
Serbia & Montenegro, Belgrade, November 22-24, 2005EUROCON 2005

Impact of Dependable Software Development
Guidelines on Timing Analysis

Ingomar Wenzel∗, Raimund Kirner∗, Martin Schlager∗, Bernhard Rieder∗, Bernhard Huber∗

Abstract— The knowledge of the worst-case execution time
(WCET) of real-time tasks is mandatory to ensure correct
timing behavior of real-time systems. However, in practice an
exact WCET analysis is often intractable due to limitations in
computability and analysis complexity of real-size programs.

In this paper we analyze how development guidelines for
dependable software support and simplify WCET analysis.
We investigate three guidelines and their impact on WCET
analyzability. DO-178B as a production guide for avionics
software expresses requirements that are relevant for timing
analysis. The MISRA Guidelines include C programming
guidelines that improve the WCET analyzability of software.
Finally, ARINC 653, a standard for software architectures of
avionic systems, provides examples on how to simplify timing
analysis already at the design level as early as in system
design. The argument of this paper is that careful system
design and programming improves the timing analyzability
of real-time systems.

I. I NTRODUCTION

Many innovative developments in the transportation
sector (aerospace, automotive) require complex electronics
and software systems. In the next decade a further increase
in electronic and software functions can be expected.
For instance, in the automotive domain, more and more
comfort (seat positioning, vehicle handling), safety (active
pre-crash, collision warning) and infotainment (Internet,
digital TV) functions will be introduced.

However, according to figures of the German automo-
bile association ADAC, currently more than 50% of all
breakdowns of cars are directly related to defects of car
electronics. In 2015, even more than 60% electronic related
breakdowns are expected [5]. Thus, a sufficient degree of
dependability is of utmost importance – in particular for
safety critical functions.

In case the correct operation of a particular service does
not only depend on the correct result in the value domain,
but also on the timeliness of the computed result, such
service is called a real-time service [8].

Due to the temporal constraints required for correct
operation of a real-time system, predictability in the tem-
poral domain is a stringent imperative to be satisfied.
Therefore, it is necessary to determine the timing behaviour
of the tasks running on a real-time computer system.
Worst-case execution time (WCET) analysis is the research
field investigating methods to assess the worst-case timing
behaviour of real-time tasks.

A. Objective

The key purpose of this paper is to investigate the rela-
tionship of guidelines for safety critical software develop-

∗All authors are affiliated with Institute of Computer Engineering,
Vienna University of Technology, Treitlstraße 3, 1040 Vienna, Austria.
For further information, please contact ingo@vmars.tuwien.ac.at

ment of real-time systems with respect to the applicability
of WCET analysis methods. The goal within this work is
to gain deeper insights into the capability of performing
WCET analysis for state-of-the-art real-time programs.

Imposed by dependability requirements for safety-
critical hard real-time systems, a number of broadly ac-
cepted ”guidelines” exist. These guidelines are intended
to allow or ease the process of validation and verification
by introducing a number of restrictions on the software
engineering processes. These ”restrictions” address various
levels and aspects in the software life cycle. Some effects
of these restrictions are supposed to influence the structure
of the actually produced program code.

In this work, the impact of these restrictions and con-
straints on the real-time program code is analyzed by
focusing on the relevant aspects of the code structure for
WCET analyzability.

B. Classification of the Documents Investigated

In this paper, the following three types of documents
are considered. For each type, one section in this paper
describes the covered aspects within that type of document
and their impact on WCET analysis:

• Guidelines for Software Productioncover the whole
software life cycle with the goal to ensure a desired
level of confidence into dependability (DO-178B[7]).

• Coding Guidelines (also referred to asCode Stan-
dards1) impose constraints on the pragmatism of a
language. Examples for coding guidelines are the
MISRA Guidelinesfor the C language [9] or Spark
ADA [4].

• Architectural Standardizations specify the applica-
tion programming interface for real-time software. As
an example, in this paper a brief overview about the
contents ofARINC 653[2] is presented.

Figure 1 depicts the relationship between these different
document classes.

Coding

Guidelines

Guidelines for Software 

Production

Component n

Architectural

Standardizations

applies to

each component 

implementation

stipulates the system

partitioning

stipulates

integration

stipulates

integration

Fig. 1. Classification of Documents

1In DO-178B(Section 11.8, p52) code standards are introduced as one
aspect of software life cycle management [7].



II. TAXONOMY OF SOFTWARE COMPLEXITY FOR

TIMING ANALYSIS

In this section we give a generic discussion about the
hurdles of predicting the runtime behavior of code and
describe how programming guidelines can improve the
predictability of code. These concepts are the motivation
why development guidelines for dependable software are
useful to make WCET analysis feasible.

A. Code Patterns Challenging WCET Analyzability

In the following we describe code patterns that rise some
challengenges on timing analysis [6].

1) Loops: Program loops are defined as jumps to previ-
ously executed program statements by the transition of so-
called back-edges[1]. Loops are a challenge for program
analysis since they can potentially cause an exponential
increase of the number of execution paths through a code
fragment. The analyzability of loops becomes worse if no
upper bound for the iteration count can be calculated. In
this case, manual code annotations are necessary to guide
the analysis.

2) Irreducible Flow Graphs: Irreducible (or unstruc-
tured) flow graphs [1] cause problems for loop analysis.
Irreducible flow graphs arise from usinggoto statements
for entering a loop [6]. Using only structured programming
implies that the control flow graph is free of irreducible
control flow.

3) Function Calls: One hurdle of function calls on
timing analysis is that the execution time within functions
may depend on the calling context. Depending on the
type of function call, additional difficulties may arise for
external calls, function pointer calls (functions called at
runtime may not be known statically) and library calls (in
case no source code is available).

4) Dynamic Data Structures:The control flow of a
program may depend on the content of data structures.
This becomes challenging in case that data structures are
constructed dynamically. Manual code annotations can be
used to guide the WCET analysis tool in case it cannot
determine the data structure automatically. However, for
complex data structures it will become a cumbersome and
error-prone task to manually annotate the control flow
resulting from the computationally intractable space of
potential instances of dynamic data structures.

B. Toward WCET-Analyzable Code

In this subsection we describe a software engineering
technique to obtain more predictable code, which is called
wcet-oriented programming[11], [14].

WCET-oriented programming (i.e., programming that
aims at generating code with a good WCET) tries to
produce code that is free from input-data dependent control
flow decisions or, if this cannot be completely achieved, it
restricts operations that are only executed for a subset of
the input-data space to a minimum.

In case WCET-oriented programming is not able
to avoid all input-dependent control flow thesingle
path transformationcan be used eliminating any input-
dependent control flow [13], [12]. The main idea behind
this approach is to transform control flow manipulat-
ing statements into predicated execution instructions (i.e.,

some instructions are conditionally executed but the timing
of the instruction remains constant).

The major benefit of input-independent control flow is
that the execution time jitter of the code is minimized
and the WCET analysis becomes much more simple.
However, the analysis of effects from data caches and task
preemptions still remains challenging.

III. MISRA G UIDELINES

A. Overview on the MISRA C Rules

The Motor Industry Software Reliability Association
(MISRA) issued “Guidelines for the Use of the C Lan-
guage in Vehicle Based Software” in 1998 [9]. These
guidelines describe a subset of the C language that is
intended to be suitable for embedded automotive systems.
The document contains a list of rules and recommendations
for the safe usage of classes of C language statements
within the domain of automotive software development.
Recently, this document has been updated by “MISRA-
C:2004 Guidelines for the Use of the C Language in
Critical Systems” [10]. The new guidelines are a refined
(mainly regarding the presentation style) version that is
compatible to [9].

1) Objectives of MISRA C:The goal of theMISRA
Guidelinesconsortium is to establish a safe subset of the
C language for industrial usage. The static checking of
conformance with these rules is emphasized. It is not the
intention to promote the use of the C language in the
automotive industry. Rather it is the goal to make existing
development practice safer.

2) Adopting the MISRA C Subset:In order to claim
compliance ofa product with the MISRA GuidelinesC
subset, the following steps are required [9]:

1) A closecompliance matrixto show how compliance
has been enforced for each rule; i.e., it is ensured
that each potential violation of rules has its assigned
detection mechanism.

2) In some instances it might be necessary to deviate
from rules. For these cases adeviation procedure
is required that ensures a formal procedure to be
used in order to authorize these deviations. The more
serious the deviations are, the more technical com-
petence should be required to justify the introduced
risk.

3) The whole process (use of the subset, static checking
tools, deviation procedure, documentation) should be
stipulated within the quality management system.

B. The MISRA C Rules

The rules are grouped into several categories. A com-
plete list including a brief description of all rules is
provided in Appendix A of [9].

Out of 127 rules, 10 regulations have been identified to
have an impact on WCET analysis.

1) Types:Rule 14 (required) ”The typechar shall al-
ways be declared as unsigned char or signed char.” is useful
due to the implementation specific compiler behavior when
using thechar data type.

Rule 15 (advisory) ”Floating point implementations
should comply with a defined floating point standard.” and
Rule 16 (required) ”The underlying bit representations of



floating point numbers shall not be used in any way by
the programmer.” may be useful when applying semantic
analysis (e.g., abstract interpretation) in order to ease the
correct simulation of the instruction’s semantics.

2) ControlFlow: This class of rules covers aspects that
influence the structuring of the code.

Rule 52 (required) ”There shall be no unreachable code.”
Rule 56 (required) ”Thegoto statement shall not be

used.”, Rule 57 (required) ”Thecontinue statement
shall not be used.” and Rule 58 (required) ”Thebreak
statement shall not be used (except to terminate the cases of
a switch statement).’ ensure that the code does not contain
unstructured loops (Subsection II-A.2).

3) Functions: Rule 69 (required) ”Functions with vari-
able numbers of arguments shall not be used.” eases in
the construction of the timing graph because the execution
time required for the function call itself remains constant.

Rule 70 (required) ”Functions shall not call themselves,
either directly or indirectly.” forbids recursion with the
argument that recursion may cause stack overflow errors.

4) Pointers and Arrays:Rule 104 (required) ”Non-
constant pointers to functions shall not be used.” supports
to derive/constrain the set of functions that may include the
function actually called by a function pointer reference.

5) Standard Libraries:Rule 118 (required) ”Dynamic
heap memory allocation shall not be used.” argues that
the dynamic memory instructions (likecalloc , malloc ,
realloc and free ) cause a number of undefined and
implementation-defined behavior. Note, that there may ex-
ist library functions that implicitly call memory allocation
functions. Thus, these functions shall not be used, too.

C. Summary onMISRA Guidelines

The impact of the rules on WCET analysis is on the
code structure level (with respect to the features relevant
for WCET analyzability identified in Subsection II-A).

The MISRA Guidelinespose a number of restrictions
on the original C language subset. Only few rules could
be identified to directly influence the WCET analyzability.
The implications of these rules are, however, of significant
importance for WCET analysis because they enforce pro-
gram code that is easier to analyze. Especially (i) the rule
prohibiting the use of dynamic memory allocation excludes
the use of all algorithms using dynamic data structures
and (ii) the limited usability of control flow changing
instructions prohibits loop constructs that would be hard
to analyze. However applying theMISRA Guidelinesdoes
still not guarantee WCET analyzability.

IV. DO-178B: SOFTWARE CONSIDERATIONS IN

A IRBORNE SYSTEMS AND EQUIPMENT CERTIFICATION

A. Overview onDO-178B

The purpose of DO-178B is to provide guidelines for the
production of software for airborne systems that perform
their intended function with a level of confidence that
complies with airworthiness requirements [7]. This goal
is intended to be achieved by:

• Objectives for the software life cycle processes,
• Description ofactivitiesanddesign considerationsto

achieve these goals,

• Descriptions of the evidence that indicates that these
objectives have been accomplished.

B. Organization ofDO-178B

The guidelineDO-178B is organized as follows. First,
system aspects relating to software development are de-
scribed (e.g., link between system and software processes,
failure conditions and software level classification, system
architecture). Important for validation is the introduction
of software criticality levels (Figure 2).

No significant reduction in spacecraft safetyMinorLevel D

Do not affect the operational ability of the 

aircraft

No EffectLevel E

Signifcant increase in workload of crew, 

discomfort of occupants including injuries

MajorLevel C

Large reduction in safety margins, physical

distress such that the flight crew could not

be relied on to perform their tasks correctly

Hazardous/Severe-MajorLevel B

Prevent continued safe flight and landingCatastrophicLevel A

DescriptionFailure condition 

categories

Software

Level

Fig. 2. Software Criticality Levels

Next, the software life cycle and the software planning
process is outlined. Then, the typical software development
process (requirements process, design process, coding pro-
cess, integration process) and the verification process are
described. Verification consists of software reviews/anal-
yses and software testing processes. Next, the software
configuration management process, the software quality
assurance process, and certification are considered. Finally,
a collection of information on the software life cycle data
(e.g., design standards, code standards, etc.) is presented.

C. Implications on WCET Analysis by DO-178B

In DO-178B safety related requirements are part of
the system requirements which are inputs to the software
life cycle processes. These requirements usually include
performance requirements. However, no explicit reference
to WCET analysis is provided. The system requirements
are subject to the processes described inDO-178B. The
next reference regarding correct timing behavior can be
found in Chapter 6 ofDO-178B[7]. Since testing generally
cannot show the absence of errors, verification includes a
combination of reviews, analyses and tests. On the one side
in this section, the objectives for verification are described.
On the other side, corresponding activities ensuring these
objectives are proposed.

D. Summary ofDO-178B

DO-178Bdoes not exhaustively stipulate issues regard-
ing timing analysis. However, especially in the verification
section timing analysis is explicitly mentioned.

V. AVIONICS APPLICATION SOFTWARE STANDARD

INTERFACE (ARINC 653)

An important paper considering the role of timing anal-
ysis in the certification of integrated modular avionics is
[3].

The ”Supplement 1 to ARINC Specification 653” [2]
expands and clarifies the content of ARINC 653. In partic-
ular, the document focuses on avionics operating system
partition management, intrapartition communication, and
health monitoring.



A. System Overview ofARINC 653

The purpose ofintegrated modular avionics(IMA) is to
support the independent execution of avionics applications.
The best way to achieve this is to partition the system, i.e.
a functional separation usually for fault-containment and
in order to simplify verification, validation, and certifica-
tion [2].

The basic entity is a partition that contains one applica-
tion consisting of one or more tasks and comprising its own
context and configuration. Partitions are executed strictly
cyclically, i.e. the processor time allocated to a partition is
statically determined. A minimum interface for application
partitions to access other system components is provided
by the application/executive (APEX) interface.

The software that resides on the hardware platform
consists of:

1) Application partitions contain the application code
specific for a particular application.

2) The OS kernel provides the API to the Operating
System (OS).

3) System partitions provide interfaces to the outside
world.

4) System specific functions comprise hardware
drivers, test-functions, etc.

The expected benefits of this architecture are portabil-
ity, reusability, modularity, and integration of multiple-
criticality software.

B. Partition Timing

The system integrator knows the timing requirements of
the partitions and is responsible that these requirements are
satisfied. It is the responsibility of the application developer
to configure the processes within an application. A detailed
list of responsibilities is listed in [2].

C. Impact on WCET Analysis

ARINC 653clearly outlines the necessity for time parti-
tioning in an integrated architecture. This partitioning is
prescribed at the architecture level, the concrete imple-
mentation and timing assessment on the target platform is
left open to the application developer (and the respective
architectural part to the system integrator).

The code structure is influenced by providing standard-
ized operating system calls (that can be expected to fulfill
well specified timing requirements).

VI. CONCLUSION

In order to establish a meaningful term ”WCET ana-
lyzability” we outlined three important aspects of WCET
analyzability. In Subsection II-A we introduced require-
ments for analyzability, a more normative approach has
been presented in Subsection II-B.

We investigated the impact of various guidelines for
safety critical software engineering of real-time systems on
WCET analyzability. Using three currently used and prac-
tical important guidelines we put these three guidelines in a
common context and analyzed the topics stipulated by each
of them. DO-178Bconsiders the whole process of safety
critical software development. TheMISRA Guidelineslimit
the language subset to be used in safety critical automotive
applications.ARINC 653specifies an architecture for IMA.

Common to all three documents is - more or less - some
impact on the WCET analyzability.

Regarding theMISRA Guidelinessome of the rules
ease WCET analysis by restricting the language subset.
However, these rules are not sufficient to guarantee WCET
analyzability (Section III).

DO-178B does not exhaustively stipulate how timing
requirements have to be taken into account when verify-
ing hard real-time systems. Rather timing constraints are
considered as application requirements and therefore have
to undergo the same processes as functional requirements.
Although the one or other hint is given, a lot of effort has
to be invested in the processes assessing correct timing
behavior of the applications.

ARINC 653describes the architectural framework for
IMA. Time partitioning is an essential part of the archi-
tecture. By enforcing the use of the APEX interface for
applications, the degree of freedoms within applications is
restricted, which in turn eases the timing analysis process.

Concluding, when considering all restrictions on the
code structures imposed by the sum of these guidelines,
safety critical real-time programs can be analyzed by
state-of-the-art WCET analysis methods. The shift towards
integrated architectures provides an interesting option and
a clear interface for WCET analysis methods.

For future guidelines we suggest to include more de-
tailed methodologies and processes related to timing analy-
sis, especially to enforce the consideration of timing issues
from the beginning of system design.

REFERENCES

[1] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers - Principles,
Techniques, and Tools. Addison-Wesley, 1986.

[2] APEX Working Group.Draft 3 of Supplement 1 to ARINC Specifi-
cation 653: Avionics Application Software Standard Interface, 2003.

[3] N. Audsley, I. Bate, and A. Grigg. The role of timing analysis in
the certification of IMA systems. InCertification of Ground/Air
Systems Seminar (Ref. No. 1998/255), pages 6/1–6/6, 1998.

[4] J. Barnes. High Integrity Ada: The SPARK Approach. Addison-
Wesley, 1997.

[5] V. der Automobilindustrie (VDA). HAWK2015 – Herausforderung
Automobile Wertscḧopfungskette. Henrich Druck + Medien GmbH,
Schwanheimer Strasse 110, D-60528 Frankfurt am Main, 2003.

[6] J. Engblom. Static properties of commercial embedded real-
time programs, and their implication for worst-case execution time
analysis. InReal-Time Technology and Applications Symposium,
pages 46–55, 1999.

[7] European Organisation for Civil Aviation Electronics.DO-178B:
Software Considerations in Airborne Systems and Equipment Cer-
tification, 1992.

[8] H. Kopetz. Real-Time Systems. Kluwer Academic Publishers, 3rd
edition, 1997.

[9] MISRA The Motor Industry Software Reliability Association.
Guidelines for the Use of the C Language in Vehicle Based Software,
1998.

[10] MISRA The Motor Industry Software Reliability Association.
Guidelines for the Use of the C Language in Critical Systems, Oct
2004.

[11] P. Puschner. Algorithms for dependable hard real-time systems. In
Proc. 8th IEEE International Workshop on Object-Oriented Real-
Time Dependable Systems, Jan. 2003.

[12] P. Puschner. The single-path approach towards WCET-analysable
software. InProc. IEEE International Conference on Industrial
Technology, pages 699–704, Dec. 2003.

[13] P. Puschner and A. Burns. Writing temporally predictable code. In
Proc. 7th IEEE International Workshop on Object-Oriented Real-
Time Dependable Systems, pages 85–91, Jan. 2002.

[14] P. Puschner and R. Kirner. Avoiding timing problems in real-time
software. InProc. IEEE Workshop on Software Technologies for
Future Embedded Systems, pages 75–78, May 2003.


