
Program Slicing Metrics and Evolvability: an Initial Study

Tracy Hall and Paul Wernick

Systems and Software Group, School of Computer Science

University of Hertfordshire

College Lane, Hatfield, Hertfordshire AL10 9AB, England

tel. ++1707 286323/284782; fax ++1707 284303

{t.hall, p.d.wernick}@herts.ac.uk

Abstract

Previous research has identified a number of

metrics derived from program slicing. In this paper we

discuss how these metrics relate to the effort required
to evolve an existing software-based system. Whilst

our interest in this work stems from our development

of simulation models of long-term software evolution
processes, it will also be directly relevant to the

managers of software evolution activities.

Keywords: software evolvability, program slicing,

metrics, simulation

1. Introduction

In this paper we investigate how program slicing

metric data can be used to measure the evolvability of

software systems. We suggest that values for program

slicing-based metrics, used in combination with size

data, can assist in the prediction of the maintainability

of systems over time. This extends our work on

modelling and predicting long-term software evolution

trends [12].

It is now widely accepted that software systems

continue to evolve during their lifetime [6]. The long-

term success of such a system depends on its ability to

evolve in response to environmental changes. It is also

widely accepted that the ability to evolve systems is

effectively paramount to their remaining useful [10,

p.49].

Historically, measuring the evolvability of

software has been performed rather unsatisfactorily.

There are currently no generally accepted measures for

the evolvability of systems. There has been little input

from an underlying theory of software evolution in the

derivation of metrics which would allow them to be

related to the evolvability of software systems.

In our previous work we simulated the long-term

evolution of software systems using system dynamics

[12]. We found that the difficulty of measuring

evolvability with a single metric at any particular time,

and changes in that value over time, became a major

issue. The lack of metrics which can plausibly reflect

the ease or difficulty of evolving an existing software

system made that part of our simulation difficult to

quantify. As a result, we found it difficult to predict

with confidence the impact of a process change on the

long-term evolution of a system.

In order to capture the effect of the existing

system on further changes to it, we have developed the

concept of ‘inertia’. We define this as an indirect

measure of evolvability which has two dimensions:

change (usually growth) in the size of the system as it

is evolved, and change to the structure and code of the

system as it is evolved. Growth in system size over

time may make the system correspondingly more

difficult to maintain. However, size alone does not

capture the full richness of inertia as a concept, since

two systems of equal size may not be equally

evolvable.

Meyers and Binkley’s work [7] on program

slicing-based metrics provides a possible approach to

addressing this issue. Meyers and Binkley have

conducted longitudinal studies into the behaviour of a

number of the metrics described by Weiser [13] and

by Ott and Thuss [9]. The use of slicing-based metrics

has been proposed previously to focus maintenance

interventions and direct re-engineering effort. In this

paper we describe an alternative application of slicing

data, in which we use these metrics to help quantify

the evolvability of software systems rather than as an

aid in re-engineering systems. Our focus in this work

Proceedings of the 2005 IEEE International Workshop on Software Evolvability (Software-Evolvability’05)
0-7695-2460-5/05 $20.00 © 2005 IEEE

is towards improving the usefulness of our

simulations.

This paper addresses two research questions:

1. Are slice-based measures a viable approach to

generating data whose values and trends characterise

evolvability?

2. Can evolvability data contribute to the

prediction of long-term evolution of software systems?

The rest of the paper is structured as follows. In

Section 2 we present an overview of program slicing

and describe the main uses of the technique. We

provide a summary of existing slice-based metrics in

Section 3. We describe in detail the concept of inertia

in Section 4, and relate it to our previous models of

software evolution processes. We discuss the

relationship between slicing metrics and measuring

inertia in Section 5. We summarise and conclude in

Section 6.

2. Program Slicing

2.1. Program Slicing Introduced

Program slicing was first proposed by Weiser [13,

14] as a technique to assist in debugging programs.

The idea emerged in response to Weiser’s

observations on how experienced debuggers find

faults in programs. In its simplest form program

slicing identifies all parts of a program that are related

to a given statement. This means that all statements

that do not affect a particular variable at a specific

point in the program are removed. The resulting partial

program is referred to as a ‘program slice’.

The technique is now supported by a number of

code analysis tools. This has encouraged the use of

slicing-based techniques in program maintenance, re-

engineering, de-bugging and testing. In this paper we

argue that, in addition, the technique can also make an

important contribution to understanding the evolution

of systems in the longer term.

2.2. Program Slicing and Software Evolution

Program slicing is relevant to the evolution of

programs because it provides a means of evaluating

the implications of changing any line of code in that

program. Program slicing captures the control

structure of a program. It also describes the coupling

between lines of code caused by their manipulating

shared variable data. Program slices thus reflect

semantic linkages made in the system by data changes

as well as information on the flow of control. Both of

these factors are significant in determining how easy

or difficult it will be to modify a body of code. The

semantic linkages are particularly significant when

changes are made which break the encapsulation,

information hiding and conformance to fixed

interfaces which are characteristic of modern high-

quality software designs.

Some program slicing techniques have been

developed specifically to improve the quality of

software system maintenance work. They allow

maintainers to identify, for example, the ripple effects

of a program change and thus reduce errors being

introduced into the program during maintenance. The

underlying rationale of program slicing reflects many

important features of software evolvability. Important

structural and complexity aspects of a system which

are directly relevant to the evolvability of that system

are encapsulated in program slices.

Tool support is available to identify slices and

enable the localisation of code examination to those

parts of the code which need modification and to

reflect knock-on, ripple effects [4]. Regression testing,

which takes up a considerable proportion of software

evolution effort, can also be made easier by slicing-

based techniques [5]. Other aspects of software

evolution work, including debugging [14] and reverse

engineering [1], are also supported using specific

slicing-based techniques. Program slicing can also be

used to measure directly the cohesion of a program

segment [2].

Slicing techniques also make it possible to relate

the effort needed to implement an evolutionary change

to the structural condition of the system. This suggests

that an evolvability measure can be developed by

employing slicing-based metrics. This evolvability

metric can be used to improve the calibration of our

quantitative model of the evolution process [3, 12].

Our motivations for using slicing techniques are,

therefore, somewhat different from those of previous

researchers. In our work we use slicing as a technique

to enhance the understanding of the evolution of a

software system. This is in contrast to previous work

where slicing is used as a tool to enable maintenance

or re-engineering work to be undertaken more

effectively, and generally to direct engineering

interventions.

3. Slicing Metrics

A number of metrics have been proposed to

describe the program slices which can be identified in

a system. As noted in Section 2.1 above, slicing-based

Proceedings of the 2005 IEEE International Workshop on Software Evolvability (Software-Evolvability’05)
0-7695-2460-5/05 $20.00 © 2005 IEEE

metrics were first described by Weiser [13] and then

extended in the early 1990s by Ott and Thuss [9], in

order to characterise the slices which they obtained.

Metrics originally proposed by Weiser [13] are

described in Table 1. Two further metrics proposed by

Ott and Thuss [9] are presented in Table 2.

More recently, tools have become available which

allow the collection of larger-scale slicing data.

Meyers and Binkley [7] have been the first to collect

and analyse such larger-scale data. However the

potential for using slicing data in relation to

subsequent releases of systems has long been

recognised. Ott and Thuss [8] suggested the need for

such work.

Table 1. Slicing-based metrics proposed by Weiser [13]

Metric Description

Coverage Compares the length of slices to the length of the entire program. Coverage might be expressed as the ratio

of mean slice length to program length. A low coverage value, indicating a long program with many short

slices, may indicate a program which has several distinct conceptual purposes.

Overlap Is a measure of how many statements in a slice are found only in that slice. This could be computed as the

mean of the ratios of non-unique to unique statements in each slice. A high overlap might indicate very

interdependent code.

Clustering Reveals the degree to which slices are reflected in the original code layout. It could be expressed as the

mean of the ratio of statements formerly adjacent to total statements in each slice. A low cluster value

indicates slices intertwined like spaghetti, while a high cluster value indicates slices physically reflected in

the code by statement grouping.

Parallelism Is the number of slices which have few statements in common. Parallelism could be computed as the

number of slices which have a pair wise overlap less than a certain threshold. A high degree of parallelism

would suggest that assigning a processor to execute each slice in parallel could give a significant program

speed-up.

Tightness Measures the number of statements which are in every slice, expressed as a ratio over the total program

length. The presence of relatively high tightness might indicate that all the slices in a subroutine really

belonged together because they all shared certain activities.

Table 2. Slicing-based metrics proposed by Ott and Thuss [9]

Metric Description

MaxCoverage Is the length of the longest slice as a proportion of the program length

MinCoverage Is the length of the shortest slice as a proportion of the program length

4. Inertia and evolvability

4.1. The concept of inertia

We propose the concept of Inertia as a means to

characterise the maintainability of a system. It consists

of two components, the system size and a measure of

the ease or difficulty in changing the system due to its

structure and code. Previous work [6, 3] confirms that

over the long term systems tend to grow in size, and

that as they grow they become correspondingly more

difficult to maintain. This is not only because larger

systems are likely to be more difficult and costly to

maintain than smaller, but also because changes made

to software systems over time tend to degrade its

structure and makes it less maintainable unless work is

performed specifically to counteract this. To model

quantitatively how easy a system is to evolve over

time, it is important to account for both changes in its

size and changes in its structure. Therefore any single

quantitative measure of inertia must take account of

both of these dimensions.

In our existing simulation models we have used

Turski’s characterisation of evolutionary growth [11]

as the basis for our measure of the effect of changes in

the system on the ease of making further changes to it.

Turski’s calculation, based purely on the physical size

of systems, does not directly address the relative

evolvability of different systems. In particular, it does

Proceedings of the 2005 IEEE International Workshop on Software Evolvability (Software-Evolvability’05)
0-7695-2460-5/05 $20.00 © 2005 IEEE

not account for issues of system structure and code

quality.

In this work we are attempting to capture more of

the phenomenon of inertia than Turski’s simple

abstraction. Program slicing examines, and quantifies

in its metrics, the internal linkages of the system

which make evolution of one part of a system, without

consideration of the rest of it, problematical. Slicing

metrics are therefore a good candidate for our purpose.

4.2. System dynamics models of software

evolution processes

In our previous work we have used simulation

models to help develop an understanding of the long-

term evolution of software systems. Figure 1 shows

our high-level system dynamics model of a generic

software process [12].

Figure 1: the generic software evolution process

In this model the software development process is

viewed as a mechanism to convert ‘requirements

which need to be met’ into ‘requirements which have

been met and fielded to users’. The rate of software

development is a function of, inter alia, the human

resource available to perform evolutionary work and

of the inertial of the existing system which slows

down that work. This rate of working is subjected to a

time delay function to represent the time taken to

perform the development work. It is further delayed as

completed requirements have to wait until the next

release of the software is delivered to its users.

These models have been successful in accurately

modelling changes in size of software systems over

many years and many releases; see, for example,

Chatters et al. [3]. Most of the parameters needed to

calibrate these models have been obtained from real-

world measures of the systems whose behaviour was

being investigated, typically either directly from

system data or from process experts. The only metric

not currently calibrated by these means is the

quantified effect of the inertia of the existing system.

Using slice-based metrics in addition to the current

size-based calculation will allow us to calibrate our

models with more precision.

5. Applying slice-based metrics to inertia

In this section we describe how some of Weiser’s

[13] and Ott and Thuss’ [9] slicing-based metrics may

be related to the effort needed to evolve a software

system. Specifically, we consider the relationship of

each metric to the difficulty of making changes to an

existing system. In effect, we relate the metric to our

notion of the ‘inertia’ of that system.

• Coverage: the existence of many short slices may

indicate a system whose structure has been

compromised over time by repeated cycles of

requirements
to meet

requirements
metsoftware

development

input effort effect of inertia
due to existing

system

new
requirements

exogenous
requirements

requirements not
met correctly

implementation
fault generation

factor

new
requirements

feedback effect

effective
effort

new
requirements

feedback delay

requirement
error feedback

delay

development
cycle time

new
requirements

feedback factor

delay from
completion to

release

development
time

inertia factor

Proceedings of the 2005 IEEE International Workshop on Software Evolvability (Software-Evolvability’05)
0-7695-2460-5/05 $20.00 © 2005 IEEE

changes. We conclude that lower coverage

implies greater inertia, as more of the code of the

system needs to be examined when changing it,

i.e. an inverse correlation may be expected

between coverage and inertia.

• Overlap: higher values of overlap mean that

individual elements of code are reused in different

traces through the program. Thus, when evolving

the system, if a code fragment is identified as

needing change, each instance of use of that

fragment will need to be located and examined.

Even if the required modification does not relate

to a specific instance, a change may be needed to

the code to support code which still needs the

unchanged version. Overall, a direct correlation

may be expected between overlap and inertia.

• Clustering: lower clustering means higher inertia,

because understanding and modifying less well-

structured and more mutually interdependent code

is likely to be more difficult. This is because the

code will be more difficult to understand before

changes can be designed. This will lead to greater

expenditure of effort and a greater risk of errors

being made in the design and implementation of

changes. We therefore expect clustering to exhibit

an inverse correlation with inertia.

• Parallelism: this may indicate that areas of

functionality are well-separated in the design and

the code. If this is the case, evolutionary changes

which respect the existing division of the problem

can be made more easily. Therefore, we expect

systems exhibiting high parallelism to be more

easily evolvable, i.e. the relationship between

parallelism and inertia is inverse.

• Tightness: this is related to the cohesiveness of

the code. As in the case of parallelism, the benefit

of more cohesive code can only be exploited if

changes which have to be made to a system

follow the assumptions implicit in the division of

the system functions. In this case, we suggest that

it is less likely that a code unit which is truly

cohesive will need to be broken up due to the

need for system evolution in unexpected

directions than is the case for the higher-level

design decomposition measured by parallelism.

Thus, there may be fewer changes needed overall

if the common version can be evolved so as to

continue to suit all of its uses. We suggest that

code exhibiting high tightness is more likely to be

easily evolvable than code with lower tightness.

• MaxCoverage: the higher this value, the longer

the maximum path length a developer will need to

appreciate in order to be able to understand the

effect of any change on it and thus evolve the

program safely. A high value may also reflect the

existence of large blocks of structured code,

which is more likely to cause the developer to

need to break them up with consequent reworking

of code inside a block and the design of new

control structures. This metric will therefore be

expected to have a direct correlation with inertia.

• MinCoverage: a high value for MinCoverage,

reflecting a comparatively long ‘shortest slice’,

will be subject to the same problems as those for a

high value for MaxCoverage. Conversely, a low

value for MinCoverage will mean that at least

some evolutionary software changes may be

localised to comparatively short traces through the

code. We therefore expect MinCoverage also to

be directly correlated with inertia.

In quantifying the evolvability of a complete

system over time, it may be necessary to select,

average, weight and/or total some or all of these

measures on the basis of an examination of their

trends. At this stage, we consider only the direction

(direct/inverse) of the relationship between each

metric and inertia, in particular whether there is an

inverse or direct relationship between the slice-based

data and inertia. Table 3 summarises our findings.

Table 3: The relationship between slicing
metrics and inertia

Metric Relationship to inertia

Coverage Inverse

Overlap Direct

Clustering Inverse

Parallelism Possibly inverse

Tightness Direct

MaxCoverage Direct

MinCoverage Direct

Our conclusions concerning the relationships

between these metrics should be seen in the context of

Meyers and Binkley’s [7] empirical findings. Meyers

and Binkley examined, inter alia, correlations between

slicing metrics obtained for a number of open-source

systems. They found strong correlations between

Proceedings of the 2005 IEEE International Workshop on Software Evolvability (Software-Evolvability’05)
0-7695-2460-5/05 $20.00 © 2005 IEEE

Tightness and MinCoverage and between Tightness

and Overlap, and statistically weak correlations

between Tightness and Coverage, and MinCoverage

and Coverage. They also concluded that Overlap was

not correlated to either Coverage or MaxCoverage.

They did not consider Clustering and Parallelism.

With the exception of our opinion that there is an

inverse relationship between Coverage and the other

metrics, their results provide some practical support

for our arguments.

Their results further suggest that as the size of

systems grow, and as they grow older, the

deterioration in structure becomes proportionally

greater, which lends support to our belief that a

relationship exists between trends in slicing metrics

and the evolvability of systems, and that slicing

metrics can be used as one of the inputs to the

calculation of inertia.

6. Conclusions and future work

We have shown that slice-based metrics are a

promising way to measure the evolvability of software

systems. We have integrated slice-based data with size

data to propose inertia as a singe, indirect measure of

the evolvability of software systems. We expect this

measure of inertia in our system dynamics models to

improve the predictions of the long-term evolution of

software systems made by these models.

To answer our initial research questions:

1. Are slice-based measures a viable approach to
generating data whose values and trends characterise

evolvability? Although the work we present here is

preliminary, our findings are promising. Slice-based

measures look to be a convincing approach to

characterising software evolvability. Our re-

interpretation of Meyers and Binkley’s [7] findings

suggests that these metrics will help in quantifying the

evolvability of a system.

The work we present here is theoretical, and we

will be able to test our answer to this question more

fully once we have collected empirical slicing-based

metrics data and recalibrated our models. This will

extend further the work already done by Meyers and

Binkley [7].

2. Can evolvability data contribute to the

prediction of long-term evolution of software systems?

Again our preliminary results are promising. The

addition of evolvability data into our system dynamics

models should generate more realistic simulations.

This means that our work simulating the long-term

evolution of software systems will be capable of being

applied with greater confidence to the investigation of

the impact of process change on long-term software

evolution.

As the next phase of our research, we will

collaborate with an industrial partner in generating

program slicing metrics to recalibrate and evaluate the

model against the evolution of a real-world project.

References

[1] Beck J and Eichmann D, “Program and interface slicing

for reverse engineering”, Proc. ICSE 1993, Baltimore,

Maryland, 17–21 May 1993, pp.509–518.

[2] Bieman J and Ott L, “Measuring functional cohesion”,

IEEE Trans. Software Eng., 20 (8), 1994, pp.644–657.

[3] Chatters BW, Lehman MM, Ramil JF, Wernick P,

“Modelling A Software Evolution Process”, Software

Process: Improvement and Practice, 5, 2000, 91–102.

[4] Gallagher KB and Lyle JR, “Using Program Slicing in

Software Maintenance”, IEEE Trans Software Engineering,

17 (8), 1991, pp.751–761.

[5] Gupta R, Harrold MJ and Soffa ML,

“An Approach to Regression Testing using Slicing”,

Proc. CSM 1992, Orlando, Florida, 9–12 Nov. 1992,

pp.299–308.

[6] Lehman MM, Perry DE, Ramil JF, Turski WM and

Wernick PD, “Metrics and Laws of Software Evolution -

The Nineties View”, Proc. Metrics '97 Albuquerque, NM,

5–7 Nov, 1997.

[7] Meyers TM and Binkley D, “Slice-Based Cohesion

Metrics and Software Intervention”, Proc. IEEE 11th
Working Conference on Reverse Engineering, Delft,

Netherlands, 9–12 Nov 2004.

[8] Ott L and Thuss J, “The relationship between slices and

module cohesion.”, Proc. ICSE 1989, Pittsburgh,

Pennsylvania, 1989, pp.198–204.

[9] Ott L and Thuss J, “Slice based metrics for estimating

cohesion”, Proc. First International Software Metrics

Symposium, Baltimore, MD, May 1993, pp.71–81.

[10] Sommerville I, “Software Engineering”, seventh

edition, Addison-Wesley, 2004.

[11] Turski WL, “The Reference Model for Smooth Growth

of Software Systems Revisited”, IEEE Trans. Software

Engineering, 28 (8), 2002, pp.814 – 815.

[12] Wernick P and Hall T, “The Impact of Using Pair

Programming on System Evolution: a Simulation-Based

Study”, Proc. ICSM 2004, Chicago, IL, Sept. 11–14 2004.

[13] Weiser M, “Program slicing”, Proc. ICSE 1981, San

Diego, California, Mar. 9–12 1981, pp.439– 449.

[14] Weiser M, “Programmers use slices when debugging”,

Comm. ACM, 25 (7), 1982, pp.446-452.

Proceedings of the 2005 IEEE International Workshop on Software Evolvability (Software-Evolvability’05)
0-7695-2460-5/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

