DIVISION OF COMPUTER SCIENCE

An Integrated Approach to the Development of Advice Systems
to Support Learning and Domain Based Information Retrieval

Mike Bearne

Jill Hewitt

Sara Jones

John Sapsford-Francis

Technical Report No.180

February 1994

Technical Report No. 180 February 1994

An Integrated Approach to the Development of Advice Systems to Support
Learning and Domain Based Information Retrieval

Mike Bearne, Jill Hewitt, Sara Jones and John Sapsford-Francis
comrmb, comgjah, comrsj, comqjs @herts.ac.uk

School of Information Sciences, University of Hertfordshire,
College Lane, Hatfield, Herts, AL10 9AB, UK

Tel: (0707) 284766, 284327, 284370, 284354
Fax: (0707) 284303

Abstract

We present a method for developing advice systems. The focus is on allowing users to access
information about large, ill-defined domains using their existing knowledge and
understanding of those domains. The method relies on iterative refinement and integration
of models of the domain, the requirements and the interface. We propose the use of a
Generic Advice Systems Architecture which provides the high-level structure for
interfaces to such systems, without premature commitment to a particular 'look and feel'.
The method is illustrated with material from an ongoing project aimed at developing an
advice system to support the integration into Higher Education of students with
disabilities .

Submitted for presentation at HCI '94, the annual conference of the BCS HCI Special
Interest Group, to be held at the University of Glasgow, 23 - 26 August 1994.

An Integrated Approach to the Development of Advice Systems to Support
Learning and Domain Based Information Retrieval

Mike Bearne, Jill Hewitt, Sara Jones and John Sapsford-Francis
comrmb, comgjah, comrsj, comgjs @herts.ac.uk

School of Information Sciences, University of Hertfordshire,
College Lane, Hatfield, Herts, AL10 9AB, UK

Tel: (0707) 284766, 284327, 284370, 284354
Fax: (0707) 284303

Abstract

We present a method for developing advice systems. The focus is on allowing users to access
information about large, ill-defined domains using their existing knowledge and understanding of
those domains. The method relies on iterative refinement and integration of models of the domain,
the requirements and the interface. We propose the use of a Generic Advice Systems Architecture
which provides the high-level structure for interfaces to such systems, without premature
commitment to a particular 'look and feel'. The method is illustrated with material from an
ongoing project aimed at developing an advice system to support the integration into Higher
Education of students with disabilities .

Keywords: design method, domain modelling, task analysis, knowledge elicitation,
advice systems, iterative prototyping

1.0 Introduction

This paper describes and illustrates a method for developing advisory systems. One of
the key issues, that the method addresses, is the use of domain modelling to provide a
foundation structure for the users' interaction with the system.

Advisory systems are typified by : a large group of infrequent users, diverse sources of
knowledge, lack of definitive solutions to user problems, the need to assist naive
users with query structuring and the need to persuade users of the advantages of
using the system in preference to existing methods.

Mlustrative material is drawn from the SPIRE project. This project (funded under the
Teaching and Learning Technology Programme 2) concerns the development of a
multimedia advisory system that will assist with the integration of students with
disabilities into Higher Education. The current practice in providing support can be
described as “ask someone who knows or who has done it before”. There is a very
informal network of lecturers and support staff who have built up individual bodies
of knowledge relating to particular aspects of the domain. Any of these people may be
approached by someone with a problem, and, if they do not know the answer, they
may refer the inquirer to other internal contacts, to a knowledge base of pamphlets or
manufacturer’s brochures or to outside organisations. The system is unstructured,

Bearne, Hewitt, Jones & Sapsford-Francis 2

and, for the individual inquirer, frustrating and serendipitous, since they often have
no clear idea of who to ask or where to go for information. The domain and some of
the emergent substructures within it are illustrated in Figure 1.
Figure 1
Context (Disabled students in a higher education environment).

Knowledge (Preparing notes for partially
sighted students).

Agent (Lecturer) Agent (Support Staff) Knowledge (Using an embosser
to prepare notes for Partially

Entity (Equipment (Embosser)) Agent (Lecturer)
Activity (Lecturer Prepares Notes)

o o Entity (Disability (Partially Sighted)
-] Activity (Lecturer Lectures Student)

Activity (Student Attends Lecture)

Agent (Lecturer) Agent(Student)

The provision of an automated advice system would appear to provide an attractive
alternative to the current situation. A system which contained a permanent, easily
maintainable data store, and which supported queries from a wide range of non-
expert users could considerably ease the load on the current staff ‘experts’” whilst
increasing users’ level of satisfaction with response to their queries. In addition such
a system could give a wider access to information, particularly by supporting queries
from potential students and members of staff with a peripheral interest in the field.

The authors” work on the MODEMA project (Hewitt et al. 1994) also addressed many
of these issues. MODEMA was an 18 month pan-European project funded under the
EC TIDE initiative. The project objective was to build a prototype knowledge based
browsing system that provided advice on the integration of people with disabilities
into the working environment. The project was successfully completed in June 1993.

Bearne, Hewitt, Jones & Sapsford-Francis

This type of project presents a number of important issues:

Usability of the system: the system will be highly interactive, usage of the
system for individual users will be infrequent so learnability and accessibility
will be important. The main high level task, that of supporting the integration
of students with disability into higher education, is a difficult one and one that
is often done badly. It is vital that any computer system introduced into this
problem domain does not provide a further barrier to good practice.

typical users of the system will be naive about the content of the domain of
knowledge, they will also be naive about the best way to access this knowledge,
for example they may say that they do not know what questions to ask. The
system must therefore be sufficiently flexible to support exploration learning of
the domain as well as the provision of useful advice on a wide variety of
specific queries.

the expertise that must be captured and represented within the system is held
by a large number of "narrow domain" experts, for example experts in
rehabilitation technology, experts in particular disabilities, social services
advisors. It is very rare that any one individual expert possess substantial
general expertise. Currently there are no systems that meet the needs that we
address here.

issues concerning the integration into Higher Education of students with
disability are extremely complex, and cannot be satisfactorily dealt with by an
expert system in that frequently no single solution can be offered, However it
is possible to present a number of useful approaches or advice on procedures
that have worked well in the past.

there is no formal customer authority. There is no formal requirements
specification. Under these circumstances the developers of the system must
decide for themselves what needs they are trying to meet and how they will
meet them.

This problem is not an entirely new one. All design problems are more or less ill-
structured - Guindon (1990) quotes Simon's characterisation of ill-structured
problems as : incomplete and ambiguous specification of goals, no predetermined
solution path and the need for integration of multiple knowledge domains.

However, the degree of uncertainty and the fact that not only is there no pre-
determined solution path from the requirements to the finished artefact, but not even
any clear idea of requirements, make the class of problem we are addressing
particularly taxing.

The development approach for this class of problem requires a combination of
knowledge elicitation, task modelling of user and domain tasks, and iterative design
and evaluation with potential user groups to allow refinement of domain and
requirements models in parallel with interface development. The target system does
not exhibit the characteristics of an expert system (see for example, (Amble, 1987)), in
that it does not offer a single solution to a user query, only information that may help

Bearne, Hewitt, Jones & Sapsford-Francis 4

the user to find a solution. It is closer in concept to the idea of an intelligent
information retrieval system as described in (Brazier & Ruttkay, 1993), but does not
reason on the behalf of a client, rather providing the client with the information
needed to make informed choices.

Previous experience and current problems have lead us to develop a method that
enables the development of systems such as this. This method specifically supports:

the elicitation of expertise from many different sources
the integration of this expertise into a coherent body that is represented in the
system

 the use of early prototype systems in the validation of requirements and
knowledge representation
parallel development of requirements and domain models
a task analysis of the current domain

° a projected task analysis of how users of this system will usefully access the
knowledge :

e the provision of an interface structure underpinned by this task analysis that
supports naive users and helps them decide what advice they require.

In the following sections we describe this method.

2.0 Developing a System

A major goal in developing an advice system must be that people will choose to use it
in preference to any existing system. A more ambitious goal is that people who do not
choose to use the existing system will become users of the new system and will thus be
‘drawn into’ the domain. More ambitious still is the goal that the system will help to
perpetuate domain experts, by providing support for users to learn about the
environment.

For the SPIRE project it is envisaged that the ideal system would assist the users in
building up their general knowledge of the domain as well as answer specific queries.
This is particularly important in view of the fact that non-experts often start by asking
the wrong questions. An example of this could be “Which rooms are accessible by
blind students?”, the answer to which might be “All of them”, whereas the questions
“Where can I get a Braille map of the University?” or “How do I present diagrams to
a blind person?” would elicit more pertinent responses.

It is the aim of the project team to provide a system for each university campus by the
end of the project. These will contain general information, information relevant
specifically to the university and, where appropriate, site specific information (e.g. local
contacts, locally available equipment). A longer term aim is to produce a generic
system shell into which other universities can integrate their own specific information.

Bearne, Hewitt, Jones & Sapsford-Francis 5

Key aspects of the development of this type of system are:

* it utilises both a requirements and a domain model. This facilitates the
structuring of the advice about aspects of the domain in a way which corresponds
to the structure of the domain itself as seen by experienced users.

° an early throw-away prototype is used and evaluated with potential users to help
consolidate the requirements and domain models and to provide a focus for
further knowledge elicitation.

° an iterative prototyping approach is followed, with the aim of maximising user
satisfaction with the system

* an early emphasis is put on the development of the information management
aspects of the system, thus enabling easy adaptations to the model as they are
discovered through the iterative development cycle.

An overview of the proposed method is illustrated in Figure 2.

21 Initial Models of the Domain and System Requirements
As described above, these models are developed in parallel.

2.1.1 Initial Requirements Model

It is typical of this type of development that there is no client-tendered requirements
specification, but there is likely to be some general consensus amongst potential users
that such a system would help them to work more efficiently. The fact that there is
no existing automated system, nor even a well-structured manual one, means that
users have really very little idea of what a system might do for them, beyond one or
two specific query scenarios which they may have formulated in the past.

These things make the requirements specification hard. More effort has to be put into
explaining the possibilities to the users, and negotiating with them as to what can
reasonably be provided with the time and money available. In addition there are
political issues, for example the opinion of the existing experts on the desirability of
such a system may be divided. In the development of the MODEMA system some
resistance was encountered in the form of experts who did not want users to be better
informed as they “could misinterpret information” (MODEMA deliverable 8,1993)

Bearne, Hewitt, Jones & Sapsford-Francis 6
Figure 2: Advice system development method
- R
Potential System Information
Users Domain
Context
Initial Initial
Requirements Doman.l
Analysis Analysis
Requirements Domain
Madel Model
°* System activities e Agents in the Domain.
to be supported. e Entities in the Domain.
* Potential System e Activities in the Domain.
Users. o Context.
* Knowledge about the Domain.
——
Refinement of
Requirements and
Domain Models.
Refined and Integrated Model
* Agents in the Domain.
e System Users.
* Data Model.
* Domain Activity Model.
e Context.
¢ System Activities.
* Advice Network.
Generic
Advice
System Design System
and Development Architecture
Prototype System
=i Single Pass
User == [teration
Evaluation
\

Bearne, Hewitt, Jones & Sapsford-Francis

The first attempt at requirements specification must be based on informed guess work
by the developers, using their domain knowledge.

For SPIRE, our first guess at high-level system requirements were:

System users
These would be lecturers, current and potential disabled students and support staff
(e.g. exams officers, accommodation officers etc.)

System activities

1. Allow users to obtain advice about how to support disabled students specific to the
user's role (lecturer, students etc), and the disability of the student. Expert users might
want specific information, novices might want to be guided through the system more.

2. Allow users to browse around learning about the domain.

2.1.2 Initial Domain Model

This must be derived from studying documents, talking to experts in the domain,
and any users they support, attending meetings and generally observing any existing
protocols. At this stage the description is in terms of natural language lists of items,
there is no point in using any formalism so early in the modelling process.

For SPIRE we had access to existing support staff and to lecturers who had dealt with
disabled students. We also attended meetings of the designated “Disability Network” -
a group of staff with varying responsibilities for looking after disabled students. The
initial model is described below.

Context .
Disabled students in higher education

Agents in the domain
These are people who carry out tasks which are relevant in the context of the
system

Example: Lecturers, Students, Current Disabled Students, Potential
Disabled Students, Support Staff

Entities in the domain
These are artefacts in the domain about which we wish to record information

Example: Braille embosser, RNIB Braille Service, Dyslexia, Partial-
Sightedness, Disabled Students Allowance, ScreenEnlarging Software,
Site

Bearne, Hewitt, Jones & Sapsford-Francis 8

Activities in the domain
These are the typical activities which are carried out in the domain, which
together make up a task model of the domain

Example: students attend lectures
lecturers teach lectures
lecturers prepare handouts
partially sighted student uses screen enlarging software
lecturers prepare exam papers

22 Requirements and Domain Knowledge Elicitation

In addition to individual interviews, it was found that seminar activities provide a
good forum for the elicitation of user requirements and domain knowledge. Two
techniques which were used are described below:

2.2.1 Card sort
A card sorting exercise (Cordingley, E.S.B. 1989) was carried out to help with elicitation
of the static knowledge structures of people working in the domain

List of entities were taken from initial domain model, these were written on cards,
one per card, and participants were asked to group them in any way which seemed
natural to them. Since people have different knowledge structures, it is normal to
envisage that not all people will group entities in the same way, but the areas where
there is a clear consensus are prime candidates for entity classifications in the system.

The results of this exercise will have more validity than an entity class system
imposed by the designers since they reflect the opinions of the users and enable the
users to view the system in their own terms.

Example: Sample categorisations of some key objects:
Unanimous categorisation: Equipment, Disability, Money
Majority categorisation: Policy
Minority categorisation: Accommodation
2.2.2 Scenario-based requirements and knowledge elicitation
Scenarios were generated from the initial domain model and used in an exercise to
elicit further user knowledge of the domain and further details for the user
requirements specification. The use of scenarios in the pre-prototype stage of

development help the designers to build more realistic first prototypes (Young &
Barnard, 1987)

Bearne, Hewitt, Jones & Sapsford-Francis 9

Example: “You are a lecturer who has been told that one of the students in a
forthcoming class that you are teaching is partially sighted. What information
and advice might be helpful to you and in what context?”

Requirements elicitation

The question from the scenario asking the user to identify helpful information and
advice helps to identify the user expectations of any system. The responses helped to
identify requirements for system activities which should be added to the model at this
stage:

Example:
lecturer consults university policy on dyslexia
lecturer asks student if they are registered as dyslexic

Domain knowledge elicitation
The responses to the scenarios contained implicit information which helped to
identify further knowledge of what activities are carried out in the domain.

Example: Some activities which were added to the initial domain model after
questioning potential users :

students taking notes
students taping lectures
students doing group work
lecturer setting exams

2.2.3 The Throw-Away Prototype

The construction and evaluation of an early "throw away" prototype system, that
embodies our initial understanding of user requirements and user domain
knowledge provides an important validation method. Presenting such prototype
systems to users and to the various "narrow domain" experts in the context of
particular problems also enables us to elicit further user requirements and expert
knowledge. As we have stated earlier a typifying feature of advisory systems is that
they concern diverse sources of knowledge where there is a lack of definitive
solutions to user problems. Under these circumstances it is hard for users and for
"narrow domain" experts to provide complete (or indeed adequate) views of user
requirements and of relevant domain knowledge. The presentation of a prototype
system:

e forms a basis for dialogue between the potential users of the system and the
designers

e gives potential users a sense of the kind of thing that might be possible

e gives the users confidence that solutions to particular problems might be
found.

Bearne, Hewitt, Jones & Sapsford-Francis

This method of validation and further requirements analysis and knowledge
elicitation is carried out in parallel with other design and development activities (eg
requirements and domain knowledge elicitation) in which the designers develop
their understanding of the domain and tasks which need to be supported.

It is usually desirable to give maximum access to the prototype, including as wide
range of users as possible, and a “hallway and storefront” type of evaluation is
extremely useful in getting users immediate reactions. There is a slight reservation,
in that as it is difficult and impractical to include a lot of structured knowledge in an
early prototype, some users may judge the system on its paucity of content. We have
found that careful explanations and the provision of some set routes through the
system helps to alleviate this problem.

24 The Refined Integrated Model

Following the evaluations of the initial prototype, and the elicitation exercises, it is
possible to integrate findings about the nature of the domain and system
requirements by amalgamating the responses to the various knowledge elicitation
and requirements capture exercises (above). In this process the priorities are to
emphasise generic activities and categorisations while keeping them sufficiently
concrete and complete to be useful.

It is written a little more formally because we need to be precise about the way in
which we are rationalising and compromising between views of the domain elicited
from different sources. We are also getting closer to the implementation and we need
to make it easy to make changes during iterative development. However, too much
formality is undesirable because the model needs to be understood and agreed by all
members of the design team and there is no need for formal proofs at this stage.

This process has some parallels with TAKD in the building of lists of generic objects
and actions. ‘

2.4.1 Agents in the domain

Agent ::= Lecturer|Student|Potential Disabled Student
|Current Disabled Student| Support Personnel

2.4.2 System users
This is derived from list of agents in the domain:

User ::= Lecturer|Potential Disabled Student
[Current Disabled Student| Support Personnel

The user type will be implemented as filter on information presented, allowing
different users to follow slightly different dialogues and see slightly different screens -
see below.

10

Bearne, Hewitt, Jones & Sapsford-Francis ‘ 11

2.4.3 Data model
Derived from sets of entities in the domain as elicited in card sort, for example:

Equipment = {Enlarger, Braille Embosser, Robot Arm }
Grants = {Disabled Students Allowance, Discretionary Grant,
European Grant, ...}

The entity model will be normalised as it will be implemented using a relational
database package for reasons of efficiency, giving fast information retrieval and a
flexible structure for update and amendment. It can be expressed as an Entity-
Relationship model.

Figure 3: ER data model.
4)

A

eEquipment
®

)

Disability

¥

Grant >._
_ J
2.4.4 Domain activity model

This presents hierarchies of activities as elicited in the scenario-based knowledge
extraction. Although we are interested in the hierarchical relationship between

activities, the recording of further information relating to plans is not necessary, since
they are not the target of a user query, merely a structuring tool.

Example:

Lecturer teach lecture
Lecturer prepare handouts
Lecturer prepare visual material
Lecturer write—on board
Lecturer present video

Bearne, Hewitt, Jones & Sapsford-Francis

Student do coursework

Student use library
Student use on-line search facility
Student locate book

Student take notes
Student prepare essay
Student write text
Student draw diagrams

This task hierarchy is embodied as part of the dialogue stricture, as described in more
detail in section 3.1

2.4.5 Context
This can be expressed as:

Disability X Users X Site

Instances of the context can be set up by the users to allow the system to refine queries
to reflect only the current context.

2.4.6 System activities
The structured queries are presented as more detailed task hierarchies eg for entering

information about user role, student disability; for getting advice about particular
situations etc.

Example:

user enters context for a query
user enters disability
user enters user role
user enters site

user finds out how to prepare an exam for a blind/partially
sighted student
user consults University policy on exams for partially-
sighted students
user finds out how to prepare exam papers for partially-
sighted students
user finds out how to prepare textual documents
user finds out how to prepare graphics documents

The database querying level is not represented here as this will be modelled as direct
queries on the relational data model.

3.4.7 Advice Network

The links between structured queries and the data model are provided pieces of
advice which present an ‘expert’s response’ to the users query which embodies text
and hypertext links to other pieces of advice and to the data model. This layer is
necessary to avoid the need to link everything to everything else, and it imposes a bit
more apparent structure into the interface to avoid the 'lost in
hyperspace'(Meister,89) phenomenon.

12

Bearne, Hewitt, Jones & Sapsford-Francis

The pieces of advice are structured objects, as represented in figure 4. At the centre is
the advice text, with hypertext links underlined. These provide direct access to the
database objects. A ‘see also’ section highlights links to other pieces of advice which
may be relevant to the user’s query. Each piece of advice is relevant only in a
particular context and is related to an activity in the Domain Activity Model. The
separation of the database links from the links to other advice entities is another
strategy to help the user avoid getting lost in the system.

Figure 4: An Advice Object

-

From Activity in Site = Hatfield

Domain Activity User = Lecturer
Model A Disability = Blind

Advice :
Fxam papers can be provided
n braille by the RNIB braille
service or locally produced
using an embosser for text

. land swell paper for diagrams

Cross-referential links
to other advice

......

Preparing exam Giving Tutorials

papers. Invigilating Exams

Links to records in or queries from
underlying Data Model

J

2.5 Generic Advice System Architecture

An integrated view of the system architecture is shown in Figure 5. The system
model can be viewed as three inter-relating planes. At the top is the Domain Activity
Model which helps to provide a focus for the user to structure his/her queries.
Beneath this is the Advice Network, the structure of this is determined by the context
entered by the user, since advice is context specific. At the bottom is the relational

data model.

The diagram shows system users as a subset of the agents in the domain, and traces a
query through the planes of the model to reach the target data, we must assume that
the context has been set. At the top level, the user is navigating a hierarchy of tasks to
find the sub-task in which he/she is interested. This is then linked to a piece of advice

13

2IN09}IPTY W}SAG 9DIAPY OLIBUD) °G ST

~

[PPON B1ed

, (s19SN WaysAs
£q parrsyua
JX9JU0D
a8esn £q

paurueia()
NIOMIBN 2JIAPY

[ePOIN A31A10Y urewoq

3IN}OVIYDIY WIRISAG DIAPY DLIBURD) 4

Bearne, Hewitt, Jones & Sapsford-Francis .

SI9S() WaISAS @ @

Urewo(] ay Ut sjuady @
\ J/

Bearne, Hewitt, Jones & Sapsford-Francis 15

relevant for the context, and the user looks through three more pieces of advice
before selecting four links to the underlying database.

For direct database access, the query would be shown only on the bottom plane.

2.6 System Design and Implementation

Although the first throw-away prototype can be implemented with almost any
prototyping tool, it is important that certain factors are taken into account when
choosing the platform for subsequent incremental prototypes and the finished system.

° all the data in the system will need to be regularly updated whilst the system is
being developed, since the elicitation and refinement process is being carried out
in parallel with interface development

* an interface which allows domain experts to update and maintain the system
will need to be developed in parallel with the other system developments, and
ideally will be in place early in the project cycle to make it easier to enter data
whilst the development is in progress.

e if multimedia artefacts (video, sound, images) are to be used, due thought
should be given to storage aspects and to the presentation platform which will be
required for the finished system. In some cases there may be a requirement to
develop a ‘cut down’ version which will run on older, lower specification
machines without the multimedia element.

For the SPIRE system, the initial prototype was built using Hypercard, with video clips
implemented using Quicktime tools, however subsequent versions are being based
on a cross-platform relational database package which supports a graphical user
interface. All three layers of the system model can be implemented as sets of database
tables, making data entry and subsequent modifications a relatively simple task.

2.7 Refinement through Iterative Incremental Prototyping

Results of user evaluations will feed back into enhancements to the system model |
and the interface model (to be described below). Since they are formally specified, it
should be quite easy to update them.

3.0 A Model of Human-Computer Dialogue

Once the three layers of the Generic Advice System Architecture have been filled
out with material from the refined models of requirements and domain
knowledge, the high-level structure of the interface has been defined.

It is intended that users should begin a session with the system by entering
information defining a context of interest, for example, that of a lecturer teaching a

Bearne, Hewitt, Jones & Sapsford-Francis

blind student on the Hatfield campus. On the basis of the information entered,
particular layers of domain activities and advice are selected. These then form the
basis for the user's interactions with the system by determining the paths which
the user may follow through the system. The user in our example would first be
presented with hierarchies of activities carried out by lecturers and asked to select
an activity of particular interest. He or she would then be presented with the
appropriate piece of advice from the advice layer. From that advice, it would be
possible either to access information from the data layer or further pieces of advice
on related topics.

The task of interface design is thus confined mainly to defining a look and feel to
the system. It would be possible to implement the interface using a range of
technologies. Advice systems of the kind envisaged could in theory be
implemented using text-based command line interfaces. However, both SPIRE and
MODEMA have employed multimedia interface technologies for the presentation
of information from the data layer, as it has been felt that it is more effective to
present such information using a combination of text, graphics and video. It is
intended that sound might also be added in future prototypes of the SPIRE system.

We are currently considering the way in which the complex task of designing
multimedia interfaces can be supported by modelling dialogue in those interfaces
using the CSP notation [Hoare 85]. CSP can model all systems or dialogues which
can be represented using either state transition diagrams or Petri nets. It is quite
readable for non-mathematicians, even in its textual form, and tools such as
Alexander's SPI [Alexander 87] have been developed to support graphical
animation of specifications written in a subset of CSP. Previous work [Jacob and
Jones 94] has suggested the way in which a small part of the CSP notation can be
used to model multimedia interfaces. The rest of this section describes the way in
which a fragment of the dialogue between the lecturer of a blind student and the
data layer of our advice system may be specified.

Symbols used include: £ which means 'is defined as'; -> which can be read as
'then’; 1 and [which denote choice between two alternative paths of
behaviour, internally and externally to the process in which the choice is made;
| | which means, roughly 'during the same time period as’; and SKIP which
means that a particular part of the dialogue has finished.

We assume that information about the context of interest has already been entered,
and consider a user who has already navigated to a particular point in the activities
layer and selected the activity 'preparing exams' as being of particular interest. For
the sake of illustration, we assume that the user has three interests in this respect:
she wants to find out what the policy of the University of Hertfordshire is in this
case; she wants to find out how the exam papers might be produced; and she is also
concerned about the way in which the exam will be marked. We model this
simplified view of the user as follows:

16

Bearne, Hewitt, Jones & Sapsford-Francis 17

Lecturer of_ Blind Students_at Hatfield =
Lecturer of Blind Students_at_ Hatfield Consulting UH_Policy ||
Lecturer_of Blind Students_at_ Hatfield Preparing Exam Papers ||

Lecturer_ of Blind Students_at_ Hatfield Marking Exams

The user begins the dialogue by asking for advice about the activity selected:

Lecturer_of_Blind Students_at_ Hatfield Preparing Exam Papers &
open_advice preparing exam papers_for_blind students_at_hatfield ->

Seeking Advice Preparing Documents_ for Blind Students_at_Hatfield

She is then presented with a piece of text presenting the advice shown in figure 4.
At this point, she is able to access information from the data layer relating to
various components of the advice (including the RNIB Braille service, and
embossers and swellpaper machines held at Hatfield), or to request advice on
another interest of hers (that of marking exams completed by blind students at
Hatfield) not specifically covered:

Seeking Advice_Preparing Documents for Blind Students_at_ Hatfield =
(open_info RNIB braille service ->
Seeking_Advice_Preparing_Documents_for_Blind_Studenﬁs_at;Hatfield
.
open_info_ embosser_at_hatfield ->
(begin_embosser video play ->
Seeking Advice Preparing Documents_for Blind Students_at_Hatfield
Il
Seeking Advice Preparing Documents_for Blind Students_at_Hatfield)
[l
open_info_swellpaper at_hatfield ->
Seeking Advice Preparing Documents for Blind Students_at_Hatfield
I

open_advice marking exams for blind students_at_hatfield)

Bearne, Hewitt, Jones & Sapsford-Francis

Information from the data layer is presented by a system module referred to below
as the Information_bDisplayer.This module handles the presentation of
information in a range of media: text, graphic stills and videos for the purposes of
this example. The information displayer co-ordinates presentation of information
in different media so that, for example, text and graphics relating to the same entity
in the data layer are presented at the same time and the timing of a video
presentation can be controlled. It can be modelled as three separate processes
controlling the presentation of the three media of interest, which run in parallel
with another process synchronising with the user's input:

Information Displayer = Info_ Text Displayer || Info_Graphics Displayer ||

Info_Video Displayer

[

(open_info RNIB braille_service ->
RNIB Braille Service Info_Display
O

open_info_embosser_at_hatfield ->
Embosser_ Info_Display

(

open_info_swellpaper_ at_hatfield ->
Swellpaper Info Display

a1

open_info braille decoders_at_hatfield ->

Where the relevant information is displayed in a purely textual form, the
presentation is simple:

RNIB Braille Service Info_ Display e

display_ text info RNIB_braille service -> SKIP

Where several components of information in different media are to be presented,
the process is a little more complicated as presentation of the different media has to
be synchronised. Here, for example, textual information about the embossing
machine at Hatfield is presented at the same time as a graphic still showing what
the machine looks like. There is also a process which supports the running of a
video showing how the embosser will be used: this process is set in motion by the

i

18

Bearne, Hewitt, Jones & Sapsford-Francis 19

user's request to 'begin_embosser_video_play' which was modelled as an optional
part of the dialogue under 'seeking Advice Preparing Documents for Blind
_Students_at_Hatfield' above:

([P}

Embosser_ Info Display Embosser Text Display || Embosser_ Graphic_Display | |

Embosser Video_Display

>

Embosser Text Display = begin_info_embosser ->

display text_info embosser -> SKIP

A

Embosser Graphic Display = begin_info embosser ->

display_graphic_info_embosser -> SKIP

Embosser Video Display 2 begin_embosser video_play ->

end_embosser_video_play -> SKIP

One of the main benefits of modelling dialogue with a multimedia system in this
way is that it should allow us to determine in a precise way, using mathematical
reasoning, whether the design proposed conforms to particular specifications, for
example, those imposed by the hardware on which the system is to be
implemented. For example, many machines are not powerful enough to run more
than one video at the same time. If our dialogue design has been specified in CSP,
we should be able to show that it does not permit situations in which this would be
the case. Work on determining the extent to which complete dialogues of this kind
can be specified in CSP, and the ease with which proofs of salient properties can be
constructed is ongoing.

An appropriate representation for the relationship between the CSP specification
and a model of screen states is currently being considered.

4.0 Conclusions

We have presented a method for developing advice systems which allows users to
access information about a domain of interest using their existing knowledge and
understanding. It supports exploratory learning which will increase the users'
expertise in the domain.

This method has evolved out of our experience of developing advisory systems. A
number of problematic issues, associated with advisory systems have been addressed.

Bearne, Hewitt, Jones & Sapsford-Francis 20

The Refinement of Requirements and Domain Models uses a combined approach to
build upon the initial requirements and domain models. This combined approach
might include such activities as interviewing, card sorting exercises, scenario-based
requirements and knowledge elicitation and the presentation of a "throw away"
prototype. The resulting Refined and Integrated Model includes the information
necessary for addressing usability issues. This information will have come from both
the requirements analysis and the domain analysis. It enables us to design an
interface structure that capitalises on users' domain knowledge.

The structured nature of the Refined and Integrated Model means that it is easy to
incorporate enhancements suggested during the process of validation and verification
by users of the system. Models of the Domain, the Interface and the Requirements for
the system can all be evolved in parallel.

The Generic Interface Architecture provides a flexible structure within which a wide
range of interactions can be pursued. It provides a high level structure for the
interaction in terms of a Domain Activity Model, and an Advice Network. This
supports the seeking of general advice, exploratory learning in the domain and
obtaining specific information.

This architecture can be applied to the development of a range of systems of this kind,
for example a similar structure was used in MODEMA. We have also considered
applications such as careers advice, rehabilitation programmes, and a reference model
for creating multimedia systems. The architecture leaves the interaction style, "look
and feel" of the interface open, so that it can be implemented on a range of platforms
providing access to users with special needs.

Work on the SPIRE project is continuing and we aim through this work to refine the
method and provide more formal modelling techniques allowing for further
integration between components of the proposed models.

5.0 References

Alexander, H. 1987, "Formally-Based Tools and Techniques for Human-Computer
Interaction”, Ellis Horwood

Amble, T. 1987, Logic Programming and Knowledge Engineering, Addison Wesley.
Brazier F.M.T. & Ruttkay, Zs. 1993, "Modelling Collective User Satisfaction", in
Advances in Human Factors/Ergonomics, 19A, Human-Computer Interaction, Smith
& Salvendy, eds. Elsevier.

Cordingley, E.S.B. 1989, Knowledge Elicitation Techniques for Knowledge Based
Systems. in Knowledge Elicitation: Principles techniques and applications. Diaper, D.
(Ed.) Ellis-Horwood 1989.

Guindon, Raymonde, 1990, "Designing the Design Process", Human Computer
Interaction, V5 Nos. 2 & 3 1990

Bearne, Hewitt, Jones & Sapsford-Francis 21

Hewitt, J. Sapsford-Francis, J. and Halford, P. 1994 "MODEMA - A Multimedia Public
Information System" in Multimedia Technologies and Future Applications, Pentech
Press Limited

Hoare C.A.R. 1985, "Communicating Sequential Processes", Prentice Hall, 1985.
Meister, D, 1989, "Lost in Computer Space", Int. J. of H.C.I. Vol 1 No. 2

MODEMA Deliverable 8, 1993, Document Number: MODEMA /WP6/DD08/FU

Jacob L. and Jones S. 1994 "Formal Dialogue Specification for Hypertext and Multimedia
Systems", Technical report number 175, School of Information Sciences, University of
Hertfordshire. Submitted for presentation at EWHCI 94.

Young R.M. & Barnard P. 1987 “The use of scenarios in human-computer interaction
research: turbocharging the tortoise of cumulative science”, Proc CHI ‘87

