Failure load prediction and optimisation for adhesively bonded joints enabled by deep learning and fruit fly optimisation

Li, Weidong, Liang, Yuchen and Liu, Yiding (2022) Failure load prediction and optimisation for adhesively bonded joints enabled by deep learning and fruit fly optimisation. ISSN 1474-0346
Copy

Adhesively bonded joints have been extensively employed in the aeronautical and automotive industries to join thin-layer materials for developing lightweight components. Tostrengthen the structural integrity of joints, it is critical to estimate and improve joint failure loads effectually. To accomplish the aforementioned purpose, this paper presents a novel deep neural network (DNN) model-enabled approach, and a single lap joint (SLJ) design is used to support research development and validation. The approach is innovative in the following aspects: (i) the DNN model is reinforced with a transfer learning (TL) mechanism to realise an adaptive prediction on a new SLJ design, and the requirement to re-create new training samplesand re-train the DNN model from scratch for the design can be alleviated; (ii) a fruit fly optimisation (FFO) algorithm featured with the parallel computing capability is incorporatedinto the approach to efficiently optimise joint parameters based on joint failure load predictions. Case studies were developed to validate the effectiveness of the approach. Experimental results demonstrate that, with this approach, the number of datasets and the computational time required to re-train the DNN model for a new SLJ design were significantly reduced by 92.00% and 99.57% respectively, and the joint failure load was substantially increased by 9.96%.

picture_as_pdf

picture_as_pdf
AEI2022.pdf
Available under Creative Commons: 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads