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ABSTRACT
We have carried out relativistic three-dimensional simulations of high-power radio sources
propagating into asymmetric cluster environments. We offset the environment by 0 or 1 core
radii (equal to 144 kpc), and incline the jets by 0, 15, or 45◦ away from the environment centre.
The different environment encountered by each radio lobe provides a unique opportunity to
study the effect of environment on otherwise identical jets. We find that the jets become
unstable towards the end of the simulations, even with a Lorentz factor of 5; they nevertheless
develop typical FR II radio morphology. The jets propagating into denser environments have
consistently shorter lobe lengths and brighter hotspots, while the axial ratio of the two lobes is
similar. We reproduce the recently reported observational anti-correlation between lobe length
asymmetry and environment asymmetry, corroborating the notion that observed large-scale
radio lobe asymmetry can be driven by differences in the underlying environment.

Key words: hydrodynamics – galaxies: active – galaxies: jets – radio continuum: galaxies

1 INTRODUCTION

Radio sources are inextricably linked to their host galaxy through
feedback processes (McNamara&Nulsen 2007; Fabian 2012;Hard-
castle & Croston 2020) which influence black hole growth (Rafferty
et al. 2006; Dubois et al. 2012; Alexander & Hickox 2012), star for-
mation (Gaibler et al. 2012;Weinberger et al. 2018), and the small to
large-scale environment through gas circulation, heating, and shock
driving (Croton et al. 2006; Rafferty et al. 2008; Mukherjee et al.
2016; English et al. 2016; Yates et al. 2018). Their influence on
galaxy evolution and formation is underscored by the significant
attention paid towards analytic (Scheuer 1974; Begelman & Cioffi
1989; Falle 1991; Kaiser &Alexander 1997; Alexander 2002, 2006;
Shabala & Alexander 2009; Krause et al. 2012; Raouf et al. 2017),
semi-analytic (Turner&Shabala 2015;Hardcastle 2018; Raouf et al.
2019), and numerical (Krause 2005; Gaibler et al. 2011; Wagner
et al. 2012; Hardcastle &Krause 2014;Mukherjee et al. 2016; Bick-
nell et al. 2018; Yates et al. 2018; Li et al. 2018; Perucho et al. 2019;
Horton et al. 2020b) models to understand this phenomenon. These
radio sources are most commonly studied through observations of
the kpc to Mpc scale radio lobes (Bennett & Simth 1962; Hardcas-
tle et al. 2019b; Seymour et al. 2020) inflated by the relativistic jet
beam, throughout which a population of relativistic electrons accel-
erated at shocks emits through synchrotron and inverse-Compton
processes (Kaiser et al. 1997; Turner et al. 2018a)

Radio sources have historically been classified into two distinct
categories (Fanaroff&Riley 1974) based on whether the large-scale
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lobe morphology is edge-darkened (Fanaroff-Riley class I, FR I) or
edge-brightened (FR II). As radio telescope sensitivity and resolu-
tion have increased, this distinction has become increasinglymurky:
compact radio sources with some low-frequency extended emission
have been termed FR 0s (Garofalo & Singh 2019; Baldi et al. 2019;
Capetti et al. 2019); low luminosity (𝐿150 ≤ 1025W Hz−1) FR II
radio sources have been observed (Mingo et al. 2019); radio sources
which exhibit hybrid FR I/II characteristics suggest that precession
and projection effects can drastically alter the observed morphology
(Harwood et al. 2020; Krause et al. 2019; Horton et al. 2020a,b); the
consideration of mergers, cluster weather, and remnant or restarting
radio sources further complicates the observed lobe morphology
(Mahatma et al. 2018; Yates et al. 2018; English et al. 2019; Joshi
et al. 2019; Hardcastle et al. 2019a; O’Neill et al. 2019; Bruni et al.
2020).

Many complex processes are likely at work behind the ob-
served morphologies, however, one key factor is the environment
into which the radio source is expanding. Analytic models predict a
strong dependence on lobe size as a function of environment (Kaiser
& Alexander 1997; Alexander 2006; Krause et al. 2012), which is
reproduced by simulations (Mendygral et al. 2012; Hardcastle &
Krause 2013; Bourne & Sĳacki 2017; Yates et al. 2018). Obser-
vationally, the observed length asymmetry in radio lobes pairs was
recently shown to be linked to the underlying environment asymme-
try, as traced by optical galaxy counts by Rodman et al. (2019), who
found a statistically significant anti-correlation between the two.

At first sight, it might sound trivial that jets propagate more
slowly into a higher density environment. However, the environment
sets the pressure level in the radio lobes, which in turn affects
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the hydrodynamic collimation of the jet (e.g., Kaiser & Alexander
1997). Jets in a denser environment have higher pressure lobes
and narrower jets, which concentrate the thrust in a smaller area
of the jet head and thus make it propagate faster and change the
area over which feedback is distributed. While the sound speed in
radio lobes is high such that, to first order, pressure differences are
quickly readjusting, it is well known that dynamically changing as
well as quasi-persistent pressure gradients exist, for example away
from hotspots (Krause 2003, Fig. 12). There is thus a non-linear
feedback loop, and only a simulation that includes all these relevant
processes can make a proper prediction for this situation.

In this work, we confront the findings of Rodman et al. (2019)
with hydrodynamic simulations of radio jets in asymmetric envi-
ronments and show that the observed radio source asymmetry is
consistent with being caused by the underlying environment asym-
metry. Sect. 2 describes the technical simulation setup, environment
prescription, and parameter space explored. In Sect. 3 we present
our findings, and our conclusions in Sect. 6.

Throughout this work, we adopt the Planck15 cosmology
(Planck Collaboration et al. 2016) with 𝐻0 = 67.6 km s−1Mpc−1
and ΩM = 0.307.

2 SIMULATIONS

The simulations presented in this paper model astrophysical jets as
relativistic fluid flows using the freely available numerical simula-
tion package pluto1 (Mignone et al. 2007). We use a simulation
setup that builds upon our earlier work (Yates et al. 2018), extended
to model relativistic jets in three dimensions.

2.1 Environment

A key feature of this modelling is the observationally motivated
environments used as the initial conditions for the simulations. Our
focus is on low-redshift clusters, which are reasonably well de-
scribed by the isothermal beta profile (Cavaliere & Fusco-Femiano
1978) for gas density as a function of radius from the core 𝜌(𝑟),
where

𝜌(𝑟) = 𝜌0

[
1 +

(
𝑟

𝑟c

)2]−3𝛽/2
. (1)

This profile is parameterised by the core density 𝜌0, core radius 𝑟c,
and power-law slope 𝛽. In this work, we use a density profile typical
of a cluster environment, with 𝑀halo = 3 × 1014M� and 𝛽 = 0.38.
We set the core radius to be 0.1𝑅vir, or 𝑟𝑐 = 144 kpc, following
Yates et al. (2018); observationally the core radii of clusters vary
between tens and hundreds of kpc (Vikhlinin et al. 2006). These
parameters give a central density of 𝜌0 = 1.4 × 10−27 g cm−3. In
Figure 1 we show the environment density profile as a function of
distance along the jet axis, for the different offset and inclination
angles used in this work. Jets launched offset from the cluster centre
experience significant asymmetry in the environment density pro-
file; in Sect. 3.1 we argue that this asymmetry has a large impact
on the resulting jet dynamics. We also note that the impact of in-
clination angle on density is less pronounced, however, an inclined
jet does experience a gravitational acceleration asymmetry which
affects remnant morphology.

1 http://plutocode.ph.unito.it/

The pressure profile is calculated from the density profile us-
ing 𝑃(𝑟) =

𝑘B𝑇 𝜌(𝑟 )
𝜇𝑚H

. We take 𝜇 = 0.60 and 𝑇 = 3.46 × 107 K,
consistent with observed temperatures in clusters. Cooling is not
included in our simulations. This is a valid assumption provided
the environment cooling time is long; the central cooling time 𝑡cool
for the environment presented here is on the order of 1.5Gyr for a
metallicity of 𝑍 = −1.0 (Sutherland & Dopita 1993), more than an
order of magnitude longer than the jet lifetimes considered in this
work.

The radial gravitational acceleration necessary to keep the en-
vironment in hydrostatic equilibrium is

𝒈 = −3.0 𝛽 𝑐
2
s
𝛾

𝑟

𝑟2c + 𝑟2
r̂ , (2)

where 𝑐s =
(
Γ𝑃
𝜌

)1/2
is the environment sound speed. This is imple-

mented as a source term in pluto. The stability of the environment
is confirmed by evolving it for over 100Myr, twice as long as the
maximum jet time.

We offset the environment in both the Y and Z directions to
study the parameter space detailed in Sect. 2.3. This is achieved
through a transformation of coordinates with respect to the new
environment centre, resulting in an offset radius given by

𝑟 ′ =
√︃
(𝑥 − 𝑥offset)2 + (𝑦 − 𝑦offset)2 + (𝑧 − 𝑧offset)2 . (3)

2.2 Computational methods

Version 4.3 of pluto is used to carry out the simulations presented
here. The relativistic hydrodynamics physics module is used, along
with the hllc Riemann solver, linear reconstruction, second-order
Runge-Kutta time-stepping, the Taub-Mathews equation of state,
and a Courant-Friedrichs-Lewy (CFL) number of 0.33.

At each timestep pluto integrates the system of conservation
laws described as

𝜕

𝜕𝑡

©«
𝐷

𝒎
𝑬

ª®¬ + ∇ · ©«
𝐷𝒗

𝒎𝒗 + 𝑝I
𝒎

ª®¬ = 0 , (4)

with conservative state variables 𝐷,𝒎, 𝐸 (the laboratory density,
momentum density, and total energy density respectively), fluid
three-velocity 𝒗, and pressure 𝑝.

The simulations were carried out on a static three-dimensional
Cartesian grid centred at the origin with a side length of 𝑙x,y,z =

400 kpc, cell count of (𝑛x, 𝑛y, 𝑛z) = (550, 550, 960), and reflective
boundary conditions. A central uniform grid patch of 100 cells is
defined around the injection region in all three dimensions (−2.5→
2.5 kpc, a resolution of 0.05 kpc) to ensure that injection of the
initially conical jet and its hydrodynamic collimation by ambient
pressure are sufficiently resolved. Either side of the central grid
patch is a geometrically stretched grid consisting of 430 cells in Z,
and 225 cells in X and Y; giving a minimum resolution of 1.7 kpc
and 2.8 kpc per cell respectively. Reflective boundary conditions
were applied to both the lower and upper grid boundaries.

A two-dimensional spherical axisymmetric grid is used in a
resolution study to verify that jet recollimation is captured correctly.
In these simulations the jet is aligned with the axis of symmetry,
and the simulation domain is taken to be (𝑟, 𝜃) = (0.2 kpc, 0◦) →
(800 kpc, 180◦). A high-resolution uniform radial grid patch of 256
cells covers the injection region (𝑟 = 0.2 → 2 kpc, a resolution of
7 pc per cell), while the remainder of the domain is uniformly cov-
ered by 1650 cells. Azimuthally the jet injection region is uniformly
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Figure 1. Environment density as a function of radius along the jet axis for the environment parameters described in Sect. 2.1. The environment centre is offset
by 0 or 1 core radii, while the jet inclination angle with respect to the environment is 0, 15, or 45◦.
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Figure 2. Jet injection zone.

resolved for each side by 300 cells over the first 5◦, and 250 cells
over the next 12◦. A lower resolution uniform grid patch of 400 cells
is placed from 𝜃 = 17◦ → 163◦, as for the adopted jet half-opening
angle of 15◦ this region will mainly contain sideways expansion of
the jet lobe and cocoon. At a distance of 200 kpc this provides a
resolution of 58 pc across the jet head. The lower radial boundary
has an inflow condition within the jet nozzle; reflective boundary

conditions were applied outside the jet nozzle and at the upper radial
boundary. Axisymmetric boundary conditions were applied to both
the lower and upper azimuthal boundaries.

The jet injection region is defined in three dimensions as
a sphere centred at the origin with radius 𝑟0 = 1 kpc (Fig-
ure 2). Within this sphere the jet is injected as momentum and
energy fluxes by overwriting the density, pressure, and veloc-
ity of these cells with the corresponding injection zone values,
(𝜌, 𝑃, 𝒗) = (𝜌i (𝑟), 𝑃i (𝑟), 𝒗i (𝑟)). The jet density and pressure are
defined in the injection sphere as

𝜌i (𝑟) = 2𝜌j (1 + (𝑟/𝑟0)2)−1 (5)

𝑃i (𝑟) = 2Γ𝑃j
(

𝜌(𝑟)
2𝜌(𝑟0)

)Γ
. (6)

𝑃j is tuned to keep perturbations from the injection zone small. The
velocity in the injection region is defined along the jet propagation
axis as 𝑣𝑟 = 𝑣j if 𝜃 ≤ 𝜃j, and 0 otherwise; here, 𝜃j is the half-
opening angle of the jet. A passive tracer fluid is used to trace jet
material; it is initialized to 0.0 throughout the environment while
given a value of 1.0 inside the injection region. This fluid is then
advected along with the jet flow and is used to quantify mixing
between the jet and ambient material. At a radius of 𝑟0, the edge of
the jet injection zone is resolved by 6 cells. In all simulations, the
jet expands before collimation, so the number of cells across the
collimated jet is larger than that of the injection region, providing
sufficient resolution across the jet beam to capture recollimation
dynamics.

For each one of the two relativistic jets of a bipolar radio
source, the total power is given (Mukherjee et al. 2020) by

𝑄 =

[
𝛾(𝛾 − 1)𝑐2𝜌j + 𝛾2

Γ

Γ − 1𝑃j
]
𝑣j𝐴j , (7)

where 𝛾 = 1/
√︃
1 − 𝑣2j /𝑐

2 is the bulk Lorentz factor of the flow, 𝑐 is
the speed of light in a vacuum, Γ is the adiabatic index, and 𝐴j is the
cross-sectional area of the jet inlet. The jet density 𝜌j is calculated
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using Eq. 7 for a given combination of 𝑄, 𝑣j, 𝑃j, 𝐴j as

𝜌j =

(
𝑄

𝑣j𝐴j
− 𝛾2

Γ

Γ − 1𝑃j
)

1
𝛾(𝛾 − 1)𝑐2

. (8)

When discussing relativistic fluid flows, it is useful to introduce
a temperature parameter, Θ = 𝑃/(𝜌𝑐2) (Mignone & McKinney
2007), and in the case of relativistic jets specifically, 𝜒, the ratio be-
tween rest-mass energy and the thermodynamic part of the enthalpy
(Bicknell 1994, 1995),

𝜒 =
Γ − 1
Γ

𝜌j𝑐
2

𝑃j
. (9)

Cold jets with Θ � 1 (𝜒 � 1) are dominated by kinetic energy,
while hot jetswithΘ � 1 (𝜒 � 1) are dominated by thermal energy.
When calculating the injection parameters of cold jets (𝜒 � 1), as is
the case for the jets presented in this work, the ideal equation of state
can be used (Mignone & McKinney 2007). However, initially cold
jet material will not remain kinetically dominated throughout the
jet evolution due to shock-heating along the jet and at the hotspots.
To account for this we use the Taub-Mathews (TM) (Taub 1948;
Mathews 1971; Mignone & McKinney 2007) equation of state,
which is built into pluto and handles both non-relativistic and
relativistic gases. In the TMequation of state, the relativistic specific
enthalpy is given as

ℎ =
5
2
Θ +

√︂
9
4
Θ2 + 1 , (10)

with an equivalent adiabatic index

Γeq =
ℎ − 1

ℎ − 1 − Θ
. (11)

The relativistic generalisation of density contrast (Martí et al.
1997; Krause 2005; Bromberg et al. 2011) is defined as

𝜂r =
𝜌jℎj𝛾

2

𝜌aℎa
, (12)

with relativistic specific enthalpy ℎ = 1 + Γ𝑒/𝜌𝑐2 for a cold jet
given the equation of state for an ideal gas, 𝑝 = (Γ − 1)𝑒. 𝜂r can
be compared with the non-relativistic jet density contrast 𝜂 such
that for a light one-dimensional jet at velocity 𝑣j, the hotspot would
propagate at a velocity of 𝑣HS =

√
𝜂r𝑣j.

2.3 Parameter study

We simulate a radio jet pair, each with a power of 𝑄 = 3 × 1038W,
typical of moderate-power FR IIs (Turner et al. 2018b; Shabala et al.
2020). The main science simulations consist of a pair of relativistic
jets on a three-dimensional grid. We vary the offset from the cluster
centre (0 or 1 core radii, corresponding to 0 or 144 kpc), as well as
the inclination angle with respect to the centre (0◦, 15◦, or 45◦). The
jets are relativistic, 𝛾 = 5 (𝑣 𝑗 = 0.98𝑐), have a half-opening angle
𝜃j = 10◦, and are initially overpressured and underdense compared
to the ambient medium. Finally, we conduct a resolution study with
high-resolution two-dimensional relativistic simulations to verify
that we are capturing the jet recollimation dynamics correctly in the
three-dimensional simulations.

The simulations and their parameters are listed in Table 1. To
aid with the discussion, in all offset cases we define the jet directed
towards the cluster centre as the primary jet, while the jet directed
away from the cluster centre as the secondary jet.

The simulations presented here were carried out on the ku-
nanyi (Tasmanian Partnership of Advanced Computing) and Raĳin

(National Computational Infrastructure) high-performance comput-
ing facilities. Between 1400 and 4800 cores were used, and the
three-dimensional relativistic simulations each took approximately
300, 000 CPU hours.

2.4 Synthetic radio observables

Emission due to synchrotron radiation is the main method by which
the large-scale structure of radio sources can be observed. Syn-
chrotron radiating particles are likely accelerated both along the jet
and at the jet hotspots, continuing to radiate as they flow back into
the radio lobes (Hardcastle et al. 2016; Matthews et al. 2020; Rieger
& Duffy 2021). Thus to compare observed radio source structure
with simulations, the synchrotron emissivity of a simulated radio
source needs to be calculated. While the simulations presented here
do not contain the magnetic fields necessary for a complete treat-
ment of synchrotron radiation, the emissivity can be calculated by
assuming a constant departure from equipartition for the magnetic
field and electron energy densities (Kaiser et al. 1997; Turner &
Shabala 2015). Magnetohydrodynamic simulations show that the
ratio of particle to magnetic pressure (plasma 𝛽) remains on aver-
age constant over time (Hardcastle & Krause 2014), but has large
spread spatially due to lobe turbulence (Gaibler et al. 2009). Thus
our assumption has the effect of smoothing out any local magnetic
field variations across the lobes.

The synchrotron emissivity of a packet of electrons with a
power-law distribution of electron energies 𝑁 (𝐸) = 𝜅𝐸−𝑞 emitting
at an angular frequency 𝜔 is given by Longair (2011) as

𝑗 (𝜔) = 𝐴

√
3𝜋𝑒3𝐵

16𝜋2𝜖0𝑐𝑚𝑒 (𝑞 + 1)
𝜅

(
𝜔𝑚3𝑒𝑐

4

3𝑒𝐵

)− 𝑞−1
2

. (13)

The local magnetic field strength 𝐵 is related to the local elec-
tron density 𝑢e through a constant departure from equipartition,
𝑓B = 𝑢B/𝑢e. Kaiser et al. (1997) present a relationship between
cocoon pressure and energy densities, 𝑃 = (Γ𝑐 − 1) (𝑢e + 𝑢B + 𝑢T),
which is used to relate the local pressure to the local electron den-
sity, assuming a negligible thermal energy component. The electron
distribution normalisation 𝜅 depends on observationally-informed
distribution properties (electronLorentz factor limits 𝛾min and 𝛾max,
energy power-law slope 𝑞), and local pressure 𝑃. The synchrotron
emissivity for a given frequency 𝜈 and local pressure 𝑃 can then be
written as

𝑗𝜈 = 𝑗0𝑃
𝑞+5
4 , (14)

where the full derivation for 𝑗0 in units of W Hz−1, the volume
emissivity coefficient, is given in Yates et al. (2018).

Spectral ageing is not included in this work, so the syn-
thetic radio spectrum has an identical shape for all frequencies;
frequency serves only to change the normalisation 𝑗0. The emis-
sivity is weighted by the jet tracer fluid, to account for mixing of
jet and ambient material. We note that this method for calculating
the emissivity does not include any losses, which alter the observed
morphology of the radio source (Turner et al. 2018a) and the evolu-
tion of luminosity with time (Kaiser et al. 1997; Shabala & Godfrey
2013; Turner & Shabala 2015; Hardcastle 2018). In this work, we
focus on the dynamics of the radio source, and so neglect both ra-
diative and adiabatic losses, in addition to Doppler boosting due
to relativistic fluid motions. English et al. (2016) showed that the
effect of Doppler boosting on total luminosity is small due to both
the small amount of emission associated with the jets and the rel-
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Table 1. A list of parameters for the simulations presented in this paper. 𝑄 is the total one-sided power of the radio source, which is the same for all runs. 𝑣j
is the jet velocity, 𝑟offset is the radial offset from the environment centre, 𝜃i is the inclination angle of the jet with respect to the environment centre, Θj is the
temperature parameter of the jet at injection, and 𝜂r is the relativistic generalised density contrast at injection.

Code 𝑄 (W) 𝑣j (𝑐) 𝑟offset (kpc) 𝜃i (◦) Θj 𝜂r

Main simulations off0r 3 × 1038 0.98 0 0 3.2 × 10−3 5.9 × 10−2
off1r 144 0 8.8 × 10−2
off1r-15deg 15
off1r-45deg 45

2D resolution study 2doff0r 0.90 0 0 7.5 × 10−4 3.7 × 10−1
2doff1r 144 0 5.1 × 10−4 5.5 × 10−1

atively low bulk Lorentz factors found on the grid, consistent with
our simulations.

Using Eq. 14, the emissivity per unit volume for each sim-
ulation grid cell can be calculated. We take the electron energy
power-law slope to be 𝑞 = 2.2 as in (Hardcastle & Krause 2013),
corresponding to a spectral index 𝛼 = −0.6 typical of radio lobes;
the ratio of magnetic to particle energy densities as 𝑓B = 0.1; and
the minimum and maximum electron Lorentz factors as 𝛾min = 10
and 𝛾max = 105. The total lobe luminosity 𝐿𝜈 is an integral of
emissivity over the lobe volume,

𝐿𝜈 =

∫
𝑗𝜈 d𝑉 . (15)

The two-dimensional surface brightness can be obtained by inte-
grating along a chosen line of sight 𝑟,

𝐵𝜈 =
1
4𝜋

∫
𝑗𝜈 (𝑟) d𝑟 . (16)

Following Yates et al. (2018), we place our simulated radio sources
at 𝑧 = 0.05, interpolate the surface brightness maps onto a pixel size
of 1.8 arcsec2, and approximate the effects of an observing beam by
convolving the surface brightness maps with a two-dimensional cir-
cular Gaussian beam with a full width at half maximum of 5 arcsec.
The observing frequency is chosen to be 𝜈 = 1.4GHz. These pa-
rameters are characteristic of the VLA FIRST (Becker et al. 1995)
survey, and similar to ongoing and future mid-frequency surveys by
SKA pathfinders. The radio sources are placed in the plane of the
sky so that the line-of-sight integral is performed along the x-axis.
Our synthetic emissivity model captures the hotspot and recently
shocked lobe emission with reasonable accuracy, but also produces
equatorial emission which is not observed in real radio sources due
to electron aging; a detailed discussion of this point is deferred to
Yates-Jones et al. (in preparation).

3 RESULTS

3.1 Dynamics and morphology

We show logarithmic density maps of our main simulations at the
end of the simulation time in Figure 3. The jets re-collimate success-
fully before entraining gas later via three-dimensional instabilities
and transitioning to turbulence. The jet disruption is very similar to
the mechanism described in Massaglia et al. (2016), and is essen-
tially due to the low Mach number in the collimated jet. When the
jet first collimates, the internal relativistic Mach number is above
10. Along the jet, it then oscillates between approximately 6 and 10,
with a declining trend of theminima.Where it drops below 5 (shown
as the white contour in Figure 3), the jet disrupts. We find that the
jet disruption radius is roughly equal for a primary/secondary jet

pair in a given environment over the simulated time. Additionally,
no significant differences are present between environments.

In Figure 4 we show midplane slices of velocity along the jet
axis. The white contours (which denote a bulk velocity of 0.5𝑐)
highlight the deceleration of jet material after the disruption point.
Clear backflow is present in all simulations, and slight asymmetries
are introduced in the inclined jets due to the environment (the lower
two panels of Figure 4). The overall lobe shape is pinched in the
case of the primary jet (see, e.g., top-right panel of the same figure).

We measure the lobe morphology using a tracer threshold of
10−6. Gaibler et al. (2009) have shown that lobe morphologies do
not strongly depend on the exact value of this parameter. Figure 5
shows the lobe length evolution as a function of time. We also
plot the lobe length evolution as modelled by RAiSE (Turner &
Shabala 2015), using the same jet parameters and environment. The
jets undergo a fast expansion phase for the first few Myrs, before
beginning to slow; this initial ‘breakout’ phase is not captured by
the RAiSE model. However, at later times, the rate of jet length
evolution is consistent with the analytical model.

In all offset cases, the primary jet is shorter—as predicted by
analytic theory (e.g. Kaiser & Alexander 1997) for a rising density
profile—and the lobe is pinched compared to the secondary jet. This
causes the observed lobe length asymmetry; initially, the primary
and secondary lobes are similar, but they diverge as the source ages.
Inclining the jet with respect to the cluster centre has no significant
effect on lobe length.

In Figure 6 we plot the evolution of the length and width
ratios for all three-dimensional simulations. All offset simulations
show significant departures from the baseline, demonstrating that
the secondary lobe is becoming both longer and wider than the
primary with time.

FollowingHardcastle &Krause (2013) we define the lobe axial
ratio as the ratio between the lobe length and the lobe width, as mea-
sured at the midpoint of the lobe; the axial ratio for all simulations
is plotted in Figure 7. The lobes produced by relativistic jets are
initially elongated with high axial ratios, during the breakout phase
of the jet. As the jet head propagation slows, the lobes begin to in-
flate because they are overpressured compared to the environment,
causing the axial ratio to approach the range [1.5, 2]. This is signif-
icantly lower than in the non-relativistic simulations of Hardcastle
& Krause (2013). Since a large fraction of observed axial ratios is
between 1.5 and 2 (Mullin et al. 2008, Figs 6-9), our relativistic jets
with self-consistent hydrodynamic collimation may explain many
radio sources better than non-relativistic ones, although projection
effects non-trivially affect this.

In contrast to the length and width ratio evolution, the differ-
ence in axial ratio between the primary and secondary lobes for the
1𝑟c-offset relativistic simulations is small. At later times this dif-
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Figure 3.Maps of midplane density for the suite of relativistic three-dimensional simulations at 𝑡 = 32Myr. The slices are taken in the Y-Z plane. The upper
left panel shows the jets in a non-offset environment, while the remaining three panels show jets in an environment offset by 1 core radius (144 kpc). The jets
in the two lower panels are inclined 15◦ and 45◦ away from the environment centre respectively; the image panels are rotated by the corresponding amount
such that the environment centre is aligned with the horizontal axis. The location of the environment centre is marked in the three offset simulations with a red
cross. White contours on each plot denote an internal Mach number of 5. The primary jet is propagating towards the environment centre, in the +Z direction,
while the secondary jet is propagating in the −Z direction. In the offset environments, the primary jet is propagating into a rising density and pressure profile,
and produces a shorter, narrower cocoon, compared to the secondary jets. Lateral asymmetry is observed across the primary lobe when the jet is inclined with
respect to the environment centre. In this case the jet head preferentially expands away from the dense centre of the environment creating a lopsided structure.

ference becomes more pronounced, with the primary lobes having
a consistently higher axial ratio compared to the secondary lobes.
The width ratio evolution is a function of both the length ratio (as
the lobe width is measured at the midpoint between the core and the
hotspot), as well as the pinching occurring in the primary lobes.

Relativistic jets produce initially narrow lobes. The length evo-
lution of the lobe is driven by balancing both the jet head pressure
and momentum flux against the ambient density and pressure, while
the transverse expansion is determined solely by the lobe pres-
sure (Hardcastle & Krause 2013). All simulations have axial ratios

that evolve with time, indicating that they are not expanding self-
similarly, consistent with analytical models of Turner & Shabala
(2015); Hardcastle (2018).

3.2 Simulated radio emission

In addition to the purely morphological differences, the primary
and secondary jets have different lossless lobe luminosities and
size-luminosity tracks, as shown in Figure 8 and Figure 9. The
secondary jet has consistently higher lobe luminosities for a given
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time, due to the increased volume. Lobe pressure can be consid-
ered homogeneous across the entire radio source due to the high
sound speed, except for the overpressured hotspots. This results in
a strong correlation between luminosity and lobe volume for the
lossless calculations used in this work, and so the secondary jets
produce lobes with higher luminosities due to their larger volume.
The luminosity evolution of all our primary lobes is very similar;
the same is true for the luminosity evolution of all our secondaries.
Hence, we conclude that our results are robust for variations of the
angle the jet makes with the environment symmetry axis.

Figure 9 shows the impact of environment profiles on size-
luminosity tracks. The primary PD tracks of the offset simulations
begin to flatten out after the initial ∼ 80 kpc, as the environment
itself starts to flatten out. The secondary PD tracks on the other
hand continue rising for the 1𝑟c-offset simulations inclined at 0 and
15◦.

We show synthetic radio images in Figure 10. We note once
more that radiative losses would make the central parts of the lobes
less prominent and increase the surface brightness contrast between
the hotspot and lobe. Despite the jets becoming unstable and un-

dergoing entrainment, the general source structure is FR II-like
and clear hotspots are produced. Subtle differences are consistently
visible between the primary and secondary lobes. The primary jets
exhibit enhanced surface brightness at the hotspots as expected from
theory (Kaiser et al. 1997).

4 COMPARISON TO OBSERVATIONS

A large number of extended radio sources show some degree of
length asymmetry in their radio lobes. A large analysis of these
asymmetric objects was presented by Rodman et al. (2019). The
authors used a sample of mainly double-lobed radio sources iden-
tified as having asymmetric, straight radio lobes through the Radio
Galaxy Zoo citizen science project (Banfield et al. 2015), using
data from the Faint Images of the Radio Sky at Twenty Centimeters
(FIRST; Becker et al. 1995) and the Australian Telescope large Area
Survey (ATLAS; Norris et al. 2006; Middelberg et al. 2008). Their
final sample contained radio sources with redshift 𝑧 < 0.3, selected
to have approximately straight radio lobes greater than 100 kpc in

MNRAS 000, 1–13 (2021)
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Figure 6. Lobe length (upper) and width (lower) ratios (primary / secondary) as a function of time for all three-dimensional simulations.

size, with at least 20 neighbour galaxies associated through pho-
tometric redshifts to the host galaxy using the Sloan Digital Sky
Survey (SDSS) DR10 (Ahn et al. 2014). Galaxies were associated
with one of the radio lobes based on whether they lay within either
a 45 or 90◦ cone aligned with the lobe major axis.

The key finding of Rodman et al. (2019) is a strong anti-
correlation between the radio lobe length and number density of
galaxies associated with that lobe. Use of optical galaxy clus-
tering as a good proxy for the underlying environment is sup-
ported by Schindler et al. (1999), who showed that the galaxy and
intra-cluster gas distributions in the Virgo cluster are similar. A
length-environment density anti-correlation is predicted by (Kaiser
& Alexander 1997; Turner & Shabala 2015), and Rodman et al.

(2019) concluded that large-scale environment asymmetry is driv-
ing the radio lobe asymmetry.

In Figure 11 we compare our simulations with data from Fig. 9
fromRodman et al. (2019). Those authors plot the lobe length asym-
metry of observed radio sources against the environment asymme-
try as derived from optical galaxy clustering. To reproduce their
plot, the lobe length asymmetry ratio is calculated at each timestep
as 𝑙ratio = 𝑙p/𝑙s and plotted against the environment density ratio
𝜌ratio = 𝜌(𝑙p)/𝜌(𝑙s) for each simulation. The initial environment
density (given by Eq. 2.1) is used, and 𝑙p and 𝑙s refer to the primary
and secondary lobe lengths respectively. We plot the environment
density ratio on the same axis as the optical galaxy clustering asym-
metry ratio.

We find that the simulations reproduce the observed anti-
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correlation found by Rodman et al. (2019), and fill a significant
portion of observed parameter space. As the environment density
asymmetry increases with source length (and hence age), these
tracks show the temporal evolution of a radio source through this
diagram. An estimate of the scatter in our method is given by the
asymmetry tracks for the 0-offset simulations, which is confined to
the very centre of the parameter space.While our simulations do not
completely explain the observed asymmetries, they do reproduce the
overall trend. Based on this, our results imply that a significant por-
tion of the observed length asymmetry in radio lobes can be traced
back to large-scale environment asymmetries, in agreement with
Rodman et al. (2019).

5 DISCUSSION

It is important to consider the assumptions present in our simu-
lations before summarizing our results. These simulations do not
include magnetic fields; this is a valid assumption given their rela-
tively small influence on the large-scale lobe morphology. However,
magnetic fields are likely to play a role in jet stability and collima-
tion (Matsumoto et al. 2021), somethingwhichwe aim to investigate
in future work. The absence of magnetic fields also necessitates an
approximate radio emissivity model. The main effect of losses is
to dim radio lobes in the central parts, where electrons from the
oldest part of the backflow reside. Since our main interest here is
the lobe morphology towards the tips of the lobes, the basic lossless
model used in this work is sufficient for discussing the observable
large-scale morphological differences.
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Interestingly, we find that towards the end of the simulations,
our jets are unstable on the 10s of kpc scale, despite having a Lorentz
factor of 5. We have convinced ourselves in two-dimensional ax-
isymmetric control runs that this is purely a three-dimensional
(and therefore realistic) effect. This is reminiscent of the three-
dimensional jet disruption for low Mach number jets demonstrated
in much detail by Massaglia et al. (2016). The interesting corollary
here is that stable FR II jets with our chosen power (intermediate
for FR IIs) require Lorentz factors higher than 5 to form a stable
jet out to the 100 kpc scale. This finding is independent of the en-
vironments simulated, as jet stability is determined by the cocoon
properties (density, pressure) which are similar across the different
simulations.

Nevertheless, our sources have clear FR II structure from our
simulated radio maps and hence the comparison to the observations
is justified. As in the observations, we find that environment asym-
metry translates to lobe length asymmetry. Our simulations take
full account of the hydrodynamic recollimation of the relativistic
jet. Hence, the system is free to adjust jet recollimation, and hence
jet width dynamically with the lobe pressure, and our jets stay col-
limated for long enough, for that process to be simulated faithfully.
Our central lobe pressures are, however, uniform enough, such that
the recollimation happens similarly for both jets of a radio source.
Hence, the lobe asymmetry follows the naive expectation. Signif-
icant random scatter may be added to the lobe length asymmetry
from the initial interactions of the jets with the dense, stochasti-
cally clumped, interstellar medium within the galaxy Gaibler et al.
(2011).

6 SUMMARY AND CONCLUSIONS

In this work, we have presented three-dimensional simulations of
powerful relativistic radio jets in an isothermal beta environment,
to study the effect of asymmetric environments on large-scale lobe
morphology and radio observables. These jets have varying offsets
and inclination angles with respect to cluster centre; all other jet
parameters are held constant.We follow their evolution from conical

injection and subsequent collimation to inflation of the large-scale
radio lobes. In summary, our work has shown the following.

(i) Lobes propagating into denser environments are consistently
shorter, exhibit a pinched morphology, and have enhanced surface
brightness at the hotspot when compared with their counterparts.
(ii) The inflated cocoon exhibits morphology deviations with

inclination angle; backflow at the primary jet head preferentially
expands away from the environment centre due to the increased
density. The effect is however rather small, and overall deviations
from axisymmetry appear to be dominated by random effects of
three-dimensional instabilities. The backflow is consistently nar-
rower in the denser environment.
(iii) The jet collimation process is similar for both jets of a radio

source regardless of offset and inclination angle. This is due to the
homogeneous pressure distribution in the cocoon.
(iv) Our simulations reproduce the observed link between radio

source asymmetry and environment asymmetry Figure 11.
This supports the theory that jet-environment interaction plays a
significant role in determining radio source morphology at large
scales and opens the possibility of using radio sources as probes
of the host environment in observations by next-generation survey
instruments like SKA and it’s pathfinders.
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