
Proceedings 2005 IEEE International Symposium on
Computational Intelligence in Robotics and Automation
June 27-30, 2005, Espoo, Finland

Sensor Adaptation and Development in Robots by Entropy
Maximization of Sensory Data

Lars Olsson*, Chrystopher L. Nehaniv*t, Daniel Polani*t
Adaptive Systems and Algorithmst Research Groups

School of Computer Science
University of Hertfordshire

College Lane, Hatfield Herts ALIO 9AB
United Kingdom

{L.A. Olsson, C.LNehaniv, D.Polani} @herts.ac.uk

Abstract-A method is presented for adapting the sen-
sors of a robot to the statistical structure of its current
environment. This enables the robot to compress incoming
sensory information and to find informational relationships
between sensors. The method is applied to creating sensori-
topic maps of the informational relationships of the sensors
of a developing robot, where the informational distance
between sensors is computed using information theory and
adaptive binning. The adaptive binning method constantly
estimates the probability distribution of the latest inputs
to maximize the entropy in each individual sensor, while
conserving the correlations between different sensors. Results
from simulations and robotic experiments with visual sensors
show how adaptive binning of the sensory data helps the
system to discover structure not found by ordinary binning.
This enables the developing perceptual system of the robot to
be more adapted to the particular embodiment of the robot
and the environment.

Index Terms- Ontogenetic robotics, sensory systems, en-
tropy maximization

I. INTRODUCTION

One of the major tasks of many sensory processing system
is compression of incoming sensory signals to represen-
tations more suitable to compute the specific quantities
needed for that specific animal or robot to function in
the world. It is believed that in many animals the func-
tionality of the sensory organs and nervous system is
almost completely innate, while in others it develops during
the lifetime of the individual [4]. This development and
adaptation is in part dependent on the structure of the
incoming sensory signals, and there are also indications
that individual neurons adapt to the statistical structure
of their incoming sensory signals. This paper presents a
robotic system that constantly adapts its visual sensors
to the statistical structure of its environment by entropy
maximization of the incoming sensory data.
The structure of the incoming sensory signals depends on

the embodiment and actions of the agent and the environ-
ment. Research into the structure of natural signals is still
at an early and explorative phase, but there are indications
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that signals of different sensory modalities such as acoustic
waveforms, odor concentrations, and visual contrast share
some statistical properties [17]. For example, in general the
local contrast in natural images has the same exponential
form of the probability distributions as sound pressure in
musical pieces [17]. Another commonality between signals
of different modalities is coherence over time and, in many
cases, spatial coherence. Coherence between signals means
that one part of the signal can be predicted by another part
of the signal. In other words, natural signals contain some
redundancy. For example, consider nearby photoreceptors,
which usually sample regions of visual space close to each
other. Thus, nearby photoreceptors often sample the same
object in natural scenes which usually is coherent in respect
to colour, orientation, and other parameters. Contrast this
with an image where each pixel is generated independently
from a random distribution. An image like this will contain
no redundancy.

Given the statistical structure and redundancy of natural
signals is it natural to ponder whether this structure is
exploited by animals to optimize their sensory systems.
Barlow suggested in 1961 [1] that the visual system of
animals "knows" about the structure of natural signals and
uses this knowledge to represent visual signals. Thus, the
sensory data can be represented in a more efficient way
than if no structure in the data is known. In 1981 Laughlin
recorded the distribution of contrasts as seen through a
lens with the aperture the size of a fly photoreceptor while
moving in a forest [8]. A single cell in the fly encodes
contrast variations with a graded voltage response. The
distribution of contrasts has some shape and Laughlin
was interested in whether the voltage response conveyed
the maximal amount of information given the specific
distribution of contrasts by maximizing the entropy of the
voltage distribution. This can be viewed as single neuron
cell version of Linsker's Infomax principle [9]. Laughlin
compared the computed ideal conversion of contrast to
voltage given his collected data from the forrest and found
the match to be very good with the measured response
of the second order neurons in the fly visual system.
This result suggests that the early visual system of the
fly is adapted to the statistical structure of natural scenes
in its environment. Since Laughlin's work focused on
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global statistics the adaptation must have taken piace over
evolutionary time. Recent results indicate that the fly visual
system also adapts to the current conditions in much
shorter timescales, on the order of seconds or minutes [31.
This means that individual neurons adapt their input/out
relations depending the structure of incoming signals.

In many robotic systems the processing of sensory data
is often, like in the visual system of organisms, limited
by the physical limits of sensation [2j. memory capacity,
processing speed, heat generation, power conisumption 16],
and limited bandwidth of data transi-er. Thus. there is
a Ineed for robots to extract relex nt infonnation [11]
1161 from the incoming streams of sensory data and also
to represent this info rmation as efficiently as possible.
One way information can be represented as efficiently as
possible given memory and processing constraints is by
maximization of the entropy in each sensory channel as
described above in the case of the fly. This is a well
known statistical technique also known as adaptive binning
[20] or histogratn or sampling equalzationf [10]. This
maximization also enables the robot to find more structure
in ensembles of sensors since the maximization conserves
the correlations between sensors while more resolution is
achieved in the parts of the input distribution where most
of the data is located.

This paper describes a sensory system that maximizes
the information a robot with limited computational re-
sources can have about the world. The sensory system is
constantly adapting to the structure of its current environ-
ment using entropy maximization of each sensor using a
sliding window mechanism. We sho\k in simulation how
an agent using this method can find informational relation-
ships in the sensory data using the sensory reconstruction
method [13] not found by a non-adapting system using
the twice the amount of memory to represent the data.
We also present results from experiments using a SONY
AIBOI robot. The results show hovw the visual signals
in different natural environments have different statistics
and how the adaptive binning method helps the developing
robot to reconstruct its visual field.
The structure of the rest of this paper is as follows. The

next section describes the idea of entropy maximization
and the information theory background. In section III the
sensory reconstruction method is described and section
IV presents the performed simulations and robotic exper-
iments. Finally, section V concludes and points out some
possible future areas of research.

II ENTROPY MAXIMIZATION OF SENSORY D)ATA
To get a better understanding of entropy maximization,

this section contains a short introduction to the general
concepts of entropy and information theory [18]. Then
entropy maximization is introduced and exemplified.
A. Information Theory

Let X be the alphabet of values of a discrete random
variable (information source in this paper a sensor) X with

AIBO is a registered trademark of SOY)NX Corporat1or

a probability mass function p(x) where A- A Tihen the
entropv. or uncertaintv associated with X is

anid the conditional entropv

H(YiX p%ylliI i
Z-.Id. _,

is the uncertainty associated with the discrete iandom
v ariable Y if we know the value of X. In other words
how much more information do we need to fully predict
Y once we know X.

The muntual inzformationi is the information shared be-
tween the two random variables X and Y and is defined

I(AX:. ) )A. Hx X)I(X1 i )t) ). (3 1

To measure the dissimilan'ty in the information in two
sources Crutchfield's information distance 15] can be used.
The information metric is the sum of two conditional
entropies, or formally

d(X. Y.) H(lXA!-) H N' (4)

Note that X and Y in our system are information sources
whose Jf(Y!X) and IH(XjIY) are estimated from the time
series of two sensors using (2).

B. EntropylMavximization

Due to memory and processing constraints, as well as to
simplify learning, it is often desirable to compress incom-
ing sensory data. One common method to achieve this is
binning, whereby the range of incoming data is mapped to
a smaller number of values using a transfer function. For
example, consider the grey-scale image depicting Claude
Shannon in fig. 1(a) where each pixel can have a value
between 0 and 255. How could this image be compressed
if only 5 different pixel values were allowed? Maybe the
first method that comes to mind is to divide the range
{0e L 2.55} into 5 bins of size 51, where all values
between 0 and 50 would be encoded as 0. 51 to 102 as
1 and so forth. This method, which does not take into
account the statistics of the data, is called uniform binning.
and the corresponding image is shown in fig. 1(c). As seen
in fig. l(d) the distribution of grey-scales in fig. 1(a) is not
uniform, with most pixels in the range {I100 101, - 200}
The entropy of the encoded image is 1.97, which is
less than the maximal theoretical entropy of log2 ' 2.32
From an information theoretical point of view this means
that this encoding is non-optimal since the entropy of the
encoded image is less than the maximal possible entropy
of the image. Now, consider fig. le) which also uses 5
bins, where (at least if studied from a distance) the image
seems to convey more detail about the original imager Here
the original values have been binned in such a way that
each bin contains approximately the same number of pixels.
which means that the entropy of the image is close to the
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maximum of log2 5 2.32. This can also be considered as
adding more resolution where most of the data is located.
As discussed in the introduction, it has been found that

the contrast encoding in the visual system of the fly is
adapted to the specific statistics of it environment [8].
This basically means that, just as in the image of Claude
Shannon above, the entropy of the graded response is
maximized. More formally, given a sensor X we want
to find a partitioning of the data into the N bins of the
alphabet X = B1 U ... U BN such that each bin B is
equally likely. That is,

1P(X c E Bi)

(a) No binning (b) No binning - his-
togram

(5)

which implies that the entropy of which bin data falls into
is maximized.
The experiments performed by Brenner et al. [3] also

indicate that this kind of entropy maximization constantly
is happening in the motion sensitive neurons of the fly.
This can be implemented by estimating the probability
distribution each time step of the most recent T time
steps and changing the transfer function accordingly. In the
experiments performed in this paper we have implemented
this algorithm using histogram estimators to estimate the
probability distributions. In our implementation all in-
stances of the same value are added to the same bin, which
explains why the distribution in fig. l(f) is not completely
uniform. The sliding window in our implementation does
not use decay, which means that more recent values do
not affect the distribution more than older ones within the
window.

III. SENSORY RECONSTRUCTION METHOD

In the sensory reconstruction method [15], [13] sen-
soritopic maps are created that show the informational
relationships between sensors, where sensors that are in-
formationally related are close to each other in the maps.
The sensoritopic maps might also reflect the real physical
relations and positions of sensors. For example, if each
pixel of a camera is considered a sensor, it is possible to
reconstruct the organization of these sensors even though
nothing about their positions is known. It is important to
note that using only the sensory reconstruction method,
only the positional relations between sensors can be found,
and not the real physical orientation of the visual layout. To
do this requires higher level feature processing and world
knowledge or knowledge about the movement of the agent
[13].
To create a sensoritopic map the value for each sensor

at each time step is saved, where in this paper each sensor
is a specific pixel in an image captured by the robot. A
number of frames of sensory data are captured from the
robot and each frame is one time step. The first step in the
method is to compute the distances between each pair of
sensors. This is computed by considering the time series
of sensor values from a particular sensor as an information
source X. The distance between two sensors X and Y is
then computed using the information metric, equation (4).

(c) 5 uniform bins

(e) 5 adaptive bins

(d) 5 uniform bins - his-
togram

(f) 5 adaptive bins - his-
togram

Fig. 1. Example of adaptive binning. fig. l(a) shows a 50 by 50 pixels
grey-scale image of the founder of information theory, Claude Shannon,
and fig. l(b) the corresponding histogram of pixels between 0 and 255.
fig. l(c) shows the same picture where the pixel data (0-255) is binned
into only 5 different pixel values using uniform binning and fig. l(d) the
frequency of pixel values. Finally, fig. l(e) shows the same picture with
the pixel data binned into 5 bins using adaptive binning and fig. l(f) the
corresponding histogram. The entropy of the nornal binning distribution
is 1.97 while the entropy for the adaptive binning distribution is close to
the theoretical maximum of log2 5 - 2.32. The adaptive binning (entropy
maximization) increases the resolution where most of the data is located.

From this 2-dimensional distance matrix a 2-dimensional
sensoritopic map can be created. In our experiments we
have used the relaxation algorithm described in [15].

IV. EXPERIMENTS

A. Simulation
On a 500 by 350 pixel environment (see fig. 2) an 8 by

8 pixel agent represented as a square moves a maximum of
one pixel per time step in the x-direction and a maximum

589

50 IOD 15D 00 m 3DO

.A " :::.:

-:. .........



of I pixel in the v-direction. Hence d.r and dYr
{ ---1,f 0. 1f. but both cannot be () at the same mime. Each
time step there is a 15c4 probability that either dx or dy. or
both. change value by or 1. Ever-y pixel nt1 < 0 < 64)
of the agent has 4 sensors, one for the red intensity (RB,,
one for the green (sG, one for the blue (Bh, and one ftr
the average intensity of that pixel (Ins Thus, the agent has
a total of 256 sensors, For each time step the values of
all the 256 sensors are used as the input to the sensorv
reconstruction method.

f,I.a Red histogranm 6000 tiniie
steps

n (',Cir en hst)ora6i000
timne steps

11

i,

Pixei value

HFlg. 2. The environment where the agenit is moving. The Imrage depicts
autumnn leaves and has higher vanation in the red and green channels thaii
the blue channel.

(o Blue
timfie steps

histogram 6000 (d Red histogiani 0 fin'e
steps

Fig. 3 shows the histograms of all sensors of each type
accumulated over the whole simulatioin of 6000 time steps.
and also examples of histograms for each sensor type over
10 consecutive time steps. The red and green sensors are
quite uniformly distributed over almost the whole range
while the blue has a high peak at 0 In fig. 3(d) to 3(f)
wx e can see that the ranges of values in the red and green
sensors are greater than in the blue sensors during these 10
time steps, something that was true for most frames.

Given the structure of the input data it is expected
that adaptive binning with a sliding window would be
advantageous tor the sensory reconstruction method. In
fig. 4(a) the input to the sensory reconstruction method
is sensory data from the 256 sensors partitioned into 16
uniform bins (4 bits per sensor). The graph shows that
some structure is found and some sensors that are closely
positioned in the agent are close in the sensontopic map.
One exception is the blue sensors. B, to B64 all located
to the left. Clearly, if all the informational structure could
be found the map should correspond to the physical order
and, for example, R, should be close to B Now consider
fig. 4(b). Here the input data was binned into onlv 4
bins (2 bits per sensor) using entropy maximization with
a sliding window of size 100. Here the sensoritopic map
clearly shows the informational and physical relationships
between the senisors, where sensors that are closelv located
in the layout of the agent are clustered in the map. This
means that the real physical layout of the sensors has been
recovered from the raw input data, something that the same
method failed to do using uniform binning and double the
amount of resolution per sensor.

Au
i2
iL

{e) Green Histogram 10 time
steps

(f) Blue [Histogram 1() tme
steps

Fig. 3. Figures 3(a), 3(b). and 3(c) shows histograms of red, greenr and
blue sensors from the image in fig. 2 collected from 6000 timesteps of
movement from all sensors. Figures 3(d), 3(e. and 3(f) show examples
of histograms from 10 consecutive tirne steps.

B. Robotic Experiments
The robotic experiments were performed with a SONY

AIBO robot wandering in an office environrment with both
artificial lights and two windows. Images of size 88 by '72
pixels from the robot's camera were saved oxver a dedicated
wireless network with an average frame rate of 15 frames
per second. The images were transformed to 8 by 8 pixel
images by either pixelation with averaging or by using only
8 by 8 pixel from the centre of each image. Either transfor-
mation produced similar results in subsequent experiments.
Each pixel has three sensors, ftCG B, . 1 < n < 64.
with R, in the upper left corner and R64 in lower right
corner. The robot performed a simple explonng behaviour
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(a) Uniform binning - 16 bins (b) Adaptive binning - 4 bins
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(a) Red histogram
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(b) Green histogram

Fig. 4. Sensoritopic maps of the sensory data where Ri-64 is the red
channel sensors, G1-64 the green, B1-64 the blue, and 11-64 the intensity
sensors using uniform and adaptive binning .

with obstacle avoidance walking around in the office.
Fig. 5 shows histograms of all sensors of each type

(red, green, blue, intensity) combined over 1000 time
steps where each sensor can have a value in the range
{0, 1, ... , 255}. The red and green sensors have most
values between 0 and 170 with two clear peaks at roughly
70 and 150. The blue sensors had a narrower range, with
most sensor values between 0 and 80, and two narrow peaks
at roughly 25 and 75. The peaks are due to the windows;
when walking towards the windows the ambient light is
brighter. Similarly to the simulation above, the histograms
in any given frame show a narrower range of the data for
the blue sensors. Thus, it is expected that the blue sensors
are more difficult to reconstruct using uniform binning.
As seen in fig. 6 this is the case. fig. 6(a) shows a

sensoritopic map of the blue sensors constructed from 16
uniform bins. Contrast this with fig. 6(b) using only 6
adaptive bins where the organisation of the visual field has
been reconstructed. In fig. 7 sensoritopic maps of all the
red, green and blue sensors combined are shown. Here we
can again see how the adaptive binning enables the sensory
reconstruction method to find the positional relations of
the sensors of the different types of sensors, where sensor
from the same physical position, e.g. R8, G8, and B8,
are clustered together. We can also see that the order with
R1 at the opposite corner of R64 has been found. In the
sensoritopic maps in fig. 7(c) and 7(a) created using 6 and
16 uniform bins we see that the blue sensors are separated
from the red and green. The structure of the red and green
sensors is also less clear compared to the adaptive binning
of fig. 7(b) and 7(d).

V. CONCLUSIONS
This short paper has discussed entropy maximization of

sensory data in the fly visual system and how a similar
system can be implemented in a robot. The system con-
stantly adapts the input/output mapping of sensory data
by estimating the distribution of input data and adapts the
output distribution by entropy maximization of the data.
This mapping of input/output data compresses the data
while maintaining correlations between sensors. Results

0
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0 50 100 150 200 250

Pixel value

(c) Blue histogram

01
0 -~

0 50 100 150 200 250

Pixel value

(d) Intensity histogram

Fig. 5. Histograms of red, greeen, blue, and intensity sensors.
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Fig. 6. Sensoritopic maps of blue sensors. fig. 6(a) shows the sensoritopic
map created with 16 uniform bins and fig. 6(b) with six adaptive bins using
a sliding window.

from simulation show how an agent using this adaptive
technique can reconstruct its visual field with a resolution
of only two bits per sensor using the sensory reconstruction
method. Using four bits per sensor and uniform binning
the sensory reconstruction method failed to reconstruct the
visual field. This result indicates that adaptive binning is
useful for compressing sensory data and to find correlations
between sensors. Results from experiments with a SONY
AIBO robot show some statistical properties of different
indoor environments and how adapting to this structure
helps the robot find structure in the sensory data.

Adaptation of sensory systems to the specific environ-
ment of a particular species is also studied in the field
of sensory ecology [7]. Here many results also seem to
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Fig. 7. Comubined sensontopic maps of red (R green (G)I anrd blue (B

sensors using 6 and 16 bins with uniform and adaptive binning

indicate that sensory systems evolve to be -tuned" to
the average statistical structure of the environment. For
example, it has been found that the spectral sensitivity
of many unrelated fishes has converged to similar patterns
depending on the water colour and ambient light.

It is also interesting to note how the sensory reconstruc-

tion method manages to merge sensors of different types
such as red, blue, and green light sensors and reconstruct

their their visual layout without any knowledge of theil
physical structure as seen in fig 7(b). This is an example
of autonomous sensory fusion. Perhaps the most studied
example of this in neuroscience is the optic tectum of
the rattlesnake, where nerves from heat-sensitive organs

are combined with nerves from the eyes [12]. This kind
of multimodal sensor integration is something that will be
studied in future work.

This paper has presented initial work and there are many

possibilities for developing and extending these ideas. Is
entropy maximization more effective for the agent on sets
of sensors or a more abstract object level than the single
sensor level? In this case, how are these sets or objects
selected? There are also many problems associated with
entropy estimation. For example. what is the best method
to estimate entropy given distributions with empty bins'?
Here other methods like Miller-Madow bias correction [14]
could be investigated. We are also interested in robots that
develop and leam over time and adapt to their particular
environment and tasks. Results indicate that constraints on

perception during development may improve the perceptual
efficiency by reducing the information complexity [19]. In
this context adaptive binning can be applied to a develop-
mental system starting with low resolutionn where miore
resolution is added using adaptive binning as the robot
develops and learns about its particular environment.
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