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Abstract: This paper presents a mechanism for analysing the deformable shape of an
object as it moves across the visual field. An object’s outline is detected using active
contour models, and is then re-represented as shape, location and rotation invariant axis
crossover vectors. These vectors are used as input for a feedforward backpropagation neural
network, which provides a confidence value determining how ‘human’ the network
considers the given shape to be. The network was trained using simulated human shapes
as well as simulated non-human shapes, including dogs, horses and inanimate objects.
The network was then tested on unseen objects of these classes, as well as on an unseen
object class. Analysis of the network’s confidence values for a given animated object
identifies small, individual variations between different objects of the same class, and
large variations between object classes. Confidence values for a given object are periodic
and parallel the paces being taken by the object.
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1 Introduction

This paper outlines a mechanism for identifying and classifying the shape deformation and motion
pattern of walking humans and other animate objects. The method combines active contour models
(‘snakes’) [Kass, Witkin & Terzopoulos 1988], with a categorisation neural network [Tabb et al. 1999a
and 1999b]. A snake is used to detect the outline of an object in an image, having been manually
initialised around the object by the user. Once the object’s outline has been detected, the resultant
contour is re-represented in a scale, location and rotation invariant vector. These vectors are then used to
train a feedforward backpropagation neural network to distinguish human shapes from non-human
shapes. Once trained, further unseen vectors are presented to the network to determine how accurate the
network is at classifying human and non-human shapes. Snakes are then used to track animate objects
in sequences of images, and the subsequent shape vectors are presented to the network to identify
patterns in a given object’s shape deformation. A discussion of these deformation patterns is given,
along with possible uses of the technology.

The techniques presented are part of a larger system designed to track moving pedestrians, a
problem that has been the subject of much research [Baumberg & Hogg 1994; Bowden, Mitchell &
Sarhadi 1998; Galanta, Johnson & Hogg 1999]. We show that the periodic nature of human walking is
clearly discernible from the deformation pattern, and that individual humans have a specific temporal
pattern.

2 Identifying and Representing Moving Objects

In order to analyse an animate object’s deformable shape during motion it is first necessary to obtain
the shape of that object in each of a series of images. Snakes are an established method (Blake & Isard



1998) for identifying and tracking moving objects. Snakes are energy minimising splines whose
accuracy at detecting an object is dependent upon the how suitably defined the snake’s energy function
has been. A snake’s energy can contain different types of shape criteria, such as the goal to stay
circular, as well as different image criteria, such as having lower energy associated with, and thus being
attracted to, edges or specific colours in the image. The combination of these criteria results in an
energy function tailored to a specific task.

The user initialises a snake in an image or movie frame, and the snake relaxes around the
target object until it finds a local or global minimum in the energy space. The snake, once relaxed in a
minimum, can then be introduced into the next frame of a movie, and re-minimised, to track a moving
object autonomously (Figure 1).

An active contour model based on Fast Snakes [Williams & Shah 1992] has been designed for
the task, and provides a reasonably accurate means of identifying and tracking an object’s shape during
motion (Figure 2).

Frame 1Frame 1 Frame 2

Figure 1: Detecting and tracking objects using an active contour. [Left] The user initialises a
contour around the target human. [Middle] Minimising the snake’s energy forces the snake to
relax onto the human outline. [Right] Once relaxed, the snake is initialised in the next frame
using its relaxed position as a starting point. Its energy is then minimised again to relax it
onto the human’s new position.
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Figure 2: Human poses (grey) being tracked with an active contour (black). Numbers beneath
each pose denote the movie frame number.

Due to an active contour’s scale, location and rotation dependence, and additionally because it is stored
as pairs of (x,y) coordinates, the contours are not suitable to use as input patterns for neural networks.
Instead, an active contour can be translated into a scale, location and rotation independent axis crossover
vector [presented in Tabb et al. 1999a]. A number of axes are projected outwards from the contour’s
centre (Figure 3), with the distance from the contour’s centre to the furthest contour edge along each
axis being stored in a vector. This vector is then normalised by its largest element, making the vector



scale, location and rotation invariant.
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Figure 3: Converting an active contour into an axis crossover vector. Axes are projected at
specific angles from the contour’s centre to its edges. These axes’ distances are then stored in a
vector and normalised, making the vector scale, location and rotation invariant.

3 Identifying Human Shapes with Neural Networks

A range of experiments have previously been performed to validate the axis crossover’s ability to
represent contours sufficiently for a neural network to be able to distinguish human from non-human
shapes [Tabb et al. 1999b]. This paper uses exclusively a network with 16 input units and 2 output
units, where one output unit was trained to identify human shapes, and the other non-human shapes.
All axis crossover vectors used contained 16 elements, where a given element maps onto a given input
unit in the neural network (Figure 4).
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Figure 4: Axis crossover vectors as input patterns for neural networks. A given vector element
maps onto a given input unit in the neural network, thus the size of input layer and axis
crossover vector must equate.

In order to produce clean and reasonably varied sets of training and test patterns, simulated shapes of
humans and non-humans were used. The 3D modelling and animation package Poser [Metacreations
1999] was used to generate all simulated human, equine, canine and velociraptor movement. The
training set contained 400 simulated human and 400 simulated non-human shapes. The non-human
shapes consisted of inanimate objects such as trees, cars and streetlights; and deformable animate
objects, namely shapes of dogs and horses. A breakdown of the training set can be seen in Figure 5. All
animate movement consisted of still images or movies of the object (human, dog, horse or
velociraptor) walking from the left side of the image to the right. Each image or movie was different,



either in terms of the physical build of the object, for example height and weight of object, or in terms
of its walking habit, for example one human might swing their arms more than another. Generating
this data using Poser allowed for much more variation in shapes and motions than could be achieved in
a reasonable time frame using real images.

Once trained, a scalar confidence value was obtained from the two output units which allows a
crude measure of how ‘human’ the network considers a given vector to be. The confidence value is
simply the difference of the two output unit values.

 

Humans (400)

Horses (100)

Dogs (100)

Inanimate Objects (200)

Figure 5: Training data set for the neural network.

Two experiments were performed in this study: a categorisation experiment to determine how accurate
the network was at classifying static shapes as human or non-human, and a tracking experiment to
analyse a given object’s deformable shape during motion.

In the training set, the animate objects were divided into bipedal humans and quadrupedal dogs
and horses. In order to explore the nature of the induced classification, we introduced another bipedal
class to act as ‘near-miss’ humans. The only other animated biped available in the software used was a
velociraptor, a roughly human sized bipedal dinosaur.

3.1 Categorisation experiment
The categorisation experiment involved presenting the trained network with a test set of both

human and non-human axis crossover vectors and measuring how successfully the network categorised
them, based on the network’s confidence value for each shape. The test set for the categorisation
experiment contained 100 unseen human shapes, and 100 unseen non-human shapes (see Figure 6a).

3.2 Tracking experiment
The tracking experiment involved tracking human and animate non-human objects using active

contours, and for each object, converting the sequence of relaxed contours into axis crossover vectors,
then presenting each vector to the neural network serially. A confidence value versus time graph can
then be plotted, depicting how human the object was considered to be in each frame of its motion. The
test set for the tracking experiment contained 30 unseen humans and 15 unseen non-human animate
objects (see Figure 6b). Each object was tracked for 2 consecutive paces.

a) Categorisation test patterns
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b) Tracking test patterns

 

Humans (30)

Velociraptors (5)
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Dogs (5)

Figure 6: Test data set for the categorisation [left] and tracking [right] experiments. No
inanimate object shapes were used in the tracking experiment. All shapes used as test patterns
were previously unseen by the neural network.



4 Animate Object Motion Analysis using Neural Networks

4.1 Categorisation experiment
The results for the categorisation experiment on unseen data can be seen in Figure 7. As has

been observed in previous experiments [Tabb et al. 1999a and 1999b], the network learns to classify
unseen data very successfully. When the novel near-miss velociraptor class is presented, the results
show that the network considers it to be more ‘human’ than ‘non-human’. Nevertheless it is not
classified with as great a level of confidence as the genuine humans. In other words the network
identifies the ‘near-miss’ class as a near-miss.
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Figure 7: Analysis of neural network categorisation values for different types of unseen
objects. The network’s confidence value for a given shape can be obtained by subtracting the
first output unit’s value from the second. Results shown reflect the mean values given for 100
unseen human objects, 25 unseen velociraptors, 25 unseen horses, 25 unseen dogs and 25
unseen inanimate objects. Also shown are the standard deviations for each object class.

4.2 Tracking experiment
The results for the tracking experiment can be seen in Figure 8. Graphs are shown for 3 of the

30 humans in the test set, namely those which the network categorised with most, average, and least
confidence. Graphs are also shown for the velociraptor, dog and horse categorised with average
confidence for their respective object class. The two consecutive paces tracked for a given object have
been superimposed on each object’s graph.

For each test object, the network’s confidence value varies with the object’s motion and is
cyclical, with the frequency being once per pace. Furthermore, whilst a given object’s confidence
pattern is not identical from one pace to another due to slight variations between paces, its confidence
patterns from pace to pace were more similar to each other than to those of other objects in the same
species, identifying individual differences apparent in objects’ movement.

These differences were even more marked when comparing objects from different species;
Figure 9 shows the same objects’ confidence values being plotted against each other, with each object’s
two consecutive paces being plotted end to end. It is evident that the neural network considers some
species to be more human than others, as was the case in the categorisation experiment. Furthermore
bands can be drawn across the graph, marking off each species from each other.
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Figure 8: Motion analysis of animate objects. The three graphs on the left show best, typical,
and worst human categorisation over time. The graphs on the right show the same information
for a typical velociraptor, dog and horse. In each graph, 2 consecutive paces for the
appropriate object have been plotted, showing more clearly each object’s repetitive yet
distinctive motion pattern.
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Figure 9: Comparison of neural network confidence values during animate object motion. Each
object has been tracked for two paces, where the second pace starts at frame 61.

5 Discussion

In this paper we have shown how snakes can be used to identify an object in an image, and then to
track a moving object. The resultant contours can be re-represented as scale, location and rotation
invariant vectors. A neural network was trained using these vectors and was then able to successfully
classify a range of unseen objects. The confidence value generated by the trained neural network for
snapshots of a moving object form a periodic waveform individual to that object. A more detailed
analysis of the network’s confidence values for each given animated object class identifies small,
individual variations between different objects of the same class, and large variations between object
classes. 

One possible use of the object’s periodic waveform is to aid in identifying single paces of the
object, so that the object’s speed of motion can be gauged. Moreover, individual differences between
objects are apparent and could be used as identification tags.

Other applications of the object’s periodic waveform might be to identify the object’s species,
or to aid in predicting the object’s imminent motion by ‘fast-forwarding’ along its waveform.
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