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Abstract— The evolvability of a software artifact is its
capacity for producing heritable or reusable variants; the
inverse quality is the artifact’s inertia or resistance to evolution-
ary change. Evolvability in software systems may arise from
engineering and/or self-organising processes. We describe our
‘Conditional Growth’ simulation model of software evolution
and show how it can be used to investigate evolvability from
a self-organisation perspective. The model is derived from the
Bak-Sneppen family of ‘self-organised criticality’ simulations.
It shows good qualitative agreement with Lehman’s ‘laws
of software evolution’ and reproduces phenomena that have
been observed empirically. The model suggests interesting
predictions about the dynamics of evolvability and implies
that much of the observed variability in software evolution
can be accounted for by comparatively simple self-organising
processes.

I. INTRODUCTION

A. The concept of evolvability

Evolvability has been defined in a biological context as
‘an organism’s capacity to generate heritable phenotypic
variation’ [13], i.e. the capacity to generate variations in
‘the manifested attributes of an organism, the joint product
of its genes and their environment [8]’ that can be inherited
by offspring. For example, female cuckoos lay their eggs
in the nests of other birds. Cuckoos vary in their choice
of foster species and in their deception techniques, e.g. egg
mimicry. These variations in cuckoo phenotypes appear to
be inherited and also to vary over time as the unwilling
foster birds develop defensive tactics against the cuckoo.
Thus, cuckoos need to have greater evolvability than, say,
robins to stay ahead in the ‘arms race’ [8] between them.

By abstracting the general characteristics of evolvability
from its original biological context, the concept can be
applied to artificial systems [19], including software systems.
Generalised evolvability can be understood as the inverse of
inertia in relation to a replicator’s capacity for evolutionary
change. A replicator [8] is anything — e.g. a gene, a software
component — that can be copied, possibly with variations.
The copying operation requires the expenditure of energy,
partly to overcome inertia and partly to create the copy.

Inertia to evolutionary change can arise as a natural conse-
quence of previous successful adaptations. When replicators
are competing to survive and replicate, long-term success

for the replicator — but not necessarily for its host —
depends not only on finding a ‘winning formula’ but also
on defending it against random changes and resisting being
dislodged by competing replicators.

Software components have those characteristics. They ex-
hibit a form of heritability, both in the object-oriented sense
of inheritance and also in a more general sense where, for
example, each successive version of a component is a copy-
with-possible-variation of its preceding version. Such vari-
ations may affect the component’s ‘manifested attributes’,
usually its behaviour or interface. Software components also
vary in how easily they can be changed. Thus, they have
the core attributes of evolvability, as identified in biological
terms by Kirshner and Gerhart [13] above. The inverse
quality of inertia or resistance to evolutionary change is also
frequently observed in software.

B. Evolvability and self-organising processes

When replicators are competing to occupy scarce niches,
the population dynamics can be complex. It is sometimes
tempting to explain such changes in a metaphoric or anthro-
pomorphic way, e.g. in terms of the ‘desires’ or ‘intentions’
of genes, organisms, etc. However, biologists in general
prefer theories that rely on self-organising mechanisms to
explain evolutionary change. For example, Maynard Smith
[18] used game theory to explain the statistical distribution
of alternative heritable behaviours in a population.

Care is needed when applying similar explanations to
software systems, because clearly some changes are the
direct result of stakeholders’ intentions. However, it is also
apparent from the accumulated work, both empirical and
theoretical, on software evolution that there are emergent,
unintended effects when systems evolve over significant
periods of time. It is therefore reasonable to investigate
whether these findings can be understood as evidence of
self-organising processes that may or may not be similar to
those found in other kinds of evolving systems, including
biological systems. In this work, we examine an approach
to modelling self-organising processes that is particularly
associated with Bak [1], and we consider how it can be
applied to a simple model of changing evolvability in an
evolving software system.
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Two related contributions towards a theory of software
evolution are particularly relevant to this work, namely the
SPE [7], [15] classification of evolving software systems and
Lehman’s proposed ‘laws of software evolution’ [17]. The
SPE classification is related to evolvability in the following
way:

• S-type systems do not evolve: therefore, by definition,
any apparent capacity for generating phenotypic change
is never manifested;

• the evolution of P-type systems is constrained by stake-
holders’ policies;

• so long as an E-type system remains useful to its
stakeholders, its evolution is inevitable and the outcome
is difficult to predict.

Thus, evolvability can be an important property of E- and P-
type systems and components but is not relevant to S-type.
For example, the architecture of a P- or E-type system can
be viewed from an evolvability perspective as a collection of
design commitments that embody stakeholders’ assumptions
and policies about the expected evolution of the system.

Lehman’s ‘laws of software evolution’ identify several
self-organising processes in software systems. Laws I, II
and VI — ‘Continuing Change’, ‘Increasing Complexity’,
‘Continuing Growth’, respectively — refer implicitly to
evolvability.

II. SIMULATION AND EVOLVABILITY

In this work we use simulated changes in the evolvability
of components to explore the system dynamics of evolution
processes. Simulation can abstract from situations that are
known empirically to be complex and diverse. It can also
be used to model the dynamic effects of theories and of
generalised observations such as Lehman’s Laws. Various
simulation techniques, e.g. [6], [21], have been found helpful
for investigating software evolution.

The simulation approach used in this work involves
merging many possible causes of the target phenomenon
to a simple model that still exhibits interesting behaviour.
Possible causes of change in a system or component’s
evolvability, include:

• engineering and project management actions
• uncertainty / volatility in requirements
• tolerances and rigidities of implementations
• innovative use of the system

However, in the simulation model described here, all pos-
sible causes of change in evolvability are collapsed into a
single mechanism.

Our simulation model is called the Conditional Growth
model and is described in detail in Section IV. Its purpose
is to explore whether various behaviours that are generally
considered to be normal in evolving software systems can
be simulated by models derived from the concept of self-
organised criticality (SOC) [3], described in Section III. At
this stage, the Conditional Growth model cannot be proposed
as a complete and accurate characterisation of the software
evolution process.

III. PROGRESSIVE AND PUNCTUATED EVOLUTION

Systems in general can exhibit many kinds of dynamic
behaviour. From an evolution perspective, two modes of
system dynamics are particularly interesting:

• Progressive : successive states of the system are closely
related and tend to exhibit change in a consistent
direction over relatively long periods;

• Punctuated : the system repeatedly reaches ‘poised’ or
‘critical’ states, far out of equilibrium, from which fur-
ther change occurs as an ‘avalanche’ of unpredictable
size, timing, direction, etc.

Under the influence of Darwin, evolution researchers in
both biological and artificial systems often assumed that
the Progressive mode predominated. However, it has be-
come recognised that both modes are found. Eldredge and
Gould [9] proposed that ‘punctuated equilibrium’ is a more
convincing explanation for the emergence of many species
than the more conventional theory of ‘phyletic gradualism’.
Bak et al. [3] showed that the Punctuated mode of system
dynamics is related to power law distributions [20] in system
properties and can be found in many natural and artificial
systems, e.g. the distribution of earthquake sizes in a fault
zone. Bak uses the term self-organised criticality to refer
to the capacity of some systems in Punctuated mode to
consistently and repeatedly reach a critical state without
tuning or other external intervention.

There are both theoretical and empirical grounds for
conjecturing that the Punctuated mode of evolution can occur
in software systems. We have found conceptual similarities
between the descriptions of punctuated equilibrium and SOC,
Simon’s [22] research into evolution in hierarchical systems,
and our own work [7] with Lehman on the foundations
of SPE. In particular, we note the inherent capacity of E-
type systems to evolve in unanticipated ways. Empirically,
Barry et al. [4] found noticably non-uniform evolution in
a portfolio of 23 business applications. Wu et al. [24]
found punctuated evolution in a survey of three open-source
systems.

The Progressive and Punctuated modes of evolution have
different implications for system properties, including evolv-
ability. For example, the Progressive mode is more likely to
be associated with constant or slowly changing evolvability
than with sudden changes. If changes in evolvability are
a result of self-organising processes, they need not have
any external cause. Consequently, stakeholders may perceive
such changes as unexplained or disproportionate to their
supposed cause. Simulation can increase our understanding
of these situations.

IV. THE CONDITIONAL GROWTH MODEL OF EVOLUTION

Bak and Sneppen [2] developed a simple simulation
model of an evolving ecosystem that robustly achieves
SOC. However, the Bak-Sneppen model is not immediately
applicable to evolving software systems because one of its
simplifications is to conserve the number of ‘species’ in
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the ‘ecosystem’, whereas software systems tend to grow,
as described by Lehman’s Law VI [17]. In this work, we
define a ‘Conditional Growth’ variant of the Bak-Sneppen
model that allows the number of components in the system
to increase.

A. Model definition

The Conditional Growth model can be defined in terms
of the topology of the evolving system and the rules for
selection and adaptation of the system’s components that
are applied at each time step in a simulation run:

• Topology : a ring of N components.
• Selection : as in the Bak-Sneppen model, an ‘evolu-

tionary inertia’ value s is assigned to each component
c. At each time step, the component with the lowest
inertia ci, located at position i in the ring, is selected
for adaptation.

• Adaptation of the selected component ci affects the
system in several ways:

– local adaptation of ci is represented by assigning
it a new random value of inertia s′;

– consequential adaptation of a minimal subset of
the selected component’s neighbours is represented
by assigning a new random value of inertia to
component ci−1;

– reproduction : the reproductivity of ci is deter-
mined by a step function R ranging over {0, 1}.
If R(ci) = 1 then the component reproduces by
inserting an offspring at position i + 1.

Thus, at each time step in a simulation, one component
is selected for adaptation. That component and one of its
neighbours receive new random inertia values. The value of
R determines whether the system size increases by one or
is static.

B. Histories and scenarios

Different kinds of histories, i.e. individual runs or itera-
tions of the simulation model, can be generated by config-
uring the model with different parameters and/or redefining
the R function. Each distinct definition of R is a policy. We
use the term scenario to refer to a policy and a collection of
parameter values that define the starting conditions for one
or more histories.

In the simplest possible scenario, R is a constant, e.g. 1.
In this case, the number of components N would increase in
each time step. This does not produce interesting histories.
They exhibit uniform, linear growth, which is inconsistent
with both Lehman’s Laws and empirical observations. How-
ever, more complex policies can be devised that model more
features of Lehman’s Laws and exhibit more interesting
behaviour.

C. Simulation framework

The authors have designed and implemented a framework
for simulating the Conditional Growth model in Java. The
framework allows histories to be generated for different
policies and scenarios.

V. DESCRIPTION OF RU POLICY

To illustrate the role of the reproductivity function R in
the Conditional Growth model, we consider a policy RU
that models a conjecture derived from Lehman’s Law IV
‘Conservation of organisational stability’ or ‘Invariant work
rate’. The conjecture is that both reductions in inertia, e.g.
due to refactoring, and significant increases in inertia, e.g.
due to modifying a component, tend to absorb stakeholder
effort that might otherwise be used to add new components
(functionality) to the system.

RU models this conjecture by ensuring that R is only
mapped to 1 when the inertia increment s′ − s is small and
positive, otherwise R is mapped to 0. This is achieved by
defining RU in terms of s′ − s, a fixed ‘threshold’ value ϑ,
and a feedback component U(ci), defined as the number of
previous updates or ‘mutations’ of component ci:

RU =

⎧⎨
⎩

(s′ − s) < 0 �→ 0
0 < (s′ − s) < ϑ/U(ci) �→ 1

ϑ/U(ci) < (s′ − s) �→ 0

The ϑ parameter allows some coarse-grained tuning of
the model’s behaviour within the RU policy. As ϑ → 0,
the behaviour of the model approximates the ‘no growth’
scenario associated with S-type systems. As ϑ → 1, the
growth of the system becomes steeper and smoother.

VI. QUALITATIVE ANALYSIS

If the Conditional Growth model is configured with the
RU policy, it models Lehman’s Laws to the following extent:

I Continuing Change : evolutionary inertia levels
change at every time step, representing the effect of
continual adaptation of the system in a continually
changing environment.

II Increasing Complexity : the increasing complexity
of the system is represented by the values of U(ci),
which increase as the system evolves.

III Self Regulation : the model exhibits consistently
convergent features and also properties with non-
normal probability distributions, see Section VII.

IV Conservation of Organisational Stability : the
definition of RU is derived from this Law, see
section V.

V Conservation of Familiarity : ‘releases’ are not
modelled explicitly; the distribution of stasis lengths,
see Section VII, implies that RU histories do not
have consistent periodicity.

VI Continuing Growth : the system has the potential
to grow indefinitely at extremely variable short-term
rates.

VII Declining Quality : the definition of RU can also
be interpreted as a tradeoff between increasing func-
tionality and other effort-consuming activities, e.g.
improving quality; the tradeoff for each component
becomes steeper as it ages, represented by increasing
values of U(ci).
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Figure 1: Examples of growth curves generated by scenario
RU (ϑ = 0.3)

VIII Feedback System : each time-step sets the subse-
quent step’s starting conditions, which include the
explicit feedback provided by the values of U(ci).

VII. STATISTICAL ANALYSIS

This section presents some preliminary results from our
analysis of the RU policy that are particularly relevant to
the self-organising dynamics of software evolvability.

A. Short-term evolution and evolvability

As ϑ → 0, the RU growth policy produces very diverse
growth curves, often with many abrupt changes of gradient.
Some examples are shown in Fig. 1. They show similarities
to growth curves found in empirical investigations, e.g. [24].
Thus, short-term evolution in RU histories shows visual
evidence of the Punctuated mode of evolution.

The distribution of the length of stasis periods, i.e. the
number of consecutive time steps when R = 0, provides
a convenient way of characterising the model’s micro-
evolutionary behaviour that is analagous to the analysis of
avalanche sizes by Bak and his colleagues.

It might be expected that the distribution of stasis lengths
would approximate a power law, given that the Conditional
Growth model is derived from the Bak-Sneppen model in
which avalanches consistently show a power law distribu-
tion. However, it appears that this is not the case, at least
for histories up to 75 000 time-steps.

Nevertheless, the distribution of stasis lengths within each
history is highly skewed, with a long tail of very large values.
Fig. 2 shows the fit of the empirical data against ‘stretched
exponential’ [14] and power law distributions. In each case,
a perfect fit would result in a linear plot. Thus, Fig. 2a
indicates a poor fit to a power law distribution. Fig. 2b shows
a better fit to a stretched exponential distribution of the form

√
xn = b − a log(n)

where xn is the stasis length value at rank n of N stasis
lengths, such that 0 < n < N + 1 and x1 ≥ x2 ≥ · · · ≥ xN

and a, b are constants.
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Figure 2: Probability distribution fitness for stasis lengths
data

Although the overall distribution of stasis lengths is
similar between histories generated by the same scenario,
successive stasis lengths within the same history are scarcely
correlated. Treating each history’s sequence of stasis lengths
as a time series [5], we found very low values of the autocor-
relation function. This confirms the visual impression from
Fig. 1 that RU growth curves have very low smoothness.

Thus, when a system’s short-term evolution resembles the
RU policy, micro-trends in properties that are evolutionar-
ily sensitive cannot be predicted with confidence. This is
because (a) the relevant probability distributions are highly
skewed with very large variances, and (b) the recent past is
a poor predictor of the immediate future.

B. Long-term evolution and evolvability

Boxplots of system size over time provide a convenient
way of describing histories from a macro-evolution perspec-
tive. The growth curves of nine histories each of 75 000
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time-steps are summarised in Fig. 3 using this technique. The
boxplots show that the variability of short-term growth rates
is also found at larger scales. This implies wide variations
in long-term evolution between RU histories.
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Figure 3: Boxplots of system growth over time for 9 histories
of 75 000 time-steps generated by scenario RU (ϑ = 0.3).
The divided boxes show the growth achieved during the two
middle quartiles of time, and the system size at the median
time, i.e. t = 37500.

Nevertheless, the underlying long-term growth trend for
RU histories is linear, i.e. mean and standard deviation of
system size increase linearly with history length. This reveals
an aspect of RU that lacks validity, since both theory [23]
and empirical observations [6] suggest that system growth
rates tend to decline in the long term.

VIII. DISCUSSION AND CONCLUSIONS

A. Probability distributions in evolving software systems

The Conditional Growth model shows that simple models
of evolution can produce effects with various probability
distributions. Lehman’s Law III proposes that

‘E-type system evolution process is self regulating
with distribution of product and process measures
close to normal.’ [17]

Our simulation results suggest that Law III may understate
the variability of software evolution processes. We conjec-
ture that the applicability of Law III could be improved by
revising it along the following lines:

‘E-type system evolution processes are self-
organising, producing distributions of system prop-
erty values that approximate various well-defined
probability distributions, including at least normal,
log-normal and exponential.’

This conjecture should be tested by empirical studies of a
wide range of evolving software systems. Our understanding
of software evolution processes would increase significantly
if we found consistent statistical relationships between evo-
lutionary properties in software systems and the probability
distributions of their values.

B. Power laws in software evolution

We have not yet found clear evidence of power law
distributions in RU histories. This is unexpected, given
the similarities between the Bak-Sneppen and Conditional
Growth models, and contrary to the results from the adapta-
tion of the Bak-Sneppen model devised by Gorshenev and
Pis’mak [12]. However, we note that several researchers
[11], [14], [20] have cautioned against over-diagnosis of
power laws and SOC. This question may be resolved by
running longer histories, since it is known, e.g. from Bak’s
[1] experiments with rice piles, that SOC properties take time
to emerge.

C. Modelling Punctuated evolution

The evidence from RU histories suggests that this policy
is more successful at modelling the Punctuated mode of
evolution in the short than in the long term. Further work
is required to improve the validity of the model for longer
histories. We plan to investigate alternative policies to RU ,
e.g. by considering whether additional feedback factors can
improve the model’s validity.

D. Representations of time in models of software evolution

One of the significant differences between the Conditional
Growth model and some previous work on measuring and
modelling software evolution is the treatment of time. The
Conditional Growth model uses absolute, but scale-free,
units of time. On the other hand, it rounds each increment
in system size to 0 or 1. However, other researchers have
made different decisions. For example, in his empirical
investigations, Lehman measures size increments absolutely,
using ‘module’ units, but effectively normalises the lengths
of stasis periods between increments by measuring time in
‘release sequence numbers’ rather than absolute units.

Both practices, and indeed others, can be justified but it
is important to understand their different implications for
discarding information and thus possibly losing insights into
the phenomena under study. Further analysis of previous
empirical studies of software evolution might reveal evidence
of Punctuated evolution that had been overlooked.

E. Non-smooth dynamics in software evolution

The discovery that simple policies such as RU can pro-
duce non-smooth growth curves is significant. Empirical
studies of evolving software systems have found instances
where an underlying trend of declining growth was appar-
ently interrupted or restarted by short-term bursts of more
rapid growth. Lehman suggested that this variability in short-
term growth rates could be attributed to exceptional, local
causes such as ‘anti-regressive’ or refactoring work by the
system development team.

Punctuated evolution offers an alternative, simpler expla-
nation, namely that when a system is evolving in Punctuated
mode, it will exhibit non-smooth change as an emergent
feature that does not necessarily require further explanation.
For example, if Figs. 1a and 1c were plots of individual case
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studies rather than simulation data, it would be tempting
to interpret the abrupt increases in short-term growth rates
as ‘regeneration points’ and to seek a local explanation in
that system’s specific ‘global software process’. However,
the Conditional Growth model shows that this could be an
over-interpretation of the data.

F. What is ‘normal’ evolutionary behaviour?

The results obtained from simulating the Conditional
Growth model provide strong grounds for expecting that the
evolutionary behaviour of real-world software systems can
be both complex and diverse even if the underlying process
is eventually found to be simple and uniform. In other
words, software evolution researchers should not assume
that complex phenomena must be the result of multiple
or complex causes, nor should they assume that diverse
behaviour must be the result of different processes. For
example, the apparently contrasting findings of, say, Godfrey
[10] and Lehman et al. [16], may have a simple explanation
in the large variances and skewed probability distributions
of software evolution metrics.

Claims of significant differences in evolutionary proper-
ties between, say, open-source and proprietary systems or
between E-type and P-type systems, should be based on
statistically valid sampling. The highly variable histories
generated by single scenarios of the RU policy, demon-
strate that generalisations from single case studies or micro-
samples must be treated cautiously.
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