜑) denotes the
memductance function. The internal state variable function ℎ(𝜑) can be written as

ℎ(𝜑) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ℎ1(𝜑)=

⎧

⎪

⎨

⎪

⎩

𝜑,𝑁 = 0

𝜑 −
𝑁
∑

𝑖=1
(𝑠𝑔𝑛(𝜑 + (2𝑖 − 1)) + 𝑠𝑔𝑛(𝜑 − (2𝑖 − 1)))

𝑁 = 1, 2, 3,…

ℎ2(𝜑)=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜑 − sgn(𝜑),𝑀 = 0

𝜑 − sgn(𝜑) −
𝑀
∑

𝑗=1
(𝑠𝑔𝑛(𝜑 + 2𝑗) + 𝑠𝑔𝑛(𝜑 − 2𝑗))

𝑀 = 1, 2, 3,…

(5)
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Figure 1: The unique performance of the multi-piecewise memristor model. (a) 𝑣-𝑖 characteristics. (b) POP curve.
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Figure 2: Concept diagram of the MANN model.

where 𝑁 and 𝑀 are memristor control parameters. Note that the internal state variable function ℎ(𝜑) can be changed
by selecting different values of 𝑁 and 𝑀 in ℎ1(𝜑) and ℎ2(𝜑), respectively. When a sinusoidal voltage 𝑣=6sin(2𝜋0.1𝑡)
with 𝑎=1, 𝑏=0.05, 𝑐=2.2, 𝑑=1.2, 𝑀=2, is applied in the memristor, it can exhibit pinched hysteresis loop on the 𝑣-𝑖
plane, as shown in Fig.1(a). The memristors can be used to simulate neural synapses due to their memory characteristic
[47]. The power-off plot (POP) curve provides a method to check the non-volatile memory of a memristor [48]. By

solving (4) with 𝑣=0, one can plot the curve of POP, as shown in Fig.1(b). According to the non-volatile memristor
theorem [49], a memristor is non-volatile if its POP intersects the 𝑥-axis at 2 or more points with a negative slope.
From Fig.1(b), there are 6 intersection points (𝑄1-𝑄6) with a negative slope. Thus, the multi-piecewise memristor
has the characteristic of non-volatile memory. More importantly, further study shows that the number of intersection
points with a negative slope is equal to 2𝑀+2 or 2𝑁+1. Therefore, the multi-piecewise memristor has a very strong
ability of non-volatile memory, which means that it is very suitable for emulating neural synapses.

2.3 Construction of MANN
The human brain contains multiple encephalic regions with different neurological functions [44]. However, these

encephalic regions are not independent. On the contrary, there are strong connections between them and the func-
tional connectivity between different regions shows complex neural dynamics. For instance, the ability of thought is
collectively influenced by the frontal lobe and the parietal lobe in the brain [50]. Furthermore, the visual impairment
and memory deficiency will occur synchronously, when the occipital lobe is damaged [51]. Undoubtedly, the research
on the dynamical behavior of the coupled neural networks with two different sub-neural networks, namely encephalic
regions, is significant and valuable [40,41]. It is well known that the neural signal can be exchanged between neurons
and neural networks through neural synapses [10]. Many research results show that the memristor can be used to
emulate the functions of biological neural synapses [11,17,18]. Here, using the presented multi-piecewise memristor
to emulate the coupling synapse between the proposed two asymmetric sub-neural networks. As shown in Fig.2, a
MANN model is constructed, where the two different sub-neural networks stand for two different encephalic regions
in the brain. When a membrane potential difference occurs between two coupled neurons, a magnetic induction cur-
rent will be generated [21]. The magnetic induction current can be described by the flux-controlled multi-piecewise
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memristor. Consequently, a mathematical model of the MANN is given as follows

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥̇1 = −𝑥1 + 1.8 tanh(𝑥1) + 3.4 tanh(𝑥2) − 0.5 tanh(𝑥3) − 12 tanh(𝑥4) − 𝜇𝑊 (𝜑)(𝑥1 − 𝑦1)
𝑥̇2 = −𝑥2 + tanh(𝑥2) + 20 tanh(𝑥3) − 0.5 tanh(𝑥4)
𝑥̇3 = −𝑥3 + 0.5 tanh(𝑥1) − 4 tanh(𝑥2) + 1.8 tanh(𝑥3) + 4𝑡𝑎𝑛ℎ(𝑥4)
𝑥̇4 = −𝑥4 + 0.82 tanh(𝑥1) + 0.5 tanh(𝑥3) + 2 tanh(𝑥4)
𝑦̇1 = −𝑦1 + 0.1 tanh(𝑦1) + 0.5 tanh(𝑦2) − 2.5 tanh(𝑦3) + 𝜇𝑊 (𝜑)(𝑥1 − 𝑦1)
𝑦̇2 = −𝑦2 + 3 tanh(𝑦2) + 3 tanh(𝑦3)
𝑦̇3 = −𝑦3 + tanh(𝑦1) − 3 tanh(𝑦2) + tanh(𝑦3)
𝜑̇ = 𝑐(𝑥1 − 𝑦1) − 𝑑ℎ(𝜑)

(6)

where the additive term 𝜇𝑊 (𝜑)(𝑥1−𝑦1) represents the magnetic induction current induced by the membrane potential
difference. The parameter 𝜇 denotes the coupling strength of the memristor synapse. The term –𝑑ℎ(𝜑) is an additional
magnetic flux caused by the membrane potential fluctuation. The biological neural network with a large number of neu-
rons is a complex high-dimensional dynamical system [44]. Compared with previous low-dimensional neural network
models [17–21], the proposed MANN is closer to the biological neural network.

3. Chaotic dynamics analysis
In this section, the dynamical behaviors including infinitely wide hyperchaos with amplitude control, hyperchaotic

initial-boosted behavior, and hyperchaotic multi-structure attractors are deeply analyzed and discussed. It should be
noted that the complexity discussed in this paper is within the scope of chaotic dynamics. From the perspective of
chaotic dynamics, hyperchaos is more complex than chaos [52], the multi-structure attractor is more complex than the
single-structure attractor [20], and multistability is more complex than single stability [18].

3.1 Infinitely wide hyperchaos with amplitude control
Hyperchaos with more than two positive Lyapunov exponents widely exists in various nonlinear systems [53],

especially complex neural networks [54]. Although hyperchaos has been found in HNNs, they only exist within a
certain range of parameters. Furthermore, amplitude control plays a key role in nonlinear systems and has impor-
tant applications [55]. However, the hyperchaos with amplitude control has not been reported in previous neural
networks. This subsection reveals the interesting phenomenon of infinitely wide hyperchaos with amplitude control in
the proposed MANN.

The bifurcation diagrams and Lyapunov exponents are common methods for analyzing the chaotic dynamics of
dynamical systems. Let parameters 𝑎=1, 𝑏=0.01, 𝑐=2.2, 𝑑=1.2, 𝑁=0, initial states (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,
0.1) and use the memristor coupling strength 𝜇 as the adjustable parameter. When the 𝜇 increases from 0 to 1000, the
bifurcation diagram at the maximum value of state variable𝜑 and the corresponding first seven Lyapunov exponents are
plotted as shown in Fig.3(a) and Fig.3(b), respectively, where the Lyapunov exponents are calculated adopting Wolf’s
Jacobian method. From Fig.3, two important phenomena can be observed: (i) the MANN generates hyperchaotic
attractors with different amplitudes at the state variable 𝜑 with the increase of 𝜇; (ii) the MANN has a wide range of
hyperchaotic oscillation. For example, when 𝜇=5, 100, 500, and 1000, the corresponding hyperchaotic attractors with
different amplitudes at 𝜑 direction are plotted in Fig.4. In other words, the rescaling of the chaotic attractor is realized
by the parameter 𝜇 in the proposed MANN. The change of the parameter 𝜇 causes the state variables 𝜑 to be scaled,
which means the change of the parameter 𝜇 can control the amplitude of the chaotic attractors. This special phenomena
can emulate neural signals with different amplitudes that represent different dynamical states. Furthermore, numerous
numerical simulations show that the MANN can exhibit hyperchaotic behavior with an infinitely wide parameter range.
For example, when 𝜇=106, the first eight Lyapunov exponents for the MANN are computed for 𝑡=1E7 seconds as
follows

𝐿1 = 0.1694, 𝐿2 = 0.0773, 𝐿3 = 0, 𝐿4 = −0.5265,
𝐿5 = −0.6738, 𝐿6 = −0.7451, 𝐿7 = −1.1985, 𝐿8 = −28.6737. (7)

The existence of two positive Lyapunov exponents in (7) makes it clear that the MANN is hyperchaotic. Also, the
Kaplan-Yorke dimension of the hyperchaotic neural network is calculated by the following equation

𝐷𝐾𝑌 = 3 +
𝐿𝐸1 + 𝐿𝐸2 + 𝐿𝐸3

|

|

𝐿𝐸4
|

|

= 3.4686. (8)
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Obviously, the MANN is hyperchaotic since its 𝐷𝐾𝑌 is a fractal dimension.

3.2 Hyperchaotic initial-boosted behavior
Initial-boosted behavior with coexisting infinitely many attractors with the same topology and different positions is

an important dynamical phenomenon and has valuable applications in many engineering fields [56], [57]. It is wonder-
ful that the presented MANN can generate hyperchaotic initial-boosted behavior. For instance, when the parameters 𝑎,
𝑏, 𝑑 are kept unchanged, set 𝑐=0.5, 𝜇=8 and 𝑀=5, we plot the bifurcation diagram of the 𝜑0 under initial states (0.1,
0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 𝜑0), as shown in Fig.5(a). As can be seen, the bifurcation diagram displays a typical stair
shape, which means that the MANN generate complicated initial-boosted behavior. Meanwhile, the corresponding
constant Lyapunov exponents with two positive values in the whole range of the 𝜑0 variation are given in Fig.5(b).
Clearly, the MANN generates hyperchaotic initial-boosted behavior. For example, when set 𝜑0=±7, ±5, ±3, ±1,
eight coexisting hyperchaotic attractors with the same topologies but different positions can be observed as shown in
Fig.6(a). That is to say, the MANN can generate eight hyperchaotic sequences with different positions, as shown in
Fig.6(b). Further simulation shows that when continuing to increase the value of 𝑀 or 𝑁 , the number of the coexisting
hyperchaotic attractors finally tends to infinity. Such phenomenon is very significant because it can provide sustained
and robust hyperchaotic sequences and their oscillating amplitudes can be non-destructively adjusted by changing the
initial states.

3.3 Hyperchaotic multi-structure attractors
Multi-structure attractors such as multi-scroll/wing attractors have extremely complex dynamics due to their spe-

cial structure and adjustability [46, 58, 59]. Numerical simulations show that the MANN can generate an arbitrary
number of hyperchaotic multi-structure attractors, which has never been reported in existing neural networks. Setting
the memristor parameters and initial states as 𝑎=1, 𝑏=0.01, 𝑐=2.2, 𝑑=1.2, 𝜇=8, (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1),
and selecting memristor control parameters 𝑁 and 𝑀 as control parameters, the hyperchaotic multi-structure attractors
with different number of structures are given in Fig.7. As can be seen from Fig.7, the number of structures generated
by the MANN can be controlled by 2𝑁+1 (odd number) and 2𝑀+2 (even number). To further reveal its hyperchaotic
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Figure 7: Hyperchaotic 𝑛-structure attractors. (a) 1-structure (𝑁=0). (b) 3-structure (𝑁=1). (c) 5-structure (𝑁=2).
(d) 7-structure (𝑁=3). (e) 2-structure (𝑀=0). (f) 4-structure (𝑀=1). (g) 6-structure (𝑀=2). (h) 8-structure (𝑀=3).

characteristic, selecting 𝑀=3, a bifurcation diagram and corresponding first seven Lyapunov exponents related to
parameter 𝜇 ∈(6,8) are shown in Fig.8(a) and Fig.8(b), respectively. From Fig.8, both the bifurcation diagram made up
of a dense patch of points and the Lyapunov exponents with two positive values show that the multi-structure attractors
are hyperchaotic. In addition, the Poincare mappings on 𝜑-𝑦2 and 𝜑-𝑦1 phase planes for the 8-structure attractor
with 𝑥2=0 are depicted in Fig.9(a) and Fi.9(b), respectively. Clearly, the Poincare mappings have the approximate
8-structure maps with irregular shape, implying that the MANN generates extremely complex hyperchaotic behavior.
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The equilibrium points and their stabilities are often used to reveal the generation mechanism of chaotic attractors
in dynamic systems. To deeper understanding of the hyperchaotic multi-structure attractors, the equilibrium points and
their stabilities are analyzed. Letting the left side of (6) be 0, the equilibrium points of the presented MANN can be
calculated by

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−𝑥1 + 1.8 tanh(𝑥1) + 3.4 tanh(𝑥2) − 0.5 tanh(𝑥3) − 12 tanh(𝑥4) − 𝜇𝑊 (𝜑)(𝑥1 − 𝑦1) = 0
−𝑥2 + tanh(𝑥2) + 20 tanh(𝑥3) − 0.5 tanh(𝑥4) = 0
−𝑥3 + 0.5 tanh(𝑥1) − 4 tanh(𝑥2) + 1.8 tanh(𝑥3) + 4𝑡𝑎𝑛ℎ(𝑥4) = 0
−𝑥4 + 0.82 tanh(𝑥1) + 0.5 tanh(𝑥3) + 2 tanh(𝑥4) = 0
−𝑦1 + 0.1 tanh(𝑦1) + 0.5 tanh(𝑦2) − 2.5 tanh(𝑦3) + 𝜇𝑊 (𝜑)(𝑥1 − 𝑦1) = 0
−𝑦2 + 3 tanh(𝑦2) + 3 tanh(𝑦3) = 0
−𝑦3 + tanh(𝑦1) − 3 tanh(𝑦2) + tanh(𝑦3) = 0
𝑐(𝑥1 − 𝑦1) − 𝑑ℎ(𝜑)=0

(9)

The solution of (9) is solved by using MATLAB numerical method. The results show that there are infinitely discrete
equilibrium points that can be written as

𝐸 = (𝑥1∗, 𝑥2∗, 𝑥3∗, 𝑥4∗, 𝑦1∗, 𝑦2∗, 𝑦3∗, 𝑧∗)=(0, 0, 0, 0, 0, 0, 0, 𝜑), ℎ(𝜑) = 0 (10)

Evidently, the number of equilibrium points is determined by the internal state variable function ℎ(𝜑). Without loss of
generality, we take 𝑀=2 as an example and keep 𝑎=1, 𝑏=0.01, 𝑐=2.2, 𝑑=1.2, and 𝜇=8. The equilibrium points at 𝜑-𝑦2
plane can be drawn as shown in Fig.10, where the red curve denotes the function ℎ2(𝜑) with 𝑀=2 and the blue curve
represents 𝑦2=0. It can be seen from Fig.10 that there are eleven equilibrium points𝐸1-𝐸11. Further research shows that
the number of equilibrium points can be determined by 4𝑀+3 and 4𝑁+1. In addition, for 𝐸1-𝐸4, the corresponding
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Figure 10: Hyperchaotic 6-structure attractor with eleven equilibria generated by ℎ2(𝜑) with 𝑀=2.

Table 1
Equilibria, eigenvalues and stabilities

Equilibrium points Eigenvalues Stabilities

E1(0,0,0,0,0,0,0,-1) (-1.2, -15.5582, 0.2266±8.8981j, 0.7548±3.0877j, 0.7277±1.8079j) USF-6
E2(0,0,0,0,0,0,0,0) (1199998.8, -15.7210, 0.2271±8.8979j, 0.7547±3.0878j, 0.7287±1.8068j) USF-7
E3(0,0,0,0,0,0,0,1) (-1.2, -15.8838, 0.2276±8.8977j, 0.7547±3.0880j, 0.7296±1.8058j) USF-6
E4(0,0,0,0,0,0,0,-2) (1199998.8, -15.3952, 0.2261±8.8983j, 0.7548±3.0876j, 0.7267±1.8089j) USF-7

eigenvalues and stabilities are listed in Table 1. From Table 1, there exist two types of equilibria: unstable saddle-foci
with index 6 (USF-6) and unstable saddle-foci with index 7 (USF-7). According to the Shil’nikov theorem, the MANN
can generate self-excited chaos. As shown in Fig.10, the hyperchaotic attractor with six structures can be generated
under this case. Particularly, the structures and bond orbits are yielded in the neighborhoods of USF-6 and USF-7
equilibrium points, respectively. That is to say, each USF-6 equilibrium point corresponds to a special structure. Thus
six structures are generated in this situation, which is consistent with Fig.10. Therefore, the multi-piecewise memristor
synapse plays a crucial role in the generation of complex dynamics in the MANN.

4. Encryption application
To investigate the application of the MANN, this section designs a MANN-based color image encryption scheme,

and the test results are analyzed.

4.1 Encryption scheme design
Hyperchaotic multi-structure attractors with multiple irregular attractor structures have flexible adjustability and

high complexity, which makes them have a more promising application for information encryption. Here, based on the
encryption method in [46], a new color image encryption scheme is designed by using the hyperchaotic 8-structure
attractors generated by MANN. The encryption and decryption processes are described in the following steps.

Step 1: Set 𝑎=1, 𝑏=0.01, 𝑐=2.2, 𝑑=1.2, 𝜇=8, 𝑀=3 and initial states (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1), dis-
carded number 𝑁0=500, and time step Δ𝑡=0.001, the MANN is continuously iterated to generate eight hyperchaotic
8-structure sequences 𝑥1(𝑖), 𝑥2(𝑖), 𝑥3(𝑖), 𝑥4(𝑖), 𝑦1(𝑖), 𝑦2(𝑖), 𝑦3(𝑖), 𝜑(𝑖). Note that the purpose of the hyperchaotic se-
quences is to produce random number. Thus, it is important to select suitable system parameters which can generate
chaotic attractors.

Step 2: To obtain a pseudo-random sequence, the generated hyperchaotic multi-structure sequences are prepro-
cessed as

{

𝐾1(𝑖) = 𝑥1(𝑖) + 𝑥2(𝑖) + 𝑥3(𝑖) + 𝑥4(𝑖)
𝐾2(𝑖) = mod(f loor((𝑦1(𝑖) + 𝑦2(𝑖) + 𝑦3(𝑖) + 𝜑(𝑖)) ∗ 1015), 256) (11)
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Table 2
Encryption process with different images, steps of integration and initial conditions

Images Step Initial condition

Lena/Fig.11(a1) 0.001 (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)
Fruit/Fig.11(a2) 0.005 (0.1, 0, 0, 0.1, 0.1, 0, 0, 0.1)
House/Fig.11(a3) 0.01 0, 0, 0.1, 0.1, 0, 0, 0.1, 0.1)
Parrot/Fig.11(a4) 0.05 (0, 0.1, 0.1, 0, 0, 0.1, 0.1, 0)

where the floor(𝑥) is the elements of 𝑥 to the nearest integer less than or equal to 𝑥. It should be emphasized that to
obtain a larger randomness, a trial and error method is adopted in this step. Numerous simulations show that the values
of 𝐾1(𝑖) and 𝐾2(𝑖) have more large randomness under this case.

Step 3: Divide the original color image 𝑃 into red 𝑃𝑟, green 𝑃𝑔 , and blue 𝑃𝑏 components.
Step 4: According to the index sequence, the three images 𝑃𝑟, 𝑃𝑔 , and 𝑃𝑏 are globally scrambled to be three

sequences
{

𝑃𝑟1(𝑖) = 𝑃𝑟(𝑖𝑛𝑑𝑒𝑥(𝐾1(𝑖)))
𝑃𝑔1(𝑖) = 𝑃𝑔(𝑖𝑛𝑑𝑒𝑥(𝐾1(𝑖)))
𝑃𝑏1(𝑖) = 𝑃𝑏(𝑖𝑛𝑑𝑒𝑥(𝐾1(𝑖)))

(12)

Step 5: The processed images are encrypted by means of XOR operation
{

𝐶𝑟(𝑖) = 𝑃𝑟1(𝑖)⊕𝐾2(𝑖)
𝐶𝑔(𝑖) = 𝑃𝑔1(𝑖)⊕𝐾2(𝑖)
𝐶𝑏(𝑖) = 𝑃𝑏1(𝑖)⊕𝐾2(𝑖)

(13)

until all elements are encrypted.
Step 6: Obtain the encrypted image 𝐶 by combining 𝐶𝑟, 𝐶𝑔 , and 𝐶𝑏.
Step 7: Decryption is the reverse process of the encryption operation.

4.2 Performance analysis
To demonstrate the efficiency of the designed image encryption scheme, four color images with the size of 512×512

are chosen as the encryption objects, as shown in Fig.11(a1)-(a4). It should be noted that the four original images are
encrypted by selecting different steps of integration and initial conditions, as shown in Table 2. The experimental
results and the security performance analyses including histogram, correlation coefficient, information entropy, key
sensitivity, data loss, and noise attacks are presented in the following.

1) Histogram analysis: Histogram describes the distribution of pixel intensity in the image. A good encryption
scheme should produce a uniform histogram. Fig.11 shows the original images, the encrypted images, and their re-
spective histograms. Clearly, the encrypted images look cluttered and completely loses their original information. The
histogramss of the encrypted images are almost uniform, which means that it is difficult to get any useful statistical
information from the encrypted images. Thus, the proposed image encryption scheme is enough to resist statistical
attacks.

2) Correlation analysis: Correlation reflects the relationship between adjacent pixels in the image. Normally,
Original images have a strong correlation in horizontal, vertical, and diagonal directions. The correlation coefficient
can be computed by [59]

𝜌𝑥𝑦 =

𝑁
∑

𝑖=1
(𝑥𝑖 − 𝐸(𝑥))(𝑦𝑖 − 𝐸(𝑦))

√

𝑁
∑

𝑖=1
(𝑥𝑖 − 𝐸(𝑥))2

√

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝐸(𝑦))2

(14)

where 𝑥 and 𝑦 represent the intensity values of two adjacent pixels. To evaluate the correlation coefficients, 10000
pairs of pixels were randomly chosen in three directions from the original image "Lena" and the corresponding en-
crypted image. The obtained correlation coefficients of the original image are 0.9874, 0.9775, and 0.9720, respectively,
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Figure 11: Encryption results. (a1)-(a4) original images. (b1)-(b4) histograms of the original images. (c1)-(c4) encrypted
images. (d1)-(d4) histograms of the encrypted images.

Table 3
Correlation coeffecients in different schemes

Refs Images Horizontal Vertical Diagonal

[33] Lena 256*256 -0.00112 0.00091 0.00113
[34] Lena 512*512 0.0058 0.0130 0.01343
[35] Lena 512*512 0.00913 0.00643 0.00446
[36] Lena 512*512 -0.00221 -0.00139 0.00041
[46] Lena 256*256 -0.001358 -0.001120 0.0001251

This work Lena 512*512 0.00094 -0.00082 0.00037

whereas the corresponding average values of the encrypted image are 0.00094, -0.00082, and 0.00037, respectively.
There is no doubt that the proposed image encryption scheme can greatly reduce the correlation of the original images.
Meanwhile, it can be seen from Table 3 that the image encrypted by the proposed encryption scheme has a lower
correlation in three directions. Therefore, the designed cryptosystem owns great resistance to statistical attacks.

3) Entropy analysis: Information entropy reflects the randomness of image information. The information entropy
is defined as [59]

𝐻(𝑃 ) =
2𝑁−1
∑

𝑖=0
𝑃 (𝑥𝑖)log2

1
𝑃 (𝑥𝑖)

(15)

: Preprint submitted to Elsevier Page 11 of 20



Table 4
Information entropy in different schemes

Refs RGB Red Green Blue

[33] 7.9991 7.9972 7.9967 7.9985
[34] 7.9993 7.9993 7.9994 7.9993
[35] 7.9994 7.9994 7.9993 7.9993
[36] 7.9994 7.9994 7.9993 7.9993
[46] 7.9977 – – – – – –

This work 7.9998 7.9994 7.9994 7.9994

(a1) (a2) (b1) (b2)

(c1) (c2) (d1) (d2)

Figure 12: Test results for key sensitivity. (a1)-(d1) Accurate decrypted images with right secret key. (a2)-(d2) Inaccurate
decrypted images with the tiny change (10−16) of the secret key.

Table 5
Key sensitivity in different schemes

Refs [33] [34] [35] [36] [46] This work

Key sensitivity 10−14 10−14 10−14 – – 10−15 10−16

where 𝑃 (𝑥𝑖) denotes the probability of 𝑥𝑖 and 𝑁 represents the number of the information source. The maximum the-
oretical information entropy is 8. Table 4 gives the calculation results of information entropy under different channels.
From the results in Table 4, the information entropy of the presented scheme is closer to the theoretical value compared
with other similar schemes.

4) Sensitivity analysis: Key sensitivity is a key measure of the security of encryption algorithms. Good image
encryption schemes should be key-sensitive. The initial values (𝑥10, 𝑥20, 𝑥30, 𝑥40, 𝑦10, 𝑦20, 𝑦30, 𝜑0) are used as secret
keys in this encryption scheme. The decrypted images are shown in Fig.12(a1)-(d1) with the right secret key. With a
slight change of the secret key, Fig.12(a2)-(d2) illustrates the wrong decrypted images. Despite the fact that the secret
key has been changed a little (10−16), the decrypted images are completely different from the original images. As
shown in Table 5, compared with other similar image encryption schemes, the proposed image encryption scheme has
higher sensitivity to the key.

5) Attack analysis: Image data is susceptible to data loss and noise attacks during transmission. We first cut off
some parts of the encrypted images and then decrypt them. As shown in Fig.13, data loss attack for the different lost
areas are successfully decrypted for the original image to be recovered. Besides, salt and pepper noise with different
densities are added to the encrypted images and then decrypt them. It can be seen from Fig.13 that some pixel values
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Figure 13: Test results for data loss and noise attacks. (a1), (a2), (c1), and (c2) the encrypted images with 1/32, 1/4,
1/16, and 1/8 loss, respectively. (b1), (b2), (d1), and (d2) corresponding decrypted images. (a3), (a4), (c3), and (c4) the
encrypted images with 1%, 20%, 10%, and 30% salt and pepper noise, respectively. (b3), (b4), (d3), and (d4) corresponding
decrypted images.

Table 6
Attack resistance in different schemes

Refs [33] [35] [36] [37] This work

Attack resistance No No No No Yes

in the decrypted images have been changed, however, the approximate information of the original image can still be
recovered successfully. Compared with other schmes in Table 6, the proposed encryption scheme is able to withstand
data loss and noise attacks. So it has higher security.

6) SSIM analysis: Structural similarity (SSIM) represents the similarity between two different images. For two
images 𝑥 and 𝑦, SSIM can be expressed as follows [60]

SSIM(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥2 + 𝜇𝑦2 + 𝑐1)(𝜎𝑥2 + 𝜎𝑦2 + 𝑐2)
(16)

where 𝜇𝑥 and 𝜇𝑦 are average values, 𝜎𝑥2 and 𝜎𝑦2 are variance, and 𝜎𝑥𝑦 is the covariance. 𝑐1 = (𝑘1𝐿)2 and 𝑐2 = (𝑘2𝐿)2
are two constants, where 𝑘1=0.01, 𝑘2=0.03, and 𝐿 is the dynamic range of pixel values. Table 7 gives the results
of SSIM for all the encrypted images and decrypted images compared with the original image. It can be seen from
Table 6 that the SSIM value of the encrypted image in Fig.11(c1) is close to the ideal value of 0, and the accurate
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Table 7
SSIM values for different images

Images SSIM(R) SSIM(G) SSIM(B)

Fig.11(c1) 0.0082 0.0073 0.0090
Fig.12(a1) 1 1 1
Fig.12(a2) 0.0052 0.0168 0.0128
Fig.12(b2) 0.0073 0.0174 0.0140
Fig.13(b1) 0.8703 0.9031 0.8319
Fig.13(b2) 0.5852 0.6523 0.5042
Fig.13(b3) 0.9785 0.9840 0.9714
Fig.13(b4) 0.6565 0.7152 0.5754

decrypted image in Fig.12(a1) has an ideal SSIM value of 1. The test results mean that the encryption scheme has
a good encryption effect. Moreover, the inaccurate decrypted images in Fig.12(a2) and Fig.12(b2) exhibit very low
values of SSIM, which means that the encryption scheme has a high key sensitivity. On the contrary, under noise
and data loss attacks, the decrypted images in Fig.13(b1)-(b2) and Fig.13(b3)-(b4) exhibit high values of SSIM, which
shows that the main image information can be well recovered when the original images suffered from data loss and
noise attacks.

From the aforementioned performance analyses, it can be concluded that the proposed image encryption scheme
has some advantages in terms of correlation, information entropy, and key sensitivity. Additionally, it has strong abil-
ities to resist statistical attacks and noise and data loss attacks. Although [46] reported an encryption scheme based
on the multi-structure attractors, the proposed hyperchaotic multi-structure attractors have more advantages including
high-security performance and good encryption effect in chaos-based image encryption application and are worthy of
further discussion and promotion.

5. Circuit implementation and verification
Circuit implementation is often used to experimental study the dynamical behaviors of some nonlinear systems.

To further verify the dynamic characteristics of the MANN, this section designs the analog circuit of the MANN, and
the numerical simulations are verified by Multisim simulations and hardware experiments.

5.1 Circuit design
The circuit of MANN is implemented by adopting a module-based unified circuit realization method [20]. Due to

the lack of technical measures, the nano-memristor devices have not yet been commercialized [61]. Thus, an equivalent
circuit in [46] to realize the multi-piecewise memristor is used in this paper, as shown in Fig.14(b). Before designing a
MANN circuit, a negative hyperbolic tangent function circuit is introduced from [8], as shown in Fig.14(a). It should be
pointed out that the memristors with different values of control parameters 𝑁 /𝑀 can be realized by selecting different
bias voltages (𝑒𝑖) and switches (W𝑖). According to (6), the circuit structure of the MANN is designed as shown in
Fig.15. Here, seven membrane potentials 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑦1, 𝑦2, and 𝑦3 are emulated by seven output voltages 𝑣𝑥1,
𝑣𝑥2, 𝑣𝑥3, 𝑣𝑥4, 𝑣𝑦1, 𝑣𝑦2, 𝑣𝑦3, respectively. All synaptic weight coefficients are simulated by the resistors 𝑅𝑥1-𝑅𝑥14 and
𝑅𝑦1-𝑅𝑦8. Based on the circuit in Fig.15, the circuit state equations can be described by
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tanh(𝑣𝑥3) −
𝑅
𝑅𝑥7

tanh(𝑣𝑥4)
𝑅𝐶𝑣̇𝑥3 = −𝑣𝑥3 +

𝑅
𝑅𝑥8

tanh(𝑣𝑥1) −
𝑅
𝑅𝑥9

tanh(𝑣𝑥2) +
𝑅

𝑅𝑥10
tanh(𝑣𝑥3) +

𝑅
𝑅𝑥11

tanh(𝑣𝑥4)
𝑅𝐶𝑣̇𝑥4 = −𝑣𝑥4 +

𝑅
𝑅𝑥12

tanh(𝑣𝑥1) +
𝑅

𝑅𝑥13
tanh(𝑣𝑥3) +

𝑅
𝑅𝑥14

tanh(𝑣𝑥4)

𝑅𝐶𝑣̇𝑦1 = −𝑣𝑦1 +
𝑅
𝑅𝑦1

tanh(𝑣𝑦1) +
𝑅
𝑅𝑦2

tanh(𝑣𝑦2) −
𝑅
𝑅𝑦3

tanh(𝑣𝑦3) +
(

𝑅
𝑅𝑎

+ 𝑔𝑅𝑣𝜑
𝑅𝑏

)

(𝑣𝑥1 − 𝑣𝑦1)

𝑅𝐶𝑣̇𝑦2 = −𝑣𝑦2 +
𝑅
𝑅𝑦4

tanh(𝑣𝑦2) +
𝑅
𝑅𝑦5

tanh(𝑣𝑦3)

𝑅𝐶𝑣̇𝑦3 = −𝑣𝑦3 +
𝑅
𝑅𝑦6

tanh(𝑣𝑦1) −
𝑅
𝑅𝑦7

tanh(𝑣𝑦2) +
𝑅
𝑅𝑦8

tanh(𝑣𝑦3)

𝑅𝐶𝑣̇𝜑 = 𝑅
𝑅𝑐
(𝑣𝑥1 − 𝑣𝑦1) −

𝑅
𝑅𝑑

ℎ(𝑣𝜑)

(17)
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Figure 14: Circuit structure. (a) negative hyperbolic tangent function circuit. (b) multi-piecewise memristor circuit.

Let 𝐶𝑥1=𝐶𝑥2=𝐶𝑥3=𝐶𝑥4=𝐶𝑦1=𝐶𝑦2=𝐶𝑦3=𝐶 , 𝑅𝐶=100us, 𝑅=10kΩ and 𝐶=10nF. Considering the fixed synaptic
weight coefficients, corresponding resistances can be calculated as𝑅𝑥1=5.55kΩ,𝑅𝑥2=2.98kΩ,𝑅𝑥3=20kΩ,𝑅𝑥4=0.83kΩ,
𝑅𝑥5=10kΩ,𝑅𝑥6=0.5kΩ,𝑅𝑥7=20kΩ,𝑅𝑥8=20kΩ,𝑅𝑥9=2.5kΩ,𝑅𝑥10=5.5kΩ,𝑅𝑥11=2.5kΩ,𝑅𝑥12=12.19kΩ,𝑅𝑥13=20kΩ,
𝑅𝑥14=5kΩ. 𝑅𝑦1=100kΩ, 𝑅𝑦2=20kΩ, 𝑅𝑦3=4kΩ, 𝑅𝑦4=3.33kΩ, 𝑅𝑦5=3.33kΩ, 𝑅𝑦6=10kΩ, 𝑅𝑦7=3.33kΩ, 𝑅𝑦8=10kΩ.
Besides, for the memristor circuit, 𝑅𝑎=𝑅/𝜇𝑎, 𝑅𝑏=𝑅/𝜇𝑏, 𝑅𝑐=𝑅/𝑐 and 𝑅𝑑=𝑅/𝑑.

5.2 Multisim simulation and hardware experiment
The designed MANN circuit is simulated on the Multisim 14.0 platform with𝑀 /AD633JN,𝑈 /TL082CP, 𝑇 /MPS2222,

and±15V DC voltage supplies. Numerous experiments show that the designed MANN circuit can generate results con-
sistent with the numerical simulation results in section 3. For example, when all switches are open, letting 𝑅𝑐=4.52 kΩ
(𝑐=2.2) and 𝑅𝑑=8.8 kΩ (𝑑=1.2), setting initial capacitor voltages (0.1V, 0.1V, 0.1V, 0.1V, 0.1V, 0.1V, 0.1V, 0.1V), and
selecting different values of 𝑅𝑎 and 𝑅𝑏, the hyperchaotic attractors with amplitude control can be captured as shown in
Fig.16. Now we set 𝑅𝑎=1.31 kΩ (𝑎=1,𝜇=8), 𝑅𝑏=13.1 kΩ (𝑏=0.01, 𝜇=8), 𝑅𝑐=20k (𝑐=0.5) and 𝑅𝑑=8.8 kΩ (𝑑=1.2).
The initial voltage of the memristor circuit is chosen as 𝑣𝜑V, where 𝑣𝜑=-7, -5, -3, -1, 1, 3, 5, and 7. When W1, W2,
W3, and W4 are off, set 𝑒1=2V, 𝑒2=4V, and 𝑒3=6V. The simulation results for these settings are given in Fig.17. As the
MANN circuit generates hyperchaotic initial-boosted behavior with coexisting eight hyperchaotic attractors under dif-
ferent initial capacitor voltages. Besides, when keeping the resistances unchanged except for 𝑅𝑐=4.52kΩ (𝑐=2.2) and
all initial capacitor voltages 0.1V, hyperchaotic multi-structure attractors can be captured by selecting different control
switches and voltages, as shown in Fig.18. Obviously, the circuit simulation results in Fig.18 are consistent well with
the numerical simulation results in Fig.7. It is noted that compared with numerical simulations, the resistances of
some resistors exist some difference due to the circuit’s parasitic parameters, which can be solved by fine-tuning the
adjustable resistors.

In addition, based on the circuit diagram in Fig.14 and Fig.15, a hardware circuit is physically implemented by us-
ing discrete active and passive electronic components, as shown in Fig.19(a). The circuit parameters are the same as the
Multisim simulation. The obtained hyperchaotic 3-structure and 4-structure chaotic attractors observed by the oscil-
loscope GWINSTED GDS-1102-AU are shown in Fig.19(b) and Fig.19(c), respectively. Obviously, the experimental
results match those obtained from the numerical simulations and circuit simulations. Through the circuit experiment,
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Figure 15: MACNN circuit structure.

(b)(a)

Figure 16: Circuit experimental results of Hyperchaos with amplitude control. (a) Hyperchaotic attractor with (𝑅𝑎,
𝑅𝑏)=(2kΩ, 20kΩ), (1kΩ, 10kΩ), (0.5kΩ, 5kΩ), (200Ω, 2kΩ), (100Ω, 1kΩ), (10Ω, 100Ω). (b) Generating voltage signals
𝑣𝜑.

it concludes that the MANN can be physically realized and can be further applied to explore practical applications.

6. Conclusion
In this paper, a new memristor-coupled asymmetric neural network model is proposed and investigated. The dy-

namic characteristics related to parameters, initial states, and equilibrium points of the model are analyzed. Research
has revealed that the proposed MANN can exhibit some complex chaotic dynamics including infinitely wide hyper-
chaos with amplitude control, hyperchaotic initial-boosted behavior, and the arbitrary number of hyperchaotic multi-
structure attractors. Especially, the dynamic phenomena of the infinitely wide hyperchaos and the hyperchaotic multi-
structure attractors are observed in neural networks for the first time. It has also been found that the memristor synapse
plays a key role in the dynamic characteristics of the presented MANN. The positions of the hyperchaotic attractors and
the number of hyperchaotic multi-structure attractors can be controlled respectively by initial values and parameters
of the memristor synapse. Moreover, to investigate the application of the MANN, a color image encryption scheme
based on the MANN is proposed. Experimental results demonstrate that compared with similar schemes the designed
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(b)(a)

Figure 17: Circuit experimental results of hyperchaotic initial-boosted behavior. (a) Phase portraits. (b) Signal waveform.

(a) (b) (c)

(d) (e) (f)

Figure 18: Circuit experimental results of Hyperchaotic multi-structure attractors. (a) 3-structure. (b) 4-structure. (c)
5-structure. (d) 6-structure. (e) 7-structure. (f) 8-structure.

encryption scheme has higher security. Finally, the hardware circuit of the MANN is implemented, and various com-
plex dynamical phenomena are further verified. Modeling, analysis, simulation, and circuit realization of the neural
network as attempted in this article would be helpful for artificial intelligence. However, how to apply the MANN to
practical scenarios remains to be further investigated.
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