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Abstract 
The main function of a continuous media server is to 

concurrently stream data from storage to multiple clients 
over a network. The resulting streams will congest the 
host CPU bus, reducing access to the system S main 
memory, which degrades CPUperformance. The purpose 
of this paper is to investigate ways of improving I/O 
subsystems of continuous media sewers. Several 
improved I/O subsystem architectures are presented and 
their performances evaluated. The proposed architectures 
use an existing device, namely the Intel i960RPCC 
processor: The objective of using an I/O processor is to 
move the stream and its control from the host processor 
and the main memory. The ultimate aim is to identijj the 
requirements for an integrated I/O subsystem for a high 
performance scalable media-on-demand server 

1. Introduction 

Continuous media, such as audio and video, have 
different characteristics compared to conventional data. 
They are typically data intensive, even when compressed, 
and time dependent. These characteristics place a number 
of requirements on the servers’ [ l  & 21, the 
communication, and even on the end-system 
configuration. At the server level, these isochronous 
media impose many constraints mainly on the 
architecture, the storage [3], and the operating system. 
They require real-time handling especially at the I/O 
subsystem. 

The design of a media-on-demand (audio or video on 
demand) server must take into account a number of 
issues. The following sections describe some of the 
design factors. 

a) Server access style 
Two access technologies influence multimedia 

server design, client ’pull’ and server ’push’ [4]. Client 
pull technology is similar to that used for file servers 
for handling text and other aperiodic data types, 
whereby the client explicitly requests data from the 

server. In this case, the design of the client application 
requires greater complexity than the design of the 
server. Server push is the traditional choice for 
continuous media server designs as it is more suited to 
the provision of, and interaction with, concurrent 
streams. To initiate a media stream the client transmits 
a request to the server, whereupon the server delivers, 
and manages, the selected data stream to the client. 
These types of server require a more complex design, 
as it must store the state of each media stream. 

b) Transfer rate 
The transfer rate should be sufficiently high to 

support multiple simultaneous clients. The transfer 
rate is dependent not just upon hardware, but also 
upon the operating system and the application 
software. 

c) QoS 
The server should provide streams to the client 

with a guaranteed Quality of Service (QoS),  by 
implementing disk scheduling, and admission control 
algorithms. Real-time disk scheduling routines ensure 
continuity of the media stream by determining the 
most efficient method for retrieving rounds of data 
from the hard disk. This is more easily implemented 
with ‘Constant Bit Rate’ (CBR) coded streams rather 
than with ‘Variable Bit Rate’ (VBR) coded streams. 
Similarly, read only files enhance disk-scheduling 
performance due to contiguous data placement on 
disk. 

Admission control algorithms guarantee end-to- 
end performance by preventing stream overload. 
Admission control does not only guarantee QoS, but 
other features may also be necessary. For example, the 
media contents of a video-on-demand server are a 
marketable commodity, therefore security measures 
will be necessary to validate the user before access 
permission is granted, and accounting services will be 
required to charge the users. 

d) Scalability 
A scalable architecture allows an increase in the 
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number of client streams for a proportional increase 
in the cost. 

e) Interactivity 
With multiple media files on a server, the user must 

be able to browse or search the server content, before 
making a selwtion. In addition to file management, 
the server should store metadata that characterises 
each file’s content. 
To provide tnie ‘media-on-demand’ features, the user 
must be able: to interact with the data stream to 
perform features such as PLAY, STOP, FAST 
FORWARD, IIEW, PAUSE, etc. 

The purpose of this paper is to investigate the I/O 
subsystems of continuous media servers. Improved I/O 
subsystem architectures based on current technologies are 
suggested. The ultimate aim is to identify the 
requirements for ;in integrated I/O subsystem for a high 
performance scalable media-on-demand server. 

2. Investigation 

The server design under initial investigation is the 
traditional single CPU system that utilises ‘push’ 
technology (Figure I ) .  To simplify matters, we consider 
only non-editable CBR coded media streams. The system 
described utilises a single PCI bus for its I/O devices, 
which for this case study are SCSI for storage, and ATM 
for the network interface. The software drivers for the I/O 
devices utilise a double buffering scheme in the system’s 
main memory, which enable the smooth transfer of media 
data from the SCSI adaptor to the network interface card. 

I I 
Memory 

PCI 
Bridge v 

Figure 1 : Architecture target for improvement 

Although client stream interaction will occur, it will be 
random and infrequent, and can therefore be considered 
negligible from the viewpoint of I/O subsystem design. 
The most frequent state for a stream will be in playback 
mode, whereby multimedia data is streamed to the client 
without any user interaction. During playback, the 
majority of the CPU’s local bus traffic will be due to 
media data streaming from the storage device, via the dual 

buffering scheme in primary memory, to the network 
device. This duplication of traffic on the CPU local bus is 
greater than twice the actual data being transferred. This 
creates a bottleneck when accessing primary memory, 
which degrades CPU performance. Consequently, this 
bottleneck makes the scalability of the single CPU design 
very poor. 

Using semi-autonomous 110 devices, CPU stream 
control can be reduced substantially. Instead of the CPU 
supervising the transfer of every item of data, it simply 
initiates the I/O device to transfer a block of data. On 
completion, the I/O device informs the CPU by the use of 
interrupts. For one stream these interrupts can amount to 
hundreds per second, each requiring a CPU response that 
switches context, and executes an interrupt routine. With 
lo2 to lo3 media streams, this can amount to a sizeable 
proportion of the CPU’s processing time. 

3. I/O subsystem improvement 

To maximise CPU utilisation, the stream and its 
control must be migrated from the processor. To achieve 
this, we looked at utilising current technology, in 
particular, Intel’s i960RPB intelligent I/O processor, 
modelled in several variations. The next section contains 
an overview of the i960RP8 device. 

3.1 i960RP8 

The i960RP8 is a high performance embedded 
processor that has been designed for use as an intelligent 
I/O processor [ 5 ] .  The device’s main features are (Figure 
2): 

1 i960JFa core processor; 
1 PCI to PCI Bridge unit; 
1 Primary and secondary PCI Address Translation 

Units (ATU); 
1 Messaging Unit (MU); 
1 Primary and secondary PCI DMA units; 
1 Memory Controller; 
1 Bus arbitration units. 

Secondary PCI 

Figure 2: Simplified block diagram of the i960RP@ 

The core processor is a 32-bit superscalar RISC design 
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that operates at 33Mhz, and utilises interleaved 32-bit 
memory via the 80960 local bus. This bus is a 32-bit wide 
local bus with multiplexed address and data lines. The 
i960RP@ connects to a host processor via its primary PCI 
bus and appears as a multi-function PCI device. 

The ATU's are the interfaces between the PCI buses 
and the 80960 local bus. The i960RPQ contains two 
ATU's, one for the primary and the other for the 
secondary PCI buses. The ATU's can burst transfer up to 
2kB, and allow inbound and outbound address 
translations. They can handle multiple inbound 
transactions by simultaneously processing PCI read and 
write transactions. Address translation is achieved using 
an address windowing scheme that determines which 
addresses to claim and translate. 

The PCI-to-PCI bridge operates as an address filter 
between the two PCI buses, in addition to extending the 
number of loads that a PCI bus may have. The bridge is 
programmed with a range of addresses that determine the 
secondary address space. All PCI read transactions 
traversing a PCI-to-PCI bridge are processed as delayed 
transactions. 

3.2 Single U 0  processor 

Removing the bottleneck caused by media streaming to 
main memory would enhance the performance of the 
system under investigation. A first step in the design 
improvement consists of migrating the dual buffering 
scheme from the main memory to the i960RP8 local 
memory, thereby increasing the host CPU's processing 
efficiency. In such a case, the i9600 core processor is 
idling. 

However, host CPU efficiency can be further improved 
by migrating stream control, and in particular, 110 device 
interrupt processing to the i960RP8. To investigate this 
further, the PCI bus and i960RP8 PCI-to-PCI bridge 
handling of interrupts are first presented. 

The vehicles for interrupt passing between the system 
devices are the PCI buses INTx# lines. With the i960RP8 
connected to the primary PCI bus, the PCI bus interrupt 
lines are as shown in Figure 3. 

Host-PCI I ' 
Figure 3: PCI interrupt lines 

The PCI-to-PCI bridge may individually route the 
secondary PCI bus interrupt lines onto the primary bus 
interrupt lines, or to the i960RPQ core processor 

depending upon the contents of the associated memory 
mapped register. The interrupt lines always travel 
upstream. The ATM and SCSI devices use the interrupt 
lines to signal to their drivers that they have finished their 
current task. Therefore a software driver must be 
executing on a processor upstream of the corresponding 
I/O device, in order to avoid complicated and time- 
consuming interrupt routing schemes. Providing 
maximum system performance requires rapid interrupt 
processing, which restricts possible designs to the 
following. 

a) The ATM and SCSI devices are on the secondary PCI 
bus. The device drivers for both PCI devices reside 
on the i960RP8; 
The ATM device is installed on the primary PCI bus, 
with its driver on the host processor. The SCSI 
adaptor is installed on the secondary PCI bus with its 
driver on the i960RP8; 
The SCSI device is installed on the primary PCI bus, 
with its driver on the host processor. The ATM 
adaptor is installed on the secondary PCI bus with its 
driver on the i960RPB: 

d) Any of the above device interconnections, but with 
the device drivers staying on the host processor, and 
the i960RP8 acting as a PCI Memory controller1PCl- 
PCI bridge. 

b) 

c) 

The first connection scheme can be ignored as we wish 
to balance the sub-streams between the two PCI buses. 
Similarly, the objective is to remove the I / 0  drivers from 
the host processor, so the fourth scheme is not relevant. 
The second and third designs are compromises, therefore, 
the second design has been evaluated (Figure 4). 

PCI Bus 

- - -  - - - - I  R'DG FGLf  4.. . . . .. .. , . . . . . . . . . . . . . . . . . . . . . . . . 
SCSI sub-strea4 I pcI Bus 

Figure 4: Proposed I 1 0  subsystem using a 

single i960RP8 

Performance figures were calculated based on data 
streaming over the system buses. These figures 
incorporate the effects of interrupt latencies but do not 
include the effects of the operating system on 
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performance. We have assumed that all PCI transfers will 
not be broken in1 o multiple transactions. This assumption 
will not hold for high streaming scenarios, as the ATU 
queues are of insufficient size for media transfer, 
especially the SCSI traffic. 

Table 1 shows these performance figures. It illustrates 
the scale of traffic over the system buses and their 
percentage utilisation. 

Table 1 : Bus Utilisation 

Streams Bus(' 
0.05 

50 2.3 
60 2.8 
15 3.5 
90 4.1 

The chart in Figure 5 shows the comparative 
performances of the system using a single I/O processor 
with the original target architecture, based on worst-case 
bus traffic. From this comparison it must be noted that the 
streaming affects the software running on the original 
target architecture, whereas the streaming on the 
i960RP8 only aflects the SCSI software drivers. 

E-D~~I  Processor +Single Processor 1 
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Figure 5 :  Performances with a single I/O processor 

With the proposed design (using a single I/O 
processor), the host CPU has recovered its access to main 
memory, previously lost to the stream, enabling it to 
manage more strcams. However, each stream on the PCI 
bus has become less efficient, due to the i960RP8 ATU 
delayed PCI transactions. 

A new bottlen'xk has appeared on the i960WC3 local 
bus. For ninety streams, the 80960 local bus would be 
over-loaded when streaming data to and from i96ORPB 

memory, whereas the PCI buses are under-utilised. This is 
due to the two 32-bit, 33MHz PCI buses trying to access a 
single 32-bit, 33MHz local bus. 

This clearly shows that the proposed architecture 
would not be a large improvement over the target system. 
This analysis does not contain any inter-processor 
communication, which would be necessary for 
communication between the operating system and the 
SCSI driver. This additional overhead would further 
reduce the performance of the proposed architecture. 

The scalability of this architecture can be achieved by 
introducing a PCI-to-PCI bridge to isolate the I/O 
subsystem. This obviously incurs an added cost, but 
allows multiple i960RP8 devices to be attached to the 
system for added stream capability. 

3.3 Dual I/O processor 

The single i960RP8 device used in the previous 
design, removed the stream from the main memory, but 
created another bottleneck at its own memory. The 
i960RP8 could not run both I/O software drivers due to 
the interrupt problem stated earlier, therefore the ATM 
driver was operated from the host. One solution to this 
1/0 driver problem could be to utilise two I/O processors, 
one for each of the I/O devices. The drivers could reside 
in their respective i96ORP@'s, whilst the memory space 
of one I/O processor could contain the dual buffering 
scheme. Whilst this would remove the drivers and their 
interrupts from the host CPU, their would still be the 
i960RP8 memory bottleneck. 

An improvement to this design would be an alternating 
dual buffering scheme, whereby the buffers would be 
equally split between the memory spaces of the two I/O 
processors. Operation for a single stream would be as 
shown in figure 6 and Figure 7. 

mas 
.... .................. ,..._.__........... 1 ...., 

figure 6: Proposed I/O subsystem with two i960RP8 
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Figure 7; Altemate substreams 

altemate 

streaming 
Mean 

Table 1 shows the bus utilisation in cycles per second 
per stream, for all of the components in the dual i960RP8 
I/O sub-system. 

232699 203954 186535 187350 153498 

Table 2: Bus utilisation for a single stream 
(cyclesiseclstream) 

to local 

I I I I I I I 

With multiple concurrent streams, the mean value will 
be the important figure, and as can be seen from Table 2 
the sub-streams have been more closely balanced around 
the system buses. The alternating buffer scheme has 
removed the I/O processor memory bottleneck, with the 
most activity being on the secondary PCI bus to which the 
SCSI adaptor is attached. Plotting this data onto a graph 
(Figure 8) illustrates the comparative performance 
between the dual i960RP8 design and the initial target 
architecture. 
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Figure 8: Comparative performances 

It can be clearly seen that this design has reduced 
maximum bus utilisation by 33%, but at the expense of 
increased complexity, and cost. Again scalability will 
only be achieved at the cost of an additional PCI-to-PCI 
bridge. 

4. Conclusion 

This paper has focused on the design of an I/O 
subsystem for a continuous media server. Several 
improved architectures have been proposed and their 
performances evaluated. All the proposed architectures 
were designed using an existing device, namely the Intel 
i960RP8 processor. 

The utilisation of the single i960RP8 I/O processor 
solved the main memory bottleneck problem, but created 
a new bottleneck in i960RP8 memory. This has 
highlighted the requirement for a streaming memory 
bandwidth twice that of the PCI bus. 

The twin i960RP8 proposed U0 subsystem utilising 
an alternating dual buffer arrangement, removed this 
bottleneck but at the expense of scalability, complexity, 
and cost. 

This investigation clearly shows the need for an 
integrated U0 processor, optimised for continuous media. 
Such a processor would incorporate the following 
characteristics. 

a) Two separate subordinate PCI buses for the 110 
devices to isolate the sub-streams; 

b) Memory bandwidth twice that of a single PCI bus; 
c) Larger PCI-memory buffer queues, optimised for the 

transmission of media data; 
d) Low interrupt latency to reduce the time taken to 

process streams; 
e) High scalability so that multiple devices can be 

attached to the primary PCI bus to increase the 
number of streams. 

Figure 9 shows the system's architecture using such a 
hypothetical I/O processor. On-going research are 
investigating the feasibility and characteristics of this 
architecture. 

5 18 



Media 110 
Processor 

ATM 

Network 

Media 110 1 
Processor 1 Processor 

Figure 9 - Scalatde Server Architecture utilising Media 
I/O processors 
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