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Introduction. '

Suppose A and B are two adequately described structures— can we decide whether and how A is
interpretable in terms of B?

This question is itself in need of clarification, of course. In different contexts, the term
interpretation admits of different readings that suggest different kinds of operations
between the alleged structures; even the term structure, popular and precise as it may
sound, is already used with somewhat divergent senses, within the range of Pure and
Applied Mathematics—the very disciplines that are supposed to focus on structure

per se. The use of the term interpretation is certainly neither restricted to structures that are
models of the same first-order theory, nor even to such as are merely "structures for" the
very same minimal set of predicates. As we all know, it is possible to envisage *
"interpretations”"—and Science is full of such—where the fundamental individuals and
predicates in one structure are mapped on totally different types of entities, logically,
which may be much more complex and derivative relative to the "interpreting” structure.

If we consider interpretations as mappings, however, it is intuitively apparent that we
must satisfy at least two kinds of conditions: First, that basic entities in the interpreted
source structure must be mapped on entities which are in some sense definable in the
interpreting target structure; and, secondly, that truths of the interpreted source must
become, under such interpreting mapping, truths—apparent or derivative— of the inter-
preting structure. In this paper we explore some of the ramifications of these minimal
constraints on interpretability for first order strucures , as understood by Model Theory.

This exploration will ultimately set the stage for a theory of structure-concepts in general.
Such a theory will adopt a Nominalistic approach to general concepts of structure, and
elucidate them in terms of equivalence relations between descriptions— the nominal starting
point. From the vantage point of interpretability, however, the significant thing about this
approach is that different equivalence relations between "structural” descriptions are to be
based on different types of bilateral interpretability. The weaker our contraints on what
constitutes an "interpretation”, the more liberal and general will be our general concepts
of structure!

Definability and Invariance. Definability is normally understood with respect toTheories.
Yet since first-order models —exemplifying (as we shall see) the simplest and strictest
concept of structure—are defined for a given first-order language, it also makes sense to
talk of sets of various kinds as being definable or undefinable in a given first order
structure.

Thus, any subset S Of |AI" —wherelAl is the universe of a first order structure ,A—will
be said to be definable in A , when and only when there is a formula F(x1,...,x,)EL(-A)

such that F(ay,...,ap) is true in A iff <ay,...,an> €S. [L(-A) being the minimal structural
language for which A is a structure]
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For some first order structures, including all such finite structures, there is a perfect
correspondence between definale sets and invariant (set-theoretical) entities.

A set S CLAIN will be said to be invariant in A iff for every automorphism, o, of A , we
have 05=S (assuming always that oS={ox|xES}, for any set S). Now, it is easy to show
that any finite structure, -4, has the following property

B: A subset of Al is definable in »A_if and only if it is invariant in ..

For finite structures § can be easily derived from Beth's Definability Theorem, or more
directly and constructively, by other means. Yet for structures with a denumerable

infinity of elements, B constitutes an extremely powerful constraint. It does not hold for
most of the best known infinite mathematical structures, such as the Standard Model of
Number Theory or the Algebraic Numbers. In the case of The Standard Model of
Number Theory, for instance, every subset of n-tuples of natural numbers is invariant
(there sre no non-trivial automorphisms), but there are clearly more subsets (2Xy) than

definitions ( X g only). Thus, with respect to @, one can prove only (see §4 later)

THEOREM 4.A. A countable structure,-4, has the property g iff Th(-A) is X o-
categorical.

The requirement that Invariance and Definability be coextensive therefore restricts us to

models of categorical and properly X o-categorical theories, and it can be shown—in either
of these cases—that for each n there must be only finitely many invariant subsets
of n-tuples.

The trouble with § is that it restricts the number of invariants only to those that can be
finitely "explicated" by finite first order formulae (defining them)—which is even stricter
than what might be required by Intuitionism. Classically, however, we can easily see that

in |Althere are bound to be 2C invariants (including -4l and the empty set ) where C
is the cardinality of the set of all minimal invariant subsets—also known as orbits. If there
are infinitely many minimal invariants, there will be more invariants than available
definitions.

This suggests that we should consider weaker constraints than B (but still sufficient for
our purposes). Consider the following property, B fin, restricting the equivalence of
definability and invariance to finite sets:

B fin : For any n, a finite subset of |-AI" is definable in -A_iff it is invariant in A .

This property is shared by great many countable structures, including many that were the
subject of traditional Mathematics—e.g., the Standard Models of The Natural Numbers, the
Rationals and the Algebraic Numbers, and is exactly the kind of property we need in order
to study humanly useful interpretability relations between first order structures.

As it turns out (see §5 below), this property too is mirrored by a pure Model Theoretic
property of (first order) structures—a property we call Elementary invariance :
Elementary Invariance. A structure A (for language L) is elementarily invariant when and

only when its domain is an invariant in any elementary extension of A.
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There are some easily recognisable features of first order models that guarantee their
elementary invariance. The most useful property of this kind has each individual in the
model's domain belonging to some finite definable subset. This is tantamount to
requiring that the orbits of individuals be all finite. While trivially satisfied in the case of
finite structures, this is not a trivial property for an infinite structure. There is however
one general category ensuring such behaviour—that of structures with finitely many
symmetries.

Galois Theory of Structures. Classical Galois Theory is sometimes upheld as a paradigm
of transforming a seemingly intractable problem, in one mathematical framework, into a
relatively simple problem in another. The solvability of Algebraic equations over a given
field is transformed by Galois Theory into a decidable question about the structure of
certain finite groups. The fundamental mapping behind this miraculous transformation
is the one which maps an Algebraic structure on the group of those of its auto-morphisms
which leave unmoved the elements of of a certain substructure.

Although Galois Theory was generalised for other Algebraic structures beyond the
original fields, such theories are almost never presented as the inevitable highway to
interpretability questions of certain kinds (embeddability). In this paper we show that
many of the classical percepts and theorems of Galois Theory are naturally applicable to

first order structures that have the property B fin —with a near perfect analogy in the
case of those structures with finitely many symmetries. Thus, the analogues of Galois

Theory will apply in particular to interpretability relations between any finite structures, and
provide for decidability in principle.

Such a Galois theory is fundamentally predicated( much like the original one) on relative
notions of Definability and Invariance (in the original theory the terms used were quite

different!). Given a substructure -4y, of -4, one may ask ‘which entities in -4 are definable
by means of the individuals in l-Agl—using them in addition to the structural predicates
and functions. In the same vein one may talk of Invariance-relative-to-Ag , by which is
meant invariance under all those automorphisms which leave every individual in -4
unmoved [such automorphisms constitute a subgroup G(-4/-4p) of the group G(-A) of all

automorphisms of -4 ]. As an example of a close analogue of a classical Galois theorem
consider the following

THEOREM (see §6 , theorems 6.D and 6.E ): Let A be any Elementarily Invariant
Structure and let-A be an invariant substructure thereof, with corresponding
subgroup G(-4/-A¢). Then (1) G(-A/-A) is a normal subgroup of G(A);

(2) Ag will be functionally closed in A [i.e., |Ao| includes any -4o-definable singleton
in-A ] if and only if l-Aylis the set of all elements in -4 unmoved by G(-A/-Ay) [in
which case one can call Ay a Galois substructure of A]; (3) if G(-A/Ay) is finite, then
there is a finite subset S C l-Al,with K elements, where 0 < K <logy(order(G(-A4/Ay))),
and where A is the functional closure of |-Ag|US ; and (4) -4 can be viewed as the
"splitting” structure over-Ay for some monadic formulain § 7([(-4)) with a finite
number of solutions [i.e., A is functionally generated by these solutions over |-Ag|].
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Interpretability. The last theorem only illustrates the degree to which a general Galois
theory of Elementarily Invariant structures mimics the classical theory. It does not tell us
how we are to use such tools to decide on the existence of interpretability-mappings
between structures—especially when we allow such transformations to map basic
individuals onto complex entities, constructed by means of the host-structural language
and the normal set-theoretic aparatus.

Here again the direction is pointed out by the classical theory: Just as we can understand
classical Galois Theory to be dealing with the existence of a monomorphic embedding
from a given field into what is obtained by repeated radical-extensions, so can we reduce
the problem of interpreting one structure in an extension of another to the existence of a
suitable monomorphic embedding of one structure in some set-theoretic extension of
another—for which we can generate necessary and sufficient group theoretic criteria.
However, we know how to do this, in general, only for injections of finite structures in set-
theoretic extensions of elementarily invariant host structures.

To have the flavour of such results, we introduce now a few simple definitions and
notations:

Let C,e(-A) denote the union of |-Alwith the class of all sets constructible (by normal set-
theoretic operations) from the structure -4 [Set Theoretically this means starting with the

sets {J,lAl,...,R0,...}—where R} modelsin.A the n-ary predicate-symbol R j—and
repeatedly applymg the set-construction tools provided by standard ZF set theory]. We

extend the original L{A) to Lg(-), which includes set membership symbol 'E€" and the
symbols '{,'}' and '|'". A finite entity in C..(-Q) is constructed by forming only finite sets,
at each set-theoretic stage, using only a finite number of stages. With the exception of &,
the type of an entity will be defined as the set of types of its members, where the type of

individuals in -4 is set to 0. Thus the type of any non-empty subset of |Alis {0}, while a
non-empty set of ordered pairs of elements in -4l will be of type {{0,{0}}}={<0,0>}.

We expect of any interpretation ¥ -A—B5 that the individuals of A should be mapped
on entities in which are all of the same (arbitrary) type <, and that any definable subset of
the type{<0<,.n. .=,0>} should be then mapped onto an entity in C4o(B) of type

{<t=,.n. .= e>}. The definitions of -A-Invariance and -A- Definability of entities in Cger(-A)
are obvious generalisations of our previous definitions [the only difference being that we

allow for formulae in Lg.(-) to serve in definitions]. It is easy to show that if B fi, is true
of A then very finite A-invariant entity is »4-definable by a formula in Lge(-4) .

We now define a strong interpretation to be one , ¢ :A—B , which satisfies—in addition to
preserving relative type differences—the following conditions:

(1) ¢ when restricted to lA| is an injection (monomorphism) into a definable entity of
Cict(AQ), of type {1}, for some T, (2) if (3z€ X) & XEC ee(A) then yX={ypwl weX};
and (3) If R is any predicate symbol in [(-) then ¢y, is AA-definable.

(We take ¢3R4 or its definition to be the interpretation of Rin B ).
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A simple example of an interpretability result is the following

THEOREM (see §7, theorem 7.F). When B is elementarily invariant and A 1is finite,
A necessary and sufficient condition for >4 —B to constitute a strong interpretation of A in
B is

L 0 G(Blya) o9 C G(A)

where by B|y|,a) we mean the substructure of B determined by y-A.

An equivalent formulation of this condition is that vy ® G(-4) ®p~1 must contain a
subgroup isomorphic to the quotient group G(B)/ G(B|y.a)) [ where, of course,
G(B|y.4)) must be a normal subgroup of G(B)].

(Note: in the above conditions '®' signifies composition of mappings and ' in the context
of such composition stands for what should be properly denoted by "(Ax)ypx' —if we
were to use the A-notation).

This is directly proved on the basis of the following instructive
Lemma (see 7.1 in §7): When B is elementarily invariant and A is finite,
an injection 1 will constitute a strong interpretation of A in B iff

for any a~€lAM (n>1), y(orbit( a™))is B-invariant.

(Note: In the above it is enough to consider a™-s of dimensions corresponding to the

n-arities of the predicate symbols in L.(-4) ) .

Structural Information Theory. How much information does a structure -4 provide
about one of its individuals or, more generally, about any particular element, e,

in Cset(f’a-) ?

Define the minimal neighbourhood of e relative to A, as the smallest AA-invariant set
containing e, (or the orbit of e). It is obvious that this minimal neighbourhood, S(e),
contains only elements of the same type as e, and that in the case of a basic individual of

the structure it is none other than its classical orbit. If e is of type Tand M is a measure on
the subsets of AT ={XIXEC . (A) & type(x)=1}, then the specific information provided
by oA about e, Inf,a(e), will be an appropriate function of M(S,a(e))/M(A7). If Ais

finite we can take M to be the cardinality-function for any finite subset of -4%, and we can
choose -

Inf,a(e) = -logN(cardinality(S a(e))/ N), where N=cardinality of -A".

Thus, In the case of the following three structures
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where the arrows represent a binary relation, we have, in A, Infa(a)=1,Infa(b)=0.5 and an
average information per individual (type 0), 10 (A), of 0.75. '
In A1 on the other hand we have InfA;(x)=0 for any indiwidual x (so I0 (A1)=0).

The picture is different for orderd pairs, however! In A; we have
InfA,(<x,y>)= -log16(4/ 16)=0.5 (or 1<0.0> (A1)=0.5).
Finally, in the linear structure A2 we have Infa,(e)=1, for e of any type!

While such measures of the Semantic Information that is contained in a structural
description give us a handle on the structure's capacity to encode specific information
(about whatever is described when one uses it), the same measures do not reflect the true
relative value of various structures in their general use! . We may have other reasons to
use a specific structure, which far out-weigh its “Internal Informability”. Culturally and
Scientifically we gravitate towards structures that have for us a high metaphorical
suggestiveness—the potential to serve as a metaphorical vehicle in describing and
representing many different types of data and phenomena. While some of the reasons for
such a high metaphorical value are historical and cultural, others are certainly grounded
in the nature of the structures themselves. The Intrinsic "Metaphorical” qualities of a
structure have to do with its intrinsic simplicity and symmetricity, since it is a higher value
of these, according to our Galois analysis, which will be positively correlated with a
greater chance of successfully serving a (strong enough) interpretative role vis a vis other,
arbitrarily provided, structural descriptions.

It is thus easy to see that when "universes" of the same nominal size are organised by
different structures , Internal Informability and Metaphorical Power are inversely correlated,
and a decision may have to be made as to how much specific Information should be
sacrificed for the sake of simplicity of description and of analogy to structured
descriptions of other data. This balancing act between Information and Metaphorical power is
at the heart of both Science and Art. The above tools allow us to develop precise measures of
the intuitive cost-effectiveness of such multi-faceted activities, which integrate various
explanatory desiderata, in Science, and which correspond to vital aspects of intuitive
evaluation of metaphors in the Arts.




