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Abstract 

 

Among all kinds of possible faults in a manufacturing system, operational faults occur most often (about 70%). Efficient diagnosis of 

these faults is critical for improving the availability and productivity of the manufacturing system. This paper presents a hierarchical 

diagnosis model based on fault tree analysis and two other diagnosis models respectively based on the logic and sequential control of  

manufacturing systems which are usually controlled by a Programmable Logical Controller (PLC). With these models working together, 

the operational faults of a manufacturing system can be diagnosed completely. The models have been successfully applied to a PLC 

controlled flexible manufacturing system and have achieved good results. 
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1. Introduction 

 

Automated plant such as a Flexible Manufacturing System 

(FMS) comprises many complex elements, and is quite different 

from ordinary machine tools because of modular architecture, 

distributed multi-level control and hierarchical system functions. 

Among all kinds of possible faults in a manufacturing system, 

operational faults occur most often (about 70%). The  

propagation of faults from parts or components to functional 

modules, to machine tools and hence to the system, has led 

human experts to adopt a diagnostic solution called hierarchical 

isolation when they are diagnosing a system fault. In addition, 

because such a manufacturing system is highly automated and 

integrated, many different fault modes exist as well as available 

diagnostic knowledge. Therefore, the fault diagnosis of such a 

manufacturing system cannot be carried out like that of an 

ordinary machine tool. A method for quick and comprehensive 

automation and integration is required. 

In recent years, various strategies have been reported for the 

diagnosis of manufacturing systems. Toguyeni proposed 

reasoning mechanisms for the implementation of an on-line 

diagnostic system for FMS's, which are based on the distributed 

processing of symptoms [1]. Kim employed evidential reasoning 

to identify malfunctions of semiconductor manufacturing 

equipment by combining evidence originating from equipment 

maintenance history, on-line sensor data, and in-line post-process 

measurements [2]. Bohez and Thieravarut used a hybrid 

reasoning approach between a deep model and a shallow model 

for the diagnosis of computer numerically controlled machines 

[3]. Chevalier integrated causal reasoning and fuzzy logic 

reasoning for manufacturing line supervision and diagnosis [4]. 

To some extent, these diagnostic strategies have successfully 

been used and have solved some practical problems. However, 

there is little evidence to suggest that all the fault data, as well as 

available diagnostic knowledge, has been integrated in 

manufacturing systems. 

Fault Tree Analysis (FTA) is a mature and efficient fault 

analysis method, which has been used in a variety of complex 

diagnostic applications such as digital fly-by-wire flight control 

systems [5], air-cooled turbo generators and spacecraft propulsion 

systems [6]. It is also used for fault identification and fault 

forecast [7]. FTA can help the maintenance personnel in finding 

the shortest path to a result in the diagnosis of complex 

machinery [8]. Furthermore, It has several unique advantages 

compared with If-Then-Else statements placed in the test 

software to direct troubleshooting. 

In order to meet the quest for automation and flexibility, 

many manufacturing systems are controlled by Programmable 

Logical Controllers (PLC) [9]. This is because PLC's are 

adaptable, modular, user-friendly and acquired at low cost. 

However, because of the PLC's inflexible programming system, 

its capability in fault detection and diagnosis is limited. 

Operational faults associated with PLC control processes often 

confuse the maintenance personnel at workshop level. When such 

a fault occurs, about 80% of downtime is spent locating its source 

and only 20% is spent on the repair [10]. The availability and 

productivity of these PLC controlled manufacturing systems can 

be improved by shortening their downtime resulting from faults. 

This has led to the development of automatic diagnosis tools or 

systems based on PLC control. 

Many diagnosis methods as well as systems have been 

reported in the literature. Jarvis proposed an approach which was 

used to develop a model of a PLC controlled assembly line. The 

objective of the approach was to simulate the sequence of 

manufacturing events that occur for each station in the assembly 

line. During the simulation, meaningful comparisons were made 

between the simulated state of the system and the observed state 

of the system (as specified by a snapshot of the PLC state) [11]. 

Plomp described a prototype of a support tool for PLC analysis. 

The tool was motivated by observations regarding the 

inefficiency of current PLC software debugging tools and the 

poor availability of cross-referenced documentation and manuals. 



The prototype analyses the temporal signal dependencies within 

the PLC logic model and a history of logged values [12]. 

Matthias presented a method to model event based systems and 

described how post-mortem diagnosis based on the use of such 

models can be performed for PLC controlled manufacturing 

equipment [13]. 

In this paper, a hierarchical diagnosis model based on FTA is 

put forward. Two other models, logical diagnosis model based on 

PLC Logic Function Charts (LFC) and sequential diagnosis 

model based on PLC Sequential Control Process (SCP), are also 

presented. These models have been used in an existing diagnosis 

system for FMS's and are very suitable for fault diagnosis of PLC 

controlled manufacturing systems like a FMS. 

 

 

2. Hierarchical Diagnosis Model Based on FTA 

 

The FTA-based hierarchical diagnosis model for 

manufacturing systems follows the principle of fault tree 

construction and analysis. A manufacturing system is 

modularised in multiple levels according to the system function, 

working principle and expert experience, i.e. to describe the 

propagation process of the system faults in the form of a tree. For 

different levels in a fault tree, it adopts different concrete 

diagnosis methods, so as to locate the fault level by level until a 

specific level in the fault tree is reached and the corresponding 

result is obtained. 

 

2.1 FTA method 

 

FTA is a fault analysis method that is used to identify the 

cause(s) of a system fault hierarchically from the system level to 

the part/ component level. A fault can be located by analyzing the 

logical relationship between the system fault and its cause(s) 

along a fault tree. 

FTA is suitable for manufacturing system fault diagnosis 

because it has following characteristics: 

 FTA can be used deeply to analyse a specific fault level 

by level. It uses clear graphics to vividly describe the 

internal logic relationship between the part/component 

faults and the system fault. 

 The fault tree can clearly indicate a system fault is 

related to which part(s)/component(s), what the 

relationship is, and how strong the relationship is. It can 

also be seen whether a part/component fault will cause a 

system fault, what the effect is, how great the effect is, 

and its mechanism. 

 A fault tree is a clear illustration for those management 

and maintenance personnel who have never participated 

in the system design and trial-manufacture, which will 

greatly shorten the training time of the maintenance 

personnel, and therefore cut down the expense for 

personnel training. 

 The qualitative analysis of fault trees of a system may 

make the system designers clearly understand the fault 

modes and success modes of the system, so as to be able 

to find out the weak links in the design scheme, and take 

corrective measures. 

To construct fault trees for a manufacturing system, we must 

fully understand the system. In addition, we should have plenty of 

experience on the system operation and maintenance. Otherwise, 

some important events may be omitted during the fault tree 

construction, which may lead to incorrect results. The process of 

FTA is as in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Construction of the hierarchical model 

 

A manufacturing system has a complex hierarchical 

architecture. From top to down, normally it can be divided into 

system level, materials flow sub-system level, production 

equipment sub-system level, functional module level and 

part/component level. Each level can be further divided into sub-

levels and sub-sub-levels. Using a comprehensive fault tree to 

describe a manufacturing system fault, the fault tree will be like 

Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

That is to say, for a system fault, the fault sources at the first 

level are the sub-systems and the fault causes are the current 

faults of these sub-systems. The fault sources at the second and 

third levels are respectively functional modules and sub-modules, 

and the causes are the faults of these functional modules and sub-

modules. Part/component faults are the lowest level faults which 
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Fig. 2. The fault tree structure of a system fault. 
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are usually the possible final causes of a system fault. Therefore, 

the hierarchical diagnosis of a manufacturing system is 

essentially a search process using diagnostic strategies, along 

with hierarchical fault trees, from top down, i.e. from the top 

level system fault to part/component level faults. 

According to function, the diagnostic knowledge in a 

manufacturing system is classified into meta-knowledge, 

principle knowledge and experiential knowledge. In simple 

terms, meta-knowledge is knowledge about knowledge. More 

precisely, it is the knowledge about how to use various principle 

knowledge and experiential knowledge. This kind of knowledge 

is used to guide the selection and use of all the available principle 

knowledge and experiential knowledge. Using meta-knowledge 

to guide the knowledge selection can avoid the unnecessary 

diagnostic reasoning, so as to improve the efficiency of diagnosis. 

Principle knowledge is the knowledge about the working 

principle of the system, which describes the propagation 

processes of the system faults from the view of the system 

working principle. Experiential knowledge is the knowledge 

about the expert experience. It explains the faults according to the 

mechanisms of the faults. The experiential knowledge selects the 

optimal problem solution. 

 

2.2.1 Hierarchical modularization of  diagnostic knowledge 

In a manufacturing system, the knowledge associated with the 

diagnosis of a specific fault is only a part of the diagnostic 

knowledge bases. If we search all the knowledge bases, it will be 

slow and may not satisfy the requirement of real-time diagnosis. 

Therefore, measures must be taken to modularize the knowledge 

in different levels, so that the reasoning engine can select those 

relevant knowledge bases for diagnosis. A method is to 

decompose a manufacturing system into several sub-systems 

according to its function, meanwhile, decompose each sub-

system into functional modules and sub-modules according to the 

function of this sub-system. All these make up the meta-

knowledge base. There is only one meta-knowledge base for a 

manufacturing system. For each functional sub-module, a fault 

tree is built according to its working principle, which makes up a 

principle knowledge base. A principle knowledge base describes 

the fault propagation process of a relative functional sub-module 

from the view of its working principle. Similarly, in the form of a 

fault tree, the experiential knowledge associated with each 

principle fault are combined to make up an experiential 

knowledge base. When a human expert diagnoses a system fault, 

he/she usually first searches and finds out the faulty functional 

sub-module using meta-knowledge. Then he/she finds out a 

rough fault cause using the principle knowledge associated with 

the faulty functional sub-module, and finally analyzes the fault 

cause according to the relevant experiential knowledge until the 

final fault cause is found. 

Therefore, the diagnostic knowledge in a manufacturing 

system can be described in the hierarchical modular form in Fig. 

3. Each module represents a knowledge base at that level. The 

modularization of the knowledge bases is in accordance with the 

FTA method. The knowledge in every knowledge base is in the 

modular structure of a fault tree as well. 

 

2.2.2 Hierarchical decomposition of the system function 

Like the fault tree structure of a system fault in Fig. 2, the 

hierarchical decomposition proceeds as follows: 

 the function of the system is represented by those of its 

sub-systems; 

 the function of each sub-system is represented by those 

of its modules; 

 the function of each module is represented by those of its 

sub-modules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The result of decomposition is a fault tree which has four 

layers. Each represents a new hierarchical decomposition of the 

system function, except the first layer which is the top event. The 

events at this layer are also the possible causes of an upper layer 

system or sub-system or functional module or sub-module fault. 

Each functional sub-module at the lowest layer, i.e. bottom event, 

corresponds to a physical structure of the system, which is 

associated with a principle knowledge base. That is to say, if a 

faulty sub-module is found, the corresponding principle 

knowledge base is obtained, which can be used for further 

diagnosis. Thus, the knowledge about the hierarchical 

decomposition of the system function can be used to guide the 

selection of principle knowledge. According to the above 

definition, this kind of knowledge is taken as meta-knowledge. 

 

2.2.3 Fault decomposition based on the system working 

principles and expert experience 

The decomposition of a fault divides a functional sub-module 

of the manufacturing system into several layers according to the 

system working principles, expert experience and physical 

structure. The fault propagation process can be represented using 

the causality between modules at the higher layers and the faults 

at the lower layers of the module. This is a convenient method for 

the analysis of fault propagation from the lowest principle faults 

to the functional sub-module faults. 

In general, the correct operational behaviour of a 

manufacturing system may be characterized by a series of state 

transitions of the system, used during the manufacture of a 

product [14]. These state transitions occur because of the proper 

functioning of causal agents responsible for the transitions. The 

state transitions are monitored through multiple sensors in a 

manufacturing system. The monitored information is finally sent 

to the system control mechanisms such as a PLC. The 

information includes various state signals that indicate the system 

operating state, I/O signals and position signals in the PLC. The 

operation of a manufacturing system is performed through 

transiting signal status according to the logical relationships 

among signals to drive the corresponding physical mechanisms. 

If a state transition is not completed or is in error, the functional 

sub-module is considered to be faulty. At this time, a rough 

physical position where there is a fault can be located using the 

state signals in the PLC and the logical relationships among these 

signals. The detailed algorithms for PLC based fault detection 

will be presented in the next section. This knowledge of system 

workings is called principle knowledge. A fault tree built like this 

is also called a principle fault tree. In the tree the top event 

represents a functional sub-module fault. Each middle event 

represents a fault of a physical component of the functional sub-
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Fig. 3. The modular hierarchy of diagnostic knowledge. 



module. Bottom events represent the lowest physical faults that 

may be located according to the system working principle. 

After a fault is located to a specific position using meta-

knowledge and the above mentioned principle knowledge, 

sometimes it is still not the final fault position. Because of the 

limit and incompleteness of information in the PLC, further 

diagnosis can only be carried out by expert experience, using 

expert experience to analyze the current fault layer by layer till 

the final fault cause is found. This kind of knowledge is called 

experiential knowledge which is normally represented in the form 

of a rule. A rule-based fault tree is also called a rule tree. The 

final diagnostic decision is always obtained in the rule(s) at the 

lowest layer or from the bottom events of a rule tree. 

 

2.3 Diagnostic reasoning procedure 

 

The diagnostic reasoning procedure derived from the 

hierarchical model is shown in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the procedure, diagnostic reasoning based on the functional 

fault tree and principle fault tree is performed using the strategy 

of a breadth-first search combined with the fault probability of 

each node in the fault trees. Whether a node is faulty or not is 

determined by various signals in the PLC and the logical 

relationships among these signals. Reasoning based on 

experiential knowledge or rule trees is more complicated. For 

rules associated with machining process, reasoning is performed 

with the help of process monitoring results, while for other rules, 

reasoning is performed as a sequential hypothesis-test cycle. In 

the hypothesis-test cycle, a cost-weighted entropy criterion is 

used to choose the next part of the rule tree to be activated. This 

entropy criterion helps to select the rule that gives the maximum 

fault discernment per unit cost in cases where multiple tests might 

be performed. 

Supposing Rkj is a node at the k-th layer of the rule tree and 

Rk+1,1, Rk+1,2,, , Rk+1,m are nodes at the (k+1)-th layer, the cost-

weighted entropy of node Rkj can be calculated by the following 

equation: 




m

j
jjj PPwH

1

ln       m  2     (1) 

where 

1wj  0, 1
1




m

j
jP       (2) 

The weighting factor, w, is a normalized cost, determined by 

the ratio between the actual cost of a test operation and the 

maximum of the set of test costs for all components at the current 

rule layer. Pj is the probability with that Rk+1,j is the cause of Rki, 

under the condition that the test result of node Rki is known. Cost-

weighted entropy is used to select and activate a part of an 

experiential knowledge base or a rule tree. It selects the test that 

will give the most discernment at the lowest cost. That is to say, 

the entropy of the next rule to be tested must be the minimum. 

 

2.4 Object-oriented implementation 

 

The object-oriented programming method is well suited to the 

implementation of hierarchical diagnostic reasoning. Firstly, the 

hierarchy of diagnostic reasoning networks based on meta-

knowledge and principle knowledge is very similar to the 

inheritance of classes in the object-oriented method. Secondly, 

fault probabilities and the relative cost of the test can be easily 

stored as slot values in the units representing the relative 

components. A slot in object oriented programming is used to 

represent a property. The modular structure of software like this 

is highly flexible and therefore is suitable for other diagnostic 

tasks. 

A knowledge object can be represented in the Backus Naur 

Form (BNF), which is a standard format adopted in object 

oriented programming, as: 

 

<Frame>=Unit: <Frame name> in <Knowledge base name> 

{Superclasses: <Superclass name> 

                       {, <Superclass name>};} 

{Subclasses: <Subclass name> 

                    {, <Subclass name>};} 

{Member of:  <Class name> 

    {, <Class name>},} 

<Slot>::= Member slot | Own slot: <Slot name> from 

  <Frame name> 

Inheritance: <Inheritance attribute> 

ValueClass: <Slot value class> 

{Self-defined side: <Side value>} 

Values: <Slot value> 

<Frame name>::=<Character> {<Character> | <Number>} 

<Slot name>::=<Character> {<Character> | <Number>} 

<Inheritance attribute>:=override | union | METHOD 

<Slot value class>::=integer | real | string | struct | rules | 

METHOD | <Frame name> 

<Self-defined side>::=<Character> {<Character> |  

 <Number>} 

<Side value>::=<value> | <string> 

<Slot value>::=<value> | <string> 

<Character>::=A |  | Z | a |  | z 

<string>::=<Character> {<Character> | <Number>} 

<Number>::=0 |  | 9 

 

The ellipsis {} indicates that the contents may appear 0 to 

multiple times. 

 

2.5 Example 

 

The hierarchical diagnostic reasoning model has been 

implemented on a FFS-1500-2 FMS. The FMS consists of a 

PFZ1500 Flexible Manufacturing Cell (FMC), a KBNG85 

Machining Center (MC) and an Automatically Guided Vehicle 

(AGV). The PFZ1500 FMC is made up of functional modules 

which include tool change, tool-head change, axis drive and 
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Fig. 4. Integrated diagnostic reasoning process. 

Fault symptom 



hydraulic drive. The axis drive can be further divided into spindle 

drive, X-axis drive, Y-axis drive, and Z-axis drive. This kind of 

decomposition is based on a FTA. 

This example describes a failure of the PFZ1500 FMC 

because of some unexpected fault(s). The diagnostic search by 

the integrated hierarchical diagnostic model was conducted as 

shown in Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Depending on signals in the PLC and condition monitoring 

results, a first search through functional knowledge base 

(functional fault tree) leads to F33 (machining process), which is 

a terminal functional knowledge node. Principle knowledge base 

P11 (that corresponding to F33) is activated at this point and 

another search through the principle knowledge base (principle 

fault tree) leads to P32 (spindle motor), which is a terminal 

principle knowledge node. 

Then experiential knowledge base (rule tree) R111 is  

activated and the cost-weighted entropy is computed for R211 

and R212 groups, the results of which are in Table 1. In this 

situation, the node or rule 313 which has a minimum entropy is 

tested first and maintenance personnel are instructed to check the 

corresponding part of the system. If it is faulty, then diagnosis 

terminates, otherwise other observed symptoms will be checked 

before backtracking within the functional and principle 

knowledge bases. 

 

Table 1 

The computed results of entropy of nodes 

R211 group R212 group 

Nodes (R) Entropy (H) Nodes (R) Entropy (H) 

211 0.201 212 0.913 

311 0.135 321 0.000 

312 0.358 322 0.222 

313 0.000 323 0.000 

421 0.000 451 0.000 

422 0.000 452 0.000 

423 0.000   

 

Ultimately it was shown by test that the cooling system was 

faulty. The cooling oil pipeline was blocked so that the system 

could not provide a high enough pressure, which made the motor 

drive abnormal and the whole system failed to work. The fault 

was located and then the corresponding maintenance plan was 

suggested. After clearing the pipeline the system was restarted. 

 

 

3. Diagnosis Models Based on PLC Control 

 

The development of diagnosis models based on PLC control 

addresses operational fault diagnosis of manufacturing systems 

which are controlled by PLC’s. They provide effective methods 

for maintenance personnel at workshop level to identify, classify, 

and correct operational faults occurring in production. The 

models make full use of the powerful I/O capacity of the PLC and 

various available control signals in the PLC. 

 

3.1. Logic diagnosis model 

 

When diagnosing a PLC controlled manufacturing system, 

maintenance personnel often focus on the LFC of the units that 

compose the system, and trace the faulty output along it. This 

method of diagnosis is based upon the concept of the 

manufacturing system as a transformer of power, information and 

material: the effect of a faulty unit is propagated with the LFC. 

Therefore the LFC-based diagnosis model which we call a logical 

diagnosis model will be effective for locating manufacturing 

system faults. 

 

3.1.1 Construction of the logical diagnosis model 

In this model, all variables associated with the LFC are 

described in a binary form. These binary variables include all the 

signals in the PLC. The model is constructed from these variables 

in accordance with LFC. The detailed algorithm for the model is 

as follows. 
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Fig. 5. An example diagnostic reasoning procedure. 
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We assume that S(x) is the state function of an operating state 

signal of the machine, S(x)=1 means that the operation associated 

with S(x) is on, while S(x)=0 means that the operation associated 

with S(x) is off. {sk} denotes the combination of several PLC 

signals connected by a logical “AND” which is written as “” in 

model expressions, and ({sk}) is the state of {sk}. 

{sk}=s1s2sk.  

In practice, the logical expression of S(x) is given by a signal 

decomposition according to the LFC. Therefore, if we define 

ji({ski}) as the i-th term of S(x) at the j-th level, then the result of 

the decomposition of S(x) at the j-th level is 


i

kijikjkjkiij ssss })({})({})({})({ 2211)1(     (3) 

where ji({ski}) is a factor that makes (j-1)i({ski})=1. It may be a 

PLC signal or the combination of several signals connected by 

logical “AND”. Except for the terms expressed by input signals 

or flag signals that cannot or need not be decomposed, other 

terms usually can be decomposed further according to the LFC in 

the PLC program.  

The decomposition can proceed level by level in the same 

form till all the terms are expressed by input signals or non-

decomposable flag signals. Then substituting the decomposition 

expression at every level into that at its higher level, we have 

)(})({    })({})({ 1)1( xSsss kiikiinkini        (4) 

In the end we get the non-decomposable and minimized logical 

expression of S(x), i.e. 


i

kiikiki sssxS })({})({})({)( 21      (5) 

where i({ski}) is also a factor that makes S(x)=1 and is composed 

of input signals or non-decomposable flag signals, ({ski}). 

Now, let F(x) be the fault state function of the machine. 

F(x)=1 means that a fault has occurred, while F(x)=0 means that 

there is no fault at all. If F(x) equals S(x), all the fault terms that 

make S(x)=1 can be determined, which are expressed as f1({sk1}), 

f2({sk2}), , respectively. That is 


i

kikk sfsfsfxSxF })({})({})({)()( 2211    (6) 

If F(x) equals the inverse state of S(x), the first step will be to 

extract the expression of the inverse S(x). Each term of the 

expression is a combined pattern of causes of the manufacturing 

system fault, i.e. 


i

kiikk
i

kii sfsfsfsxS })({})({})({})({)( 2211   (7) 

Thus, the logical expression at the faulty state of the 

manufacturing system is obtained as 


i

kii sfxsxF })({)()(      (8) 

 

3.1.2 Diagnostic procedure by logical model 

In the logical expression at a fault state of the manufacturing 

system, each term of the expression represents a possible 

combined signal pattern of fault causes. The next step is to 

analyze all the possible combined patterns, until an input signal 

that causes the fault or a non-decomposable flag signal is found. 

The detailed diagnostic procedure is as follows: 

 Compare the faulty state of S(x) with the current state of 

signals in PLC: if they are the same, then it is concluded 

that a fault has occurred. 

 Establish a logical equation about the faulty state, i.e 

1})({)( 
i

kii sfxF      (9) 

 Substitute the actual state values of signals in PLC into 

the above equation and calculate if any term fi({ski})=1. 

 Acquire the combined pattern corresponding to the term 

fi({ski})=1. The pattern shows the exact cause of the 

fault. 

Using this diagnosis model, we must make sure that, at a fault 

state, the combined patterns in the logical expression cover all the 

possible fault causes, and are independent to each other. 

 

3.2 Sequential diagnosis model 

 

Many processes in a manufacturing system, such as tool 

exchange, are controlled sequentially. The sequential control is 

performed by a series of sequential commands. These commands 

lead to a dynamic change of the machine operating state. For the 

diagnosis of sequential control faults, a SCP-based diagnosis 

model which we call a sequential diagnosis model, is introduced. 

 

3.2.1 Construction of sequential diagnosis model 

The SCP-based sequential diagnosis model consists of a 

number of machine states and state changes in time sequence. It 

describes the sequential changes of the machine operating states. 

The action in a certain step is not only related to the control 

commands in this step, but also related to the step conditions in 

the previous step. The current step can only be started under the 

condition that the previous step has finished and the current 

control commands have been received. Whether a step is finished 

or not is decided according to its step conditions. So, the 

sequential diagnosis model can be constructed as follows. 

We assume that C(t) is the combined state of all the step 

conditions in the t-th step. Since each condition is normally a 

PLC signal, marked by c1(t), c2(t), , thus 


j

j tctctctC )()()()( 21                (10) 

where “C(t)=1” indicates the step conditions are satisfied and the 

next step can be started, and “C(t)=0” indicates the conditions are 

not satisfied and the action sequence cannot be carried out. 

Similarly, the step conditions of the previous step is expressed by 

 
j

j tctctctC )1()1()1()1( 21              (11) 

Now we can let I(t) be the combined state of all the control 

commands in the t-th step. Notice that every control command is 

also a PLC signal, marked by i1(t), i2(t), , thus 


j

j titititI )()()()( 21                (12) 

where “I(t)=1” indicates the commands are received while 

“I(t)=0” indicates not received. 

As mentioned above, if we let F(t) be the faulty state of the 

step, “F(t)=1” indicates that the step is faulty. In the case where a 

fault exists, it is possible that 

)()1()( tItCtF                 (13) 

When F(t)=1, C(t-1)=1 and I(t)=0, which means the previous step 

has finished and current step started, but the control commands 

have not been received. From 

1)()()()()( 21 
j

j
j

j tititititI              (14) 

the exact command that is not received can be found. It is also 

possible that 



)()()( tCtItF                 (15) 

When F(t)=1, I(t)=1 and C(t)=0, which means the current control 

commands have been received, but the action has not finished. 

Similar to the first case, from 

1)()()()()( 21 
j

j
j

j tctctctctC              (16) 

the exact condition that is not satisfied can be found. 

 

3.2.2 Diagnostic procedure by sequential model 

Under normal operating conditions, the PLC controls the 

manufacturing system according to the sequence of actions. At 

the same time, each step in the control sequence is monitored by 

the watch-dog-timer in the PLC. If the machine is in its normal 

condition, it will operate sequentially according to the preset 

control sequence. Therefore, if the machine control status is 

delayed too long at a certain action, it suggests the occurrence of 

a fault. 

Upon the detection of a sequential control fault, diagnosis is 

carried out using the sequential diagnosis model. At first the 

current values of all the signals in PLC will be read. Then the 

start conditions of every step are analyzed according to these 

values. By doing so, the step where a fault has occurred can be 

determined. In the end, each control command and condition of 

the faulty step are checked, till the exact fault is located. This is 

the diagnostic procedure by the sequential diagnosis model. 

 

3.3 Examples 

 

The propagation of the effects of faults through a 

manufacturing system and its components is well described by 

the logical diagnosis model. The diagnostic algorithm models the 

human way of thinking in the diagnostic process. This is a static 

model and cannot represent the dynamic change of the machine 

operating state. However, the sequential diagnosis model can 

describe such a series of state changes, and can be used to 

identify the step in the operating sequence where the fault occurs 

and the precise fault cause. 

The logical diagnosis model and the sequential diagnosis 

model are not alternative models, but are complementary to each 

other. First a faulty step in the control sequence is identified using 

the sequential diagnosis model. Commands issued in each control 

step activate certain units of the manufacturing system, so further 

diagnostic procedures can be performed using the logical 

diagnosis model, which corresponds to the activated part. 

 

(1) Example for logical diagnosis model 

The FFS-1500-2 FMS uses a SIEMENS U Series PLC. The 

SIEMENS U Series PLC has signals such as inputs (E), outputs 

(A), flags (M), times (T), counters (C), and data (D). Each item in 

the logical expressions above is a single signal or the combination 

of several signals via a logical “AND”. 

Here let us take the start conditions of the Numerical Control 

(NC) system in FFS-1500-2 FMS as an example. In the PLC 

program, we know that M132.4 is the flag signal indicating the 

start condition of the NC system. If we define Xm.n  as the 

inverse state of Xm.n, according to the logical diagnosis model 

and the relevant LFC’s in the PLC program, M132.4 can be 

decomposed as follows. 

E7.5E7.3E7.1M129.3                 

M23..2 M22.2M21.2N1M132.3M132.0M134.2




 

E20.6M144.1E23.1E19.0A18.4A9.6M132.0   

N2E30.5N1   

E30.2M133.2N2   

where N1 and N2 are two middle flags, “+” denotes logical 

“OR”. After being simplified, 

E7.5E7.3E7.1M129.3M23.2M22.2                             

 M21.2E30.2)M133.2E30.5(M132.3                             

E20.6M144.1E23.1E19.0A18.4A9.6M132.4)(





xS

 

The first possible fault is that the NC start conditions are not 

satisfied, in which case the state function S(x) = M132.4 = 0. 

From the above expression, the logical expression at a faulty 

state, i.e. F(x), can be obtained as 

E7.5E7.3E7.1 M129.3M23.2M22.2            

M21.2E32.2 E30.5M133.2E30.5M132.3            

E20.6M144.1E23.1E19.0A18.4A9.6)(





xF

 

The components related to the terms that make F(x) = 1, are the 

potential fault locations. 

 

(2) Example for sequential diagnosis model 

The SIEMENS U Series PLC uses the programming language 

STEP 5. A PLC program coded with STEP 5 is divided into the 

following blocks: 

 Organisation Block (OB) 

 Program Block (PB) 

 Step Block (SB) 

 Function Block (FB) 

 Data Block (DB) 

The sequential control is carried out in the SB. Each SB 

contains a machine operation command. Several SB’s form a 

control sequence by linking together in a specified order. Here we 

take the operation of the tool-head exchange in the FFS-100-2 

FMS as an example to explain the sequential diagnosis model. 

The tool-head can be attached to the spindle so as to change the 

feed direction of tools. The tool-head is exchanged frequently, 

and various faults may occur in the process. 

The tool-head exchange sequence programmed in the SB is 

described in Table 2, which includes a series of actions, from 

removing the old tool head to fitting a new one. 

 

Table 2 

Operation sequence of tool-head exchange 

Step SB Action description 

1 SB117 Tool-head magazine moves to the position 

of the old tool-head 

2 SB118 Z-axis returns to the reference 

3 SB119 Y-axis moves to the position to exchange 

tool-head 

4 SB121 Z-axis moves to the position to exchange 

tool-head 

5 SB122 Adapter loosens and the old tool-head is put 

into tool-head magazine 

6 SB123 Z-axis returns to the reference 

7 SB124 Tool-head magazine moves to the position 

of new tool-head  

8 SB125 Z-axis descends to the position to pick the 

new tool-head 



Table 2 

Operation sequence of tool-head exchange 

9 SB126 Adapter clamps the new tool-head 

10 SB131 Z-axis returns to the reference 

11 SB132 Y-axis returns to the machining position 

12 SB133 Tool-head magazine returns to the reference 

 

Now let us consider the first two steps, SB117 and SB118, 

and assume SB118 is the current step. The start condition of 

SB118 is that SB117 is finished. 

From SB117 in the relevant sequential control program of 

PLC, we know that the start conditions of the current action 

(SB118) are: 

1M165.0M160.1M143.1M143.0)1( tC  

This identifies that: 

 the internal cooling oil is stopped (M143.0=1); 

 the spindle blower is turned off (M143.1=1); 

 step running is enabled (M160.1=1); 

 automatic operation of tool-head magazine is enabled 

(M165.0=1). 

From the SB118 program we know that the control command 

of this step is: 

M227.4)( tI  

The start conditions of the next step (SB119) are: 

1E38.2E18.5           

E18.4 M134.5M165.2M158.4M159.0)(



tC
 

This identifies that: 

 the middle variables are cleared (M159.0=1); 

 Z-axis is at its reference position (M158.4=0); 

 the tool-head magazine has moved to its right position 

(MM165.2=1); 

 the spindle has been oriented (M134.5=1); 

 the protection door for tool exchange manipulator is 

open (E18.4=1 and E18.5=0); 

 the C-axis has returned to its reference position 

(E38.2=0). 

These conditions are also used to determine whether SB118 is 

finished. 

If C(t-1)=1 and I(t)=0, then the control command of step 2 is 

received. When I(t)=1 and C(t)=0, the current step is not finished. 

From the expression below we know that the components 

associated with the terms that make C(t)=1, are the potential fault 

locations: 

1E38.2E18.5           

E18.4 M134.5M165.2M158.4M159.0)(



tC
 

 

 

4. Conclusions 

 

Manufacturing systems present an important domain for 

diagnostics applications. The development of advanced 

diagnostic techniques and systems can help to minimize 

downtime and maintain an efficient output. This is a need 

common to all manufacturing enterprises. The diagnosis models 

in this paper are developed to meet this need. 

There are diagnostic functions available in modern controlled 

manufacturing systems. However, these diagnostic functions are 

still limited and need further development. The prospects are 

greater where larger investments are concerned, as the cost of a 

fault is higher. 

The combination of the LFC– and the SCP–based diagnostic 

models offers significant advantages in accuracy and speed of 

identification and classification of faults in complex systems. 

Cost effective industrial applications have been shown on flexible 

manufacturing systems. 

Good results have been achieved from this work. Future work 

will address the following areas: 

 refine the reasoning algorithms, so as to improve their 

efficiency in diagnosis; 

 investigate models that incorporate PLC control on 

continuous processes of the manufacturing systems, 

implementing a systematic integrated methodology for 

prediction, monitoring and diagnosis; 

 define an embedded diagnosis system approach which 

will integrate the diagnostic models in the PLC’s, so that 

faults can be diagnosed in real time. 
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