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Abstract

Introduction: Previous analysis from the large European multicentre ESCAPE study showed an association of ambient
particulate matter <2.5um (PM2.5) air pollution exposure at residence with the incidence of gastric cancer. It is unclear
which components of PM are most relevant for gastric and also upper aerodigestive tract (UADT) cancer and some of
them may not be strongly correlated with PM mass. We evaluated the association between long-term exposure to
elemental components of PM2.5 and PM10 and gastric and UADT cancer incidence in European adults. Methods:
Baseline addresses of individuals were geocoded and exposure was assessed by land-use regression models for
copper (Cu), iron (Fe) and zinc (Zn) representing non-tailpipe traffic emissions; sulphur (S) indicating long-range
transport; nickel (Ni) and vanadium (V) for mixed oil-burning and industry; silicon (Si) for crustal material and
potassium (K) for biomass burning. Cox regression models with adjustment for potential confounders were used for
cohort-specific analyses. Combined estimates were determined with random effects meta-analyses. Results: Ten
cohorts in six countries contributed data on 227,044 individuals with an average follow-up of 14.9 years with 633
incident cases of gastric cancer and 763 of UADT cancer. The combined hazard ratio (HR) for an increase of 200
ng/m3 of PM2.5_S was 1.92 (95%-confidence interval (95%-Cl) 1.13;3.27) for gastric cancer, with no indication of
heterogeneity between cohorts (12=0%), and 1.63 (95%-CI 0.88;3.01) for PM2.5_Zn (12=70%). For the other elements
in PM2.5 and all elements in PM10 including PM10_S, non-significant HRs between 0.78 and 1.21 with mostly wide
Cls were seen. No association was found between any of the elements and UADT cancer. The HR for PM2.5_S and
gastric cancer was robust to adjustment for additional factors, including diet, and restriction to study participants with
stable addresses over follow-up resulted in slightly higher effect estimates with a decrease in precision. In a two-
pollutant model, the effect estimate for total PM2.5 decreased whereas that for PM2.5_S was robust. Conclusion: This
large multicentre cohort study shows a robust association between gastric cancer and long-term exposure to PM2.5_S
but not PM10_S, suggesting that S in PM2.5 or correlated air pollutants may contribute to the risk of gastric cancer.
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Abstract:

Introduction: Previous analysis from the large European multicentre ESCAPE study showed an
association of ambient particulate matter <2.5um (PM, s) air pollution exposure at residence with the
incidence of gastric cancer. It is unclear which components of PM are most relevant for gastric and
also upper aerodigestive tract (UADT) cancer and some of them may not be strongly correlated with
PM mass. We evaluated the association between long-term exposure to elemental components of
PM, s and PM,, and gastric and UADT cancer incidence in European adults.

Methods: Baseline addresses of individuals were geocoded and exposure was assessed by land-use
regression models for copper (Cu), iron (Fe) and zinc (Zn) representing non-tailpipe traffic emissions;
sulphur (S) indicating long-range transport; nickel (Ni) and vanadium (V) for mixed oil-burning and
industry; silicon (Si) for crustal material and potassium (K) for biomass burning. Cox regression
models with adjustment for potential confounders were used for cohort-specific analyses. Combined
estimates were determined with random effects meta-analyses.

Results: Ten cohorts in six countries contributed data on 227,044 individuals with an average follow-
up of 14.9 years with 633 incident cases of gastric cancer and 763 of UADT cancer.

The combined hazard ratio (HR) for an increase of 200 ng/m3 of PM, 5 S was 1.92 (95%-confidence
interval (95%-CI) 1.13;3.27) for gastric cancer, with no indication of heterogeneity between cohorts
(I>=0%), and 1.63 (95%-CI 0.88;3.01) for PM,s_Zn (I>=70%). For the other elements in PM, 5 and all
elements in PM, including PM;,_S, non-significant HRs between 0.78 and 1.21 with mostly wide Cls
were seen. No association was found between any of the elements and UADT cancer. The HR for
PM,s_S and gastric cancer was robust to adjustment for additional factors, including diet, and
restriction to study participants with stable addresses over follow-up resulted in slightly higher effect
estimates with a decrease in precision. In a two-pollutant model, the effect estimate for total PM, s
decreased whereas that for PM, 5 S was robust.

Conclusion: This large multicentre cohort study shows a robust association between gastric cancer
and long-term exposure to PM, 5 S but not PM,_S, suggesting that S in PM, s or correlated air

pollutants may contribute to the risk of gastric cancer.
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Highlights:

e Population-based cohorts from 6 European countries (227,044 participants)

e Copper, iron, zinc, sulphur, nickel, vanadium, silicon and potassium in PM, 5 and PM,, were
studied

o Statistically significant strong association of gastric cancer with sulphur in PM, s, but not in
PM;

e No association of gastric cancer with any of the other 7 elements tested

e No association with upper aerodigestive tract cancer
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Abstract:

Introduction: Previous analysis from the large European multicentre ESCAPE study showed an
association of ambient particulate matter <2.5um (PM, ) air pollution exposure at residence with the
incidence of gastric cancer. It is unclear which components of PM are most relevant for gastric and
also upper aerodigestive tract (UADT) cancer and some of them may not be strongly correlated with
PM mass. We evaluated the association between long-term exposure to elemental components of
PM, s and PM,, and gastric and UADT cancer incidence in European adults.

Methods: Baseline addresses of individuals were geocoded and exposure was assessed by land-use
regression models for copper (Cu), iron (Fe) and zinc (Zn) representing non-tailpipe traffic emissions;
sulphur (S) indicating long-range transport; nickel (Ni) and vanadium (V) for mixed oil-burning and
industry; silicon (Si) for crustal material and potassium (K) for biomass burning. Cox regression
models with adjustment for potential confounders were used for cohort-specific analyses. Combined
estimates were determined with random effects meta-analyses.

Results: Ten cohorts in six countries contributed data on 227,044 individuals with an average follow-
up of 14.9 years with 633 incident cases of gastric cancer and 763 of UADT cancer.

The combined hazard ratio (HR) for an increase of 200 ng/m3 of PM, 5 S was 1.92 (95%-confidence
interval (95%-CI) 1.13;3.27) for gastric cancer, with no indication of heterogeneity between cohorts
(I=0%), and 1.63 (95%-CI 0.88;3.01) for PM, s Zn (I1>=70%). For the other elements in PM, 5 and all
elements in PM, including PM;,_S, non-significant HRs between 0.78 and 1.21 with mostly wide Cls
were seen. No association was found between any of the elements and UADT cancer. The HR for
PM,; s S and gastric cancer was robust to adjustment for additional factors, including diet, and
restriction to study participants with stable addresses over follow-up resulted in slightly higher effect
estimates with a decrease in precision. In a two-pollutant model, the effect estimate for total PM, s
decreased whereas that for PM, 5 S was robust.

Conclusion: This large multicentre cohort study shows a robust association between gastric cancer
and long-term exposure to PM,s_S but not PM,,_S, suggesting that S in PM, 5 or correlated air

pollutants may contribute to the risk of gastric cancer.
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Key words: gastric cancer; upper aerodigestive tract cancer; air pollution; particulate matter

components; chemical elements; sulfur; ESCAPE

Introduction

Long-term exposure to ambient air pollution with particles contributes to increased cancer risk
(International Agency for Research on Cancer Monograph Working Group, 2015), with most evidence
for lung cancer (Raaschou-Nielsen et al., 2013).

A previous analysis of the large European multicentre ESCAPE study showed an association of
particulate matter <2.5um (PM, 5) exposure at residence with the incidence of gastric cancer (Nagel et
al, 2018). For the incidence of upper aerodigestive tract (UADT) cancer, which summarises
anatomically closely related sites, no association with PM, s or PM;, was found (Nagel et al, 2018).
PM constitutes a complex mixture depending on contributing sources and atmospheric processes, and
it is still not clear which PM components are the most relevant for health, which may vary by
endpoints. Although we did not find any association of PM mass with UADT cancer in our earlier
work, it cannot be excluded that some components which may not be strongly correlated with PM
mass may still have a role in carcinogenesis of UADT cancers.

The identification of elemental components of PM air pollution increasing cancer risk may increase
our understanding of pathomechanisms and contribute to the identification of specific sources of
relevance (Kelly and Fussell, 2012). Components of outdoor air pollutions for which adverse health
effects have been reported to include metals, inorganic components, secondary aerosols (sulphate,
nitrate) and organic components (de Hoogh et al., 2013). The fact that these components do not occur
in isolation, but in a temporally and spatially variable air pollution mix, renders epidemiological
studies of individual components complex. While the focus has mostly been on traffic exhaust related
components so far, recent reviews have pointed out the possible role of non-exhaust related particle
components (Kelly and Fussell, 2015). For example, transition metals such as copper (Cu) and iron
(Fe) resulting from brake and tyre wear are likely to promote inflammation and oxidative stress

(Hampel et al., 2015). While elements may have health effects per se, some of them also originate
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predominantly from certain sources (Viana et al., 2008) and may as indicators for the related pollution
mix inform on effective preventions measures. To date, research on the influence of long-term
exposure to different air-borne elements is scarce.

The objective of this study was therefore to investigate the association of chronic exposure to
elemental components of PM air pollution with the incidence of gastric and UADT cancer. The study
was performed in the framework of ESCAPE and the European study of Transport-related Air
Pollution and Health Impacts—Integrated Methodologies for Assessing Particulate Matter

(TRANSPHORM; www.transphorm.eu/).

Material and Methods
Study population, outcome, confounder data and statistical analysis were identical to the previous

analysis of air pollution and gastric/lUADT cancer (Nagel et al, 2018).

Study population

For the present study, prospective cohort data from seven study areas (Figure 1) that had participated
in ESCAPE (Raaschou-Nielsen et al., 2013) and had data on PM elemental composition and the
resources to perform these additional analyses were analysed: Sweden ( [CEANS] comprising the
Swedish National Study on Aging and Care in Kungsholmen [SNAC-K], Stockholm Screening Across
the Lifespan Twin study and TwinGene [SALT], Stockholm 60 years old and IMPROVE study [Sixty]
and the Stockholm Diabetes Prevention Program [SDPP]), Norway (Oslo Health Study [HUBROY]),
Copenhagen, Denmark (Diet, Cancer and Health study [DCH]), the Netherlands (European
Prospective Investigation into Cancer and Nutrition [EPIC] comprising the Monitoring Project on Risk
Factors and Chronic Diseases in the Netherlands [EPIC-MORGEN], and EPIC-PROSPECT), Austria
(Vorarlberg Health Monitoring and Prevention Programme [VHM&PP)), Italy (EPIC-Turin, Italian
Studies of Respiratory Disorders in Childhood and Environment [SIDRIA]-Rome). The data of the

four cohorts in the Stockholm area and the two cohorts in the Netherlands, respectively, were pooled.
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Therefore, 7 study estimates contributed to the meta-analysis (Table 1, for cohort-specific details see
(Nagel et al, 2018).
Recruitment of the cohorts occurred largely in the 1990s. The cohort studies and the use of their data

in ESCAPE were approved by the local ethical and data protection authorities.
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Figure 1: Location of participating cohorts: Oslo: HUBRO; Stockholm: CEANS (comprising SNAC-
K, SALT, Sixty and SDPP); Copenhagen: DCH; Netherlands: EPIC Netherlands; Vorarlberg:

VHM&PP; Turin: EPIC Turin; Rome: SIDRIA; For acronyms of cohorts see Methods section.
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Outcome definition

Follow-up was based on linkage to national or local cancer registries, with exception of SIDRIA Rome
for which hospital discharge and mortality register data were used. The main outcomes were all
cancers of the stomach and of the UADT, respectively. Secondary analyses addressed cancer of the
cardia, and adenocarcinomas and squamous-cell carcinomas of the UADT. Carcinomas were identified
using the International Statistical Classification of Diseases and Related Health Problems, 9" and 10th
revision [ICD9 and ICD10]: for gastric cancer C16 [ICD10] and 151 [ICD9], and for UADT cancers:
C01-06 and 141-145 (oral cavity), C09, C10 (oropharynx), C12, C13 (hypo-pharynx) and 146
(pharynx), C14, C32 and 161 (larynx), C15 and 150 (esophagus). Lymphomas/myelomas/leukemias
were excluded according to the International Classification of Diseases for Oncology (ICDO-3)
morphology codes: 9590-9989. We only included primary cancers and only malignant tumors with the

fifth digit of the ICDO morphology code being “3”.

Exposure assessment

Exposures at the residential baseline address of the participants were determined according to a
standardized procedure by assigning air pollution exposure estimates derived from land use regression
(LUR) models specifically developed for the respective areas (de Hoogh, 2013). If a subject moved the
new address was not taken into account except for exclusion of these subjects in a sensitivity analyses
(see below). A detailed description of the 3-step procedure is found elsewhere. First, dedicated
measurement campaigns (three two-week periods over one year) were carried out at 20 locations in
each study area for a one-year period between October 2008 and May 2011. Results from the three
measurements per site were averaged to a mean annual concentration, adjusting for temporal trends
using data from a background monitoring site with continuous data

Second, we collected information about potential predictor variables relating to nearby traffic
intensity, population/household density and land use from Geographic Information Systems (GIS), and
evaluated these to explain spatial variation of measured annual average concentrations using
regression modelling (Beelen et al., 2013; Eeftens et al., 2012). These LUR models were used to

estimate the exposure at the baseline address of each cohort member.
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To determine the chemical elements contained in the respective PM fractions, PM filters were sent to
Cooper Environmental Services (Portland, OR, USA) to analyse elemental composition using X-
Ray Fluorescence (XRF). As indicators mainly of non-tailpipe traffic emissions such as brake and
tyre wear, Cu, Fe and zinc (Zn) were selected; sulphur (S) mainly for long-range transport; nickel
(Ni) and vanadium (V) for mixed oil-burning and industry; silicon (Si) for crustal material and
potassium (K) for biomass burning (de Hoogh et al., 2013; Viana et al., 2008). However, each
element can have multiple sources. The LUR model results for all study areas have been shown
previously (de Hoogh et al., 2013). Land use regression models for Cu, Fe, and Zn in both

fractions (PMmand PM ) had average cross-validation explained variance (r') between 52% and

84% with a large variability between areas (Raaschou-Nielsen et al., 2016). Models for the other
elements performed moderately with average cross-validation r’ generally between ~50% and

~60%. For PM” S the average cross-validation r was 32% with a range from 2 to 67%, consistent

with the relatively low spatial variation of PM_S concentrations within the cohort areas. LUR-
models could not be developed for K in PM;, (HUBRO), Ni in PM;, (HUBRO), Ni in PM, 5

(CEANS), V in PM, s (HUBRO, VHM&PP) and Si in PM, s (HUBRO).

Statistical analyses

Cohort-specific analyses were carried out using a common protocol and a centrally developed Stata
analysis script (Nagel et al, 2018). In the cases where data of multiple cohorts were pooled (the
Swedish and the Dutch cohorts, respectively) the analyses were performed stratifying the Cox Model

for a cohort indicator variable.

Cox proportional hazard-regression with age as the underlying time-axis was carried out. The hazard
ratio was modeled as an exponential function of continuous exposure. Censoring was applied at the
time of death, a diagnosis of any other cancer (except non-melanoma skin cancer) or end of follow-up,
whichever came first. Model checks included a test for deviation from proportional hazard assumption

and testing the linearity assumption in the relation between each exposure and the log hazard of the
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outcome by replacing the linear term with a natural cubic spline with two inner knots placed at the 33
and 66" percentiles. The model fits of the linear and the spline models were compared using a

likelihood-ratio test (Chi-square test with 2df).

Confounder sets were determined a priori with increasing levels of adjustment, following the
procedures of previous ESCAPE studies (Nagel et al, 2018). Model 1 was adjusted for age (time
scale), calendar year of enrolment and sex. Model 2 was additionally adjusted for baseline information
on smoking status, smoking intensity, smoking duration, occupational exposure, employment status
and educational level. Model 3 (the main model) was in addition adjusted for area-level (residential
neighbourhood or similar) socio-economic status (SES). The availability of these variables varied
slightly between cohorts (Nagel et al, 2018). Only complete case analyses were performed. In the few
cases where one variable was missing entirely, the cohort was nevertheless analysed using the
available confounders. In sensitivity analyses we included additional potential confounders (alcohol
consumption, environmental tobacco smoke (ETS), intake of fruit, intake of meat and marital status),
restricted the analysis to participants with stable residence during follow-up or for at least 10 years,
and included an indicator for urban/rural environment to the main model.

All cohort-specific analyses were done in Stata versions 10 to 14 (StataCorp, College Station, TX).

The results obtained from the cohort-specific analyses were combined with random effects meta-
analysis (DerSimonian and Laird, 1986). Heterogeneity between cohorts was tested by the y? test from
Cochran’s Q statistic and quantified with the 1> (Higgins and Thompson, 2002). Stata version 14

(StataCorp) was used for meta-analyses.

Results:

The cohorts contributed together data on 227,044 individuals with an average follow-up time of 14.9
years. 633 incident cases of gastric cancer and 763 of UADT cancer occurred. DCH and VHM&PP

contributed with most of the cases (Tablel). Mean age at baseline in the cohorts ranged from 43 years
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(VHM&PP) to 57 years (DCH). The details of each cohort including participants characteristics and

availability of variables have been reported previously (Nagel et al, 2018).

There was a wide range of annual mean concentrations of PM elements concentrations within and
between study cohorts. Generally, the Nordic countries showed the lowest and the Southern countries
the highest levels of PM (Table 1) and similarly for most of the elements, less consistent for Ni, V and
Zn. Si had relatively high values in Sweden, S in the Netherlands, and Austria showed high levels of K
in PM, 5 (Fig. 2 and Figure in the online Supplementary Material). For PM, 5 differences in individual
exposures were highest in SIDRIA (Rome) for Cu, Fe, K, in EPIC Turin and Netherlands for Ni and S,
in EPIC-Netherlands for V and Zn and in CEANS (Stockholm) for Si. The pattern for PM;, was very
similar. Correlations of PM elements with total PM, s and PM,, varied between location with median
correlation coefficients largely between 0.4 and 0.6 (Raaschou-Nielsen et al., 2016).

In the tests of loglinearity of the dose-response, the p-value of only 4 were <0.05 and only 8 <0.1. P-
values of less than 0.05 were observed for DCH for PM, 5 S, for EPIC-Turin for PM;,_K and for
VHM&PP and SIDRIA for PM;,_Si Therefore we took over the results for the linear models for all

cohorts and pollutants and consider that this is a valid approximation.
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59

1
257 Table 1: Participants, gastric and UADT cancer cases and mean PM, s concentrations in each cohort

Persons with stable residence (at least

233 Incident cases Exposure 10 years at baseline address)
- Total Baseline Mean Age at Gastric UADT PM, 5 Proportion Proportion among
595 participants period follow-up baseline Cancer cancer (ng/m?3) cases
526 time (years)
597
HUBRO, Oslo, 47.9 21 23 8.9 0.39 0.67
598 Norway 17958 =~ 20002001 8.5 (15.0) (0.12%) (0.13%) (13)
599
56.2 30 57 7.1 0.63 0.77
600CEANS, Stockholm, Sweden 18 842 1992-2004 104 (11.5) (0.16%) (0.30%) (13)
601
56.8 120 283 11.3 0.86 0.87
602DCH, Copenhagen, Denmark 37676 1993-1997 14.8 4.3) (0.32%) (0.75%) 0.9)
603
50.4 41 69 16.8 n.d. n.d.
604EPIC-Netherlands 30134 1993-1997 11.8 (11.3) (0.14%) (0.23%) (0.6)
605
. 429 375 311 13.6 0.58 0.74
606 VHM&PP, Vorarlberg, Austria 104 713 1985-2005 18.1 (14.9) (0.36%) (0.30%) (12)
607
. 50.4 26 30.1 n.d. n.d.
608 EPIC-Turin, Italy 7946 1993-1998 14.1 (7.5) (0.33%) NA (1.7
609
442 20 20 19.4 0.72 0.70
610SIDRIA-Rome, Italy 9775 1999 11.2 6.0) (0.20%) (0.20%) (1.8)
6111otal 227 044 14.9 633 763

8¢ Data are n, mean (SD), and n (%). PM, s=particulate matter with diameter <2.5um. NA=not available. HUBRO=Oslo Health Study. CEANS=Swedish National Study on Aging and Care in
28BKungsholmen (SNAC-K) + Stockholm Screening Across the Lifespan Twin study and TwinGene (SALT) + Stockholm 60 years old and IMPROVE study (Sixty) + Stockholm Diabetes Prevention
282! Program (SDPP). DCH= Diet, Cancer and Health study. EPIC=European Prospective Investigation into Cancer and Nutrition. VHM&PP= Vorarlberg Health Monitoring and Prevention Programme.
283, SIDRIA=Italian Studies of Respiratory Disorders in Childhood and Environment. n.d.=no data available
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289 Figure 2: Estimated annual mean concentration (ng/m?) of PM, s elemental components at participants’ addresses in each cohort. The solid circles and bars show the median and

29 25% and 75% percentile concentrations; the x shows the 5% and 95% percentile values.
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The meta-analysis results from the main model for PM, 5 components showed effect estimates above
and below unity. Only the positive association of PM, 5 S with gastric cancer incidence was
statistically significant with a hazard ratio (HR) of 1.93 (95%-confidence interval (95%-CI) 1.13;3.27)

for an increase of 200 ng/m? (Table 2, Figure 3) with no heterogeneity in cohort results.

PM, ;s S (HR for a 200 ng/m? increase)

%
Coart HF (95% C1) Welget
HUBRO, Oslo, Morway ¥ 245 (123, 387 247
CEANS, Stootholm, Swaden £ + 476 (004, 517.50) 11
DCH, Copentragen, Denmmark f.: + Q57 (107, 4.45) 663
EPIC-Nefhertands + "y 347 (067, 1243) 1036
VHIMEPP, Vorarinerg, Ausria + 161 (184, 3208 8631
EPIC-Turin, Raly + 7,69 (1.98, 61.20) 664
SIDRIA-Rome, i3l ' > 210027, 16.3) 66T
Ouerall (Heguared = 0.0%, p = 0.552) <:> 193 (113, 327) 100.00
T T T 1 T 1 T T T

!
2 B B 5 &7 1 15 3 5 10

Figure 3: Risk for gastric cancer associated with PM,5_S in each cohort study

Hazard ratios according to PM, 5_S in each of the cohort studies, based on confounder model 3.
Weights are from random effects analysis. Data points show HR; lines show 95% CI, boxes show the
weight with which each cohort contributed to the overall HR; vertical bold line shows overall HR.
HR=hazard ratio. PM, s=particulate matter with diameter <2.5um.

The second highest HR was seen for PM, s Zn with 1.63 (95%-CI 0.88;3.01) for an increase of
10ng/m? with heterogeneity between cohorts (1>=70%) No clear association was found with UADT
cancers for any of the PM, s elements. Effect estimates from the age-sex adjusted and fully adjusted

confounder model did not differ substantially. Also no clear association could be seen between any of

the PM,p-components and gastric or UADT cancer incidence (Table in the online Supplementary
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Material). The association for PM;,_S with gastric cancer was 0.97 (95%-CI 0.67;1.41) for an increase
of 200ng/m?3, also with no heterogeneity between cohorts. Excluding VHM&PP which had a weight of
66% and 71%, in the meta-analysis of PM, s S and PM,,_S, respectively, yielded a combined HR of
2.75 (95%-CI 1.10;6.86) and 1,43 (95%-CI 0,72;2.85), respectively. Excluding the three cohorts
(HUBRO, CEANS, EPIC-Netherlands) with a leave-one-out cross-validation (LOOCV) R? below 0.3
for the LUR-models yielded a HRR of 1,74 (95%-CI 0,90;3.33).

The results for the association of PM, s S with gastric cancer were robust to further adjustment for
dietary variables and ETS showing no change in the HR obtained for the respective cohorts in this
analysis of 1.83 (95%-CI 1.05;3.20), (Figure 4, additional confounder data available for 6 cohorts).
Similarly, adjustment for the rural indicator yielded very similar effect estimates (information
available in 5 cohorts). Restriction to the population with a stable residence, which is less subject to
misclassification of long-term exposure at the residence, resulted in slightly increased effect estimates,
however with wider Cls.

In two-pollutant models, the effect estimated for total PM, s changed from 1.36 (95%-CI 0.97;1.90) to
1.07 (95%-CI 0.70;1.64) when adjusted for PM, s S and to 1.42 (95%-CI 0.68;2.95) when adjusted for
PM, s Zn. The effect estimated for PM,s_S changed from 1.93 (95%-CI 1.13;3.27) to 1.79 (95%-CI

0.96;3.37) when adjusted for total PM, s and the estimate for PM, s Zn was not affected.
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794 Fixed Increase Number of  Number HR (95% CI) Measures of heterogeneity
295 (ng/m?) cohorts of cases between cohorts (model 3)3
796 Model 1* Model 21 Model 3% I? p-value
79T Gastric cancer

798 i

799 PM,;5Cu 5 7 633 1.00 (0.73-1.38) 1.01 (0.70-1.45) 1.05 (0.72-1.53) 37.0% 0.15
282 PM, 5 Fe 100 7 633 1.04 (0.80-1.35)  1.03 (0.75-1.42)  1.03 (0.75-1.42) 22.5% 0.26
802 PM,;s K 50 7 633 1.10 (0.88-1.37)  1.08 (0.87-1.34) 1.21 (0.88-1.66) 28.1% 0.21
803 PM, s Ni 1 6 603! 0.81 (0.40-1.63) 0.77 (0.36-1.63)  0.81 (0.36-1.83) 60.3% 0.03
804 PM,s S 200 7 633 2.07 (1.23-3.47) 2.01 (1.20-3.38) 1.93 (1.13-3.27) 0.0% 0.59
805 PM, 5 Si 100 6 6122 0.97 (0.54-1.75) 091 (0.43-1.91)  0.90 (0.41-1.98) 45.2% 0.10
283 PM,sV 2 5 2373 0.95(0.47-1.89)  0.90 (0.45-1.80) 0.90 (0.45-1.81) 0.0% 0.87
808 PM, 5 Zn 10 7 633 1.54 (0.80-2.97) 1.54 (0.82-2.90) 1.63 (0.88-3.01) 70.2% <0.01
809

810

811 UADT cancer

812

813 PM, s Cu 5 6 763 1.08 (0.83-1.40) 1.03 (0.79-1.34) 1.02 (0.78-1.33) 0.0% 0.64
814 PM, s Fe 100 6 763 0.97 (0.79-1.18)  0.89(0.73-1.09)  0.90 (0.73-1.10) 0.0% 0.73
212 PM,s K 50 6 763 1.13 (0.78-1.65) 1.12(0.83-1.51) 1.12 (0.83-1.51) 22.9% 0.26
817 PM, 5 Ni 1 5 706! 0.97 (0.56-1.67) 0.85(0.53-1.35)  0.84 (0.51-1.37) 11.6% 0.34
818 PM,;5 S 200 6 763 0.90 (0.46-1.75) 0.74 (0.28-1.98) 0.75 (0.25-2.21) 54.9% 0.05
819 PM, 5 Si 100 5 7402 0.75(0.54-1.04) 0.75(0.54-1.04)  0.76 (0.54-1.05) 0.0% 0.99
820 pM,,v 2 4 4293 0.78 (0.48-1.28)  0.69 (0.42-1.14)  0.68 (0.41-1.12) 0.0% 0.63
2;; PM, 5 Zn 10 6 763 1.09 (0.87-1.37)  1.09 (0.86-1.38)  1.11(0.82-1.51) 25.6% 0.24

Table 2: Results of the random effects meta-analyses of associations between PM, 5 elemental components and the risk for gastric and UADT cancer

%ZZ‘;O PM,s=particulate matter with diameter <2-5 um. We included only participants without missing data in any of the variables included in model 3, so the datasets were identical for analyses with

311 all three models. HR=hazard ratio. CI=confidence interval. UADT= upper acrodigestive tract. § relating to model 3 *Model 1: age (timescale in Cox model), sex, calendar time. TModel 2: model
1 + smoking status, smoking intensity, smoking duration, occupational exposure, employment status and educational level. {Model 3: model 2 + area-level (residential neighborhood or similar)

838 socio-economic status. 1: without CEANS. 2: without HUBRO. 3: without HUBRO, VHM&PP.
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Figure 4: Results of sensitivity analyses for the association of gastric cancer with PM, 5 S. Hazard
ratios (HR) with 95% confidence intervals are shown. N= number. The additional confounders were

alcohol consumption, environmental tobacco smoke (ETS), intake of fruit, intake of meat and marital
status where available.
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Discussion

This study including cohorts from 6 European countries shows a statistically significant robust
association of PM, 5 S with gastric cancer incidence. The effect estimate for PM, 5 decreased
markedly when adjusted for PM, s S whereas the estimate for the latter changed little. No further
statistically significant association of the elementary compounds with gastric or UADT cancer was

observed, including PM;,_S.

The identification of PM, s S as the element most strongly associated with gastric cancer is in
agreement with previous analyses within the ESCAPE study on all-cause mortality (Beelen et al.,
2015) and lung cancer incidence (Raaschou-Nielsen et al., 2016). In our analysis of gastric cancer, the
HR for PM, s S was larger than for all-cause mortality (HR 1.14) and lung cancer (HR 1.34). In
contrast to lung cancer, our estimate for gastric cancer was robust when additionally adjusted for
smoking status, smoking intensity, smoking duration, occupational exposure, employment status,
educational level, and for area-level (residential neighbourhood or similar) socio-economic status (area
SES). However, it is of concern that there was no corresponding association seen for PM;,_S in
contrast to PM, s _S. In general, PM, ;5 component mass makes up large amount of PM;, component
mass and sulphates are mainly present in the PM, 5 fraction (Tsai et al., 2015). Indeed, the actual
concentrations measured at the monitoring sites used to develop the LUR models were highly
correlated (median within area r = 0.8) (Tsai et al., 2015). At the cohort address, we found a moderate
correlation (median=0.57) between predicted PM,s_S and PM;,_S exposures from the LUR. In the
large VHM&PP cohort, the correlation was identical for measured and modelled concentrations. The
lower correlation is likely due to relatively moderate performance of the LUR models for S (de Hoogh
et al., 2013) and possibly the overrepresentation of traffic locations at the monitoring sites compared
to the cohort addresses. Overall, the explained variance of PM;,_S models was slightly higher than
for PM, s S LUR models (de Hoogh et al., 2013). The low variability of S within study areas likely
has contributed to moderate performance (de Hoogh et al., 2013). In both the mortality and lung
cancer studies (Beelen et al., 2015; Raaschou-Nielsen et al., 2016), HRs for PM,,_S, were above

unity, but smaller and less consistent than for PM,s_S.
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For gastric cancer, the null finding for PM,,_S parallels the null-finding for total PM,, that we have

found in our previous ESCAPE analysis (Nagel et al, 2018).

Overall, our results for PM, s S were robust as sensitivity analyses did not notably change the effect
estimate. Restricting the analyses to persons who lived at least 10 years at their baseline address
resulted in slightly increased HRs, which would be expected if the association is true and causal
because the degree of non-differential misclassification of exposure is expected to be lower in this sub-
population. Excluding the most influential cohort, VHM&PP with a weight of 66%, increased the HR.
Although two-pollutant models should be interpreted with caution (Mostofsky et al., 2012), our
finding that the HR in association with PM, s_S is robust when adjusting for PM, 5, which in turn is
reduced to virtually no effect, is strengthening our result. Even more so, because in contrast to earlier
studies where S and PM were strongly correlated, the moderate correlation in our study (mean of 0.55)
allows us to be more confident to disentangle effects.

Nevertheless, PM, 5 S may also be seen as a marker of a certain pollutant mix. Sources of S are coal,
residual oil and motor vehicle fuels. In the NPACT project, the coal combustion source category
showed the strongest associations of all investigated sources with long-term effects (mortality in

humans and aortic plaque progression in mice) (Lippmann et al., 2013).

Ashely et al. reported a correlation between SO, exposure and gastric cancer mortality in the UK
(Ashley, 1969). This study showed that regions with coal and textile industry had higher gastric cancer
mortality. Another study showed that workers exposed to SO, in the pulp and paper industry had no
increased risk of gastric cancer, but mortality from gastric cancer showed a positive dose-response
with increasing exposure, however, with very imprecise estimates (Lee et al., 2002).

While an earlier review on toxicological results postulated that there is little evidence that sulphate in
ambient concentration is toxicologically relevant (Schlesinger and Cassee, 2003), recent reviews
acknowledge that it is unclear which effects are related to sulphates contained in the PM-mixture: the
cationic elements (H+, and therefore acidity, and notably (transition) metals) or adsorbed compounds

like polyaromatic hydrocarbons (PAH)) may explain the observed epidemiological associations
18
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(Cassee et al., 2013; Reiss et al., 2007). A study in Hong Kong (Wong et al., 2012) that investigated
the effects of limiting the sulphur content in fuel found that natural mortality was reduced, however
the reduction in SO, was highly correlated with reductions in V and Ni and was not statistically
significant after adjustment. In our study these metals (V and Ni from residual oil combustion e.g.
from industry) were not associated with gastric cancer incidence, although one might argue that the
corresponding LUR-models suffered from a lack of sufficiently specific predictors (Beelen et al.,

2015).

The possible pathomechanisms of carcinogenicity of sulphate in ambient air for gastric cancer are not
clear. Results from experimental research with human bronchial epithelial cells, support the hypothesis
that SO, derivatives could by activation of pro-oncogenes and the inactivation of tumour suppressor
genes play a role in the pathogenesis of cancer (Qin and Meng, 2009). It can also be speculated
whether the formation of sulphuric acid, which is formed from oxidation from SO,, increases the risk
of gastric cancer (Bernatsky et al., 2017). As pointed out above, sulphate may indirectly affect health
by e.g. co-occurring transition metals. The bioavailability of these metals may increase (Cassee et al.,
2013) and they can lead to the formation of reactive oxygen species (ROS) which in turn may result in

oxidative DNA-damage (Mgller et al., 2008; Risom et al., 2005).

Strengths and limitations:

Our study comprises data from several cohorts from 7 geographical areas, and constitutes the largest
data set to date for the analysis of PM-elements in relation to gastric cancer. A strength is the common
standardized exposure assessment protocol that estimates local concentrations with a small scale
resolution. Our analysis was able to take into account important individual confounders, especially
smoking. We could also adjust for nutritional variables in 4 of the 7 study-specific effect estimates, but
cannot rule out residual confounding. While we cannot exclude the possibility of some
misclassification due to the measurement campaigns taking place after recruitment of cohort
participants, we were, however, able to take into account information on residential stability, which

would tend to decrease the degree of exposure misclassification.
19



1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

We were not able to take into account the mobility of the individuals, but had to rely on exposure
estimates for the residential address at enrolment into the cohorts. Also, the LUR-model approach does
involve some degree of misclassification, and especially the performance of the models for PM_S
were among the lowest when evaluated by leave-one-out crossvalidation, presumably because of the
small measured within-study area contrasts. The average leave-one-out cross-validation (LOOCV) R?
in the present study with data from 7 geographical areas ranged between 7 and 61% for PM, 5 S, with
the highest values in DCH (61%) and VHM&PP (53%) and the lowest in HUBRO. The sensitivity

analyses excluding studies with a (LOOCV) R? yielded an only mildly attenuated effect estimate with

a widened confidence interval, resulting from the exclusion of three of the seven cohorts. . It is not

clear whether the mild change is related to the LOOCYV or other characteristics of the cohorts. We

further note that the I? statistic of the overall analysis is 0%, suggesting that the variability in estimates
across cohorts is mostly due to random error.

Overall, we would expect the misclassification related to low LOOCYV R? to be non-differential and
therefore to induce a bias towards the null-effect. Also the relatively poor model fit would not
contribute to an erroneously increased effect estimate in the two-pollutant model: indeed, if two
pollutants are of similar influence, the pollutant for which the concentrations are more precisely
estimated would yield the higher effect estimate. This is unlikely to be the case here, because the
model fit for PM, 5 mass was better than for PM,s_S with validation R? ranging from 42% to 78%.

In this analysis we tested 32 outcome-exposure combinations, so a chance finding due to multiple
testing cannot be fully excluded. Nevertheless, the robustness of the results and the fact that 6 of the 7
cohort estimates were greater than one indicates that the result for S in PM, 5 is probably not due to

chance. However, clearly additional specific studies are needed.

Taken together, our results indicate that S in the PM, 5 fraction, or correlated air pollutants, may

contribute to increased risk of cancer of the stomach.
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Supplementary Figure: Estimated annual mean concentration (ng/m3) of PM1 elemental components at participants’ addresses in each cohort. The solid circles and bars show

the median and 25% and 75% percentile concentrations; the x shows the 5% and 95% percentile values.




Supplementary Table: Results of the random effects meta-analyses of associations between PMio elemental components and the risk for gastric and UADT cancer

Fixed Increase  Number Number HR (95% Cl) Measures of heterogeneity
(ng/m?) of cohorts  of cases between cohorts (model 3)
Model 1* Model 2t Model 3% I? p-value

Gastric cancer
PMjo Cu 20 7 633 1.05 (0.87-1.27) 1.06 (0.88-1.29) 1.08 (0.89-1.31) 0.0% 0.45
PMjo Fe 500 7 633 1.05 (0.82-1.34) 1.02 (0.76-1.37) 1.03 (0.76-1.40) 24.2% 0.24
PM1o K 100 6 612 1.17 (0.80-1.72) 1.17 (0.82-1.67) 1.17 (0.86-1.59) 41.9% 0.13
PMyp Ni 2 52 582 1.07 (0.72-1.60)  1.07 (0.72-1.59) 1.10 (0.73-1.66) 0.0% 0.87
PMio S 200 7 633 0.99 (0.69-1.42) 0.97 (0.67-1.39) 0.97 (0.67-1.41) 0.0% 0.54
PMyo Si 500 7 633 0.85 (0.62-1.18) 0.87 (0.66-1.14) 0.89 (0.67-1.18) 0.0% 0.47
PMio V 3 7 633 0.75(0.23-2.39) 0.74 (0.22-2.43) 0.78 (0.24-2.55) 67.4% 0.0053
PMio Zn 20 7 633 1.05 (0.84-1.31) 1.06 (0.85-1.34) 1.08 (0.85-1.37) 5.0% 0.39
UADT cancer
PMjo Cu 20 6 763 0.97 (0.81-1.17) 0.93 (0.77-1.13) 0.93 (0.77-1.13) 0.0% 0.81
PMyo Fe 500 6 763 1.01(0.81-1.26)  0.96 (0.77-1.20) 0.96 (0.77-1.20) 0.0% 0.70
PM1o K 100 51 740 1.03 (0.82-1.28) 1.00 (0.85-1.17) 1.00 (0.85-1.17) 0.0% 0.47
PMyp Ni 2 42 683 0.86 (0.50-1.49)  0.76 (0.45-1.29) 0.75 (0.41-1.35) 31.1% 0.22
PMio S 200 6 763 1.08 (0.73-1.59) 0.98 (0.66-1.46) 0.98 (0.66-1.46) 0.0% 0.58
PMso Si 500 6 763 1.06 (0.72-1.58) 1.01 (0.68-1.48) 1.00 (0.65-1.54) 49.8% 0.076
PMyo V 3 6 763 0.98 (0.56-1.72)  0.93 (0.49-1.77) 0.96 (0.48-1.91) 38.4% 0.15
PMio Zn 20 6 763 1.11 (0.91-1.37) 1.10 (0.89-1.35) 1.11 (0.90-1.37) 0.0% 0.93

PMaio=particulate matter with diameter <10 um. We included only participants without missing data in any of the variables included in model 3, so the datasets were identical for analyses with all

three models. HR=hazard ratio. UADT= upper aerodigestive tract. § relating to model 3 *Model 1: age (timescale in Cox model), sex, calendar time. tModel 2: model 1 + smoking status, smoking

intensity, smoking duration, occupational exposure, employment status and educational level. tModel 3: model 2 + area-level (residential neighborhood or similar) socio-economic status. 1:

without CEANS. 2: without HUBRO. 3: without HUBRO, VHM&PP.





