DIVISION OF COMPUTER SCIENCE

The Representation of Rules in Connectionist Models

Michael St Aubyn

Technical Report No.227

June 1995

The Representation of Rules in Connectionist Models

MICHAEL ST AUBYN

Abstract: Three models of connectionist rule processing are presented and discussed: Shastri and
Ajjanagadde's SHRUTI system, which uses connectionist mechanisms to overcome the inefficiency of
classical rule-based models; Sun's CONSYDERR model, which combines rule-processing and similarity-
maiching in a two-level architecture; and Sumida and Dyer's Parallel Distributed Semantic (PDS)
Network, which adds generalisation and inferencing capabilities to a semantic network. The Sun and
Sumida and Dyer models are illustrated with implementations and example runs. Aspects of rule-based
reasoning not addressed by these models (rule learning, the encoding of rules without hard-wired

structure, and holistic rule application) are discussed in the context of a proposed new model.

1. Introduction

Much of human cognitive performance has the appearance of being rule-driven. At the
most obvious level, we are capable of internalising and applying sets of instructions (the
directions that someone gives us in the street, for example); our use of language seems
to be governed by rules of grammar; and, more generally, the existence of systematic
relations in human thought has been taken as evidence for a grammar of mental
representations (Fodor 1975, Fodor and Pylyshyn 1988). Such considerations settle
comfortably into a sententialist account of cognition, one in which complex structured
representations are modified by rules in an essentially serial symbol-processing
mechanism. This is the theory of cognition that underlies most of classical (here
meaning pre-connectionist and pre-artificial life) Al.

The problems of classical cognitivism are well known. They derive largely from
the inflexibility of rule-based systems and their consequent impracticality outside
artificial domains; and from the difficulties of reconciling a high-level cognitive model
with the base-level neural mechanisms in which it is supposedly grounded. A classical
model of natural language processing, for example, may apply a sequential algorithm to
a string of words to produce a representation of the syntactic structure of the sentence,
while in the process creating and discarding a number of temporary structures

representing instantiations of variables, aborted interpretations of phrases, etc. The

2

techniques employed here - serial processing, nested representations, dynamic memory
allocation and garbage collection - are natural and familiar features of most computer
languages (a fact which makes it easy to overlook how un-brainlike they are); yet if a
program which employs them is claimed to be a model of cognition, as many classical
Al systems are, it is reasonable to ask for an account of these mechanisms along with
the rest of the model.

In one view, this is the role of connectionism: to provide a plausible explanation
of the basic subskills of cognition, which can then be employed in a high-level (and
essentially classical) model. If some of the 'nice' features of connectionism
(generalisation, pattern completion, graceful degradation, etc.) percolate upwards in the
process, so much the better. Thus, the processing of sequential information has been
modelled in recurrent networks (Elman 1988); complex nested representations in
recursive auto-associative memory (RAAM) (Pollack 1988); and dynamic memory
allocation in neural net models using node recruitment techniques (e.g., Diederich
1988). This might be called the bridging approach to connectionism, since it uses
connectionism to span the divide between top-level cognition and base-level
mechanism.

In another view, connectionist models such as those just mentioned represent a
theory-level challenge to classical cognitivism. By showing how simple tasks may be
accomplished without classical structure, they raise the possibility that large areas of
cognition might be performed in this way. Chalmers (1990), for example, shows how
the transformation of a sentence from the active to the passive form (e.g., John loves
Mary -> Mary is loved by John) may be performed by a connectionist model which
operates holistically upon RAAM-encoded distributed representations of the sentences,
i.e., without the usual compositional analysis and reconstruction. Such models
encourage an eliminativist view of connectionism, one which sees connectionism as an
alternative theory at the cognitive level, rather than simply a new mechanism for
implementing the old, sententialist cognitive structures.

The three models discussed in this paper hardly support so radical a view. To a
large extent each is an implementation of a classical rule-based system, though one
which raids the toolbox of connectionism for mechanisms which add interesting and
desirable features to the reasoning process. Shastri and Ajjanagadde's model (Section
2), for example, makes use of the high level of parallelism in a neural network and the
efficiency of activation propagation to overcome some of the practical limitations of a
knowledge-based system; Sun (Section 3) uses feature-based representations to add
similarity-matching to a reasoning system; and Sumida and Dyer (Section 4) increase
the functionality of a semantic network by exploiting the ability of connectionist models

to classify and generalise. To some degree, each of the three systems is claimed to be a

3

cognitively plausible model of certain aspects of human reasoning. Such claims are
questioned and discussed throughout this paper.

2. A Connectionist Model of High-Level Inferencing (Shastri and Ajjanagadde)

Shastri and Ajjanagadde's SHRUTI system (1991) employs mechanisms borrowed from
connectionism to directly implement the short episodes of rapid, unconscious inference
which, the authors argue, underlie a wide variety of intelligent behaviour. In modelling
this kind of reasoning (which the authors call reflexive, as distinct from reflective,
pencil-and-paper reasoning) three kinds of knowledge are represented and used: long-
term (hard-wired) facts, short-term facts, and long-term rules. No account is given of
how long-term facts and rules are acquired, nor is it possible to modify long-term
knowledge without cutting or adding connections or adding or deleting nodes (which
the system does not allow). In terms of its behaviour, the model is, in fact, a fairly
simple (though potentially very efficient) backward-chaining question-answering
system in the style of Prolog. Where it differs significantly from other backward-
reasoning systems is in its method of implementation. By using a mechanism consisting
only of computationally-simple autonomous nodes propagating activations within a
network, Shastri and Ajjanagadde attempt to produce a model of reflexive reasoning
that is neurally and psychologically more plausible than a 'classical' system with a

central controller running a serial program.

2.1. The Dynamic Binding Problem

The challenge of implementing an essentially classical process in a non-classical
mechanism raises some interesting technical issues, foremost among which is the
dynamic binding problem. This is the problem of assigning temporary values to
predicate arguments, as when the general relationship X owns Y is instantiated to the
short-term fact Mary owns Bookl; using a rule (e.g., If X owns Y then X can sell Y) may
require propagating the assigned values from the variables in the antecedent to those in
the consequent (to infer that Mary can sell Bookl). In addition, multiple instantiations
of the same predicate (e.g., Mary owns Bookl and John owns Ball3) should be allowed
to coexist without crosstalk; and categorisation restrictions should be available to
prevent nonsensical bindings (e.g., Bookl owns Mary).

In a classical reasoning system such as Prolog, dynamic binding is performed by
means of a look-up table which holds the current value of each variable: the program
simply retrieves the appropriate values from the table whenever they are needed (this

Binding Units

Filler
Units

IR IR
o
O

5 1O 1O O
5 1O 1O o
o

Role Units

Figure 1. A network to perform tensor product binding (Smolensky 1990).

may be a recursive process if variables are allowed to take other variables as their
values). Multiple instantiations are usually handled by renaming. Prolog, for example,
creates a copy of a clause each time that clause is invoked, renaming all the variables at
the same time to avoid conflict with other copies of the same clause.

Some connectionist models of dynamic binding use methods similar to that of
the look-up table. For example, Smolensky's (1990) tensor product system is
implemented using a grid of vertical and horizontal links: each vertical link is connected
to a role unit and each horizontal link to a filler unit, with a binding unit at each point of
intersection (Figure 1), A binding is stored by activating a pair of role and filler units
and propagating the activations to the binding unit at the junction. To retrieve a binding,
a role unit is activated; this activity, combined with that in the binding unit, sets up
activity in the corresponding filler unit. The model can handle multiple instantiations
(by multiplying the number of links and points of intersection) and variables with
variable values (by recursively feeding filler unit activations back into the grid as role
unit activations). The obvious limitation of this method is the sheer quantity of links and
units that are required: n*m binding units in a model with 7 variables and m values.
Since each potential binding requires a dedicated unit, yet only a small proportion may
ever actually be used, there is huge redundancy in a model of this sort. A less wasteful
approach might involve the dynamic creation of pathways and units in the grid as they

5

become necessary. However, the extent to which such a system could be regarded as a
cognitive model is questionable: dynamic structural changes are difficult to map onto a
physical model of the brain.

For this reason, connectionist methods of dynamic binding typically involve
some form of activation encoding within a static structure. An example is Lange and
Dyer's (1989) system of signatures. A signature is an activation magnitude which
uniquely identifies a concept. Thus to represent the dynamic binding of a variable to a
value, a node representing the variable is activated with the value's signature. Passing a
value from one variable to another in an episode of reasoning is then equivalent to

propagating an activation along the link connecting two nodes.

2.2. Temporal Synchrony

Shastri and Ajjanagadde's solution to the dynamic binding problem is also a form of
activation encoding, though one which exploits the waveform characteristics of an
activation (in particular, its phase position) rather than its magnitude solely. A predicate
argument is bound to a value if the nodes representing the argument and value are firing
synchronously. They call this approach temporal synchrony.

As an example, a representation of the binary predicate owns contains two
argument nodes labelled owner and o0-obj. The entities Mary and Bookl are represented
by two additional nodes, each firing with a unique rythmic pattern of activation. The
dynamic fact owns(Mary, Bookl) may then be represented by' synchronising the
activation of the owner node with the Mary node, and the 0-0bj node with the Bookl
node.

A rule is represented by connecting the argument nodes of the antecedent to
those of the consequent: the rule owns(x,y) -> can-sell(x,y) is illustrated in Figure 2.
The directed links and the activation functions of the nodes ensure that the activation
patterns of the owner and 0-obj nodes are copied into the p-seller (‘potential seller') and
cs-obj nodes respectively. This means that the instantiation of the fact owns(Mary,
Bookl) will result in the simultaneous representation of the fact can-sell(Mary, Bookl).
Longer chains of inference are represented by linking up more predicates in the same
way.

There are two important consequences of this form of rule implementation: (1) a
large number of rules can fire in parallel, and (2) the time taken to process a chain of
inference is proportional to the length of the chain and independent of the total number
of rules. This is in contrast to a serial rule-processing system based on linear search and
backtracking, whose performance in general decreases as the magnitude and complexity
of the rule base is increased. (Of course, these benefits of Shastri and Ajjanagadde's

owns

O Mary

: - — (O Book1
can-sell (p-seller(Q cs-0bjO

Figure 2. A connectionist representation of the rule owns(x,y) -> can-sell(x,y).

model only take effect when it is physically implemented, rather than merely simulated
on a serial computer.)

A long-term fact (a static binding of a predicate) is encoded in the model as a
temporal paitern matcher. A cluster of hardwired links and logic gates connects the
predicate to the relevant entity nodes, and transmits a signal to a special node in the
predicate (the collector node) if a dynamic binding of the predicate arguments
corresponds to the static fact. This allows the network to behave as a questioning-
answering system. For example, the question Does John own Car3? is presented by
synchronising the owner node with John and the 0-0bj node with Car3; if owns(John,
Car3) is encoded as a static binding, the collector node of the owns predicate becomes
active, signifying a yes response. Partially instantiated facts may also be represented and
compared: e.g., the dynamic fact give(x, John, Bookl) (giver node left inactive) will
match the static fact give(Mary, John, y) (g-obj node not connected to any entity node),
and the collector node of the give predicate will fire.

2.3. A Backward-Reasoning System
In Shastri and Ajjanagadde's SHRUTI system, the mechanisms of temporal sychrony,

activation propagation and temporal pattern matching are combined in a backward-

reasoning system for question answering. The system encodes rules of the form:

V.. .,xm{Pl(. AP AP) DT, z;Q()}

7

where the arguments of each Pj are elements of {x1,X2,...,xm} and each argument of Q
is an element of {Xx1,x2,....xm} or an element of {z1,22,...,Zj} or a constant. (The system
requires that a variable occurring in multiple argument positions in the antecedent also
appear in the consequent.)

Facts are atomic formulae of the form P(t1,t2,...,tk), where each tj is a constant
or a distinct existentially quantified variable. Questions take the same logical form as
facts but are encoded dynamically, as described above. A question containing a variable
may be interpreted as a yes-no question or a wh-query: e.g., owns(x,Bookl) could mean
Does someone own Bookl? or Who owns Bookl?

Since the system is a backward reasoner, the links between predicates are
reversed (i.e., they lead from the consequent to the antecedent). A question is posed by
activating a set of predicate nodes to instantiate the consequent of a rule or rules. The
activations are then propagated to the antecedents, which may in turn be the
consequents of other rules. The backward propagation continues until a predicate
matches its dynamic instantiation with its static binding. This causes the collector node
to fire, which in turn activates the collector node of the previous predicate in the chain,
and so on back to the predicate where the question was first instantiated, indicating a
yes response.

As a simple example, suppose the system encodes the rule owns(x,y) -> can-
sell(x,y) and the static fact owns(Mary,Bookl). The question Can Mary sell Bookl? is
asked by activating the argument nodes of can-sell in synchrony with Mary and Bookl.
The activations are then passed to the argument nodes of the owns predicate,
dynamically instantiating the question owns(Mary,Bookl)? This matches the static fact
stored at this predicate, so the owns collector node fires. Finally, the activation of the
collector node is propagated back to the collector of can-sell, signalling a yes reply to
the initial question.

To answer a wh-question with the value or values of the unbound arguments
(i.e., to reply Mary to the question Who can sell Bookl?) requires a more elaborate
encoding of static facts. For each long-term fact, extra nodes and connections are added
which ensure that when a successful match is performed, the value of any variables
bound in the process are temporarily stored. An answer extraction phase reads these
values when a yes response is returned after a wh-question.

A problem for the system as described so far is that it cannot handle multiple
dynamic instantiations of the same predicate: e.g., it cannot represent the dynamic fact
loves(Mary,John) at the same time as the dynamic fact loves(John,Mary) (since each
argument node encodes just one filler). Shastri and Ajjanagadde's proposed solution is
to augment each predicate with banks of nodes, along with a complex switching
mechanism that channels instantiations into the appropriate bank. So, for example, bank
1 of the loves predicate could hold the bindings {lover = Mary, loved-one = John}

8

while bank 2 holds {lover = John, loved-one = Mary}. The reasoning efficiency of the
system is reduced in proportion to the number of banks per predicate. Details of this
mechanism can be found in (Mani and Shastri 1992).

2.4. Discussion

The mechanism of temporal sychrony does not appear to offer any distinct
computational advantage over alternative methods of dynamic node marking that
exploit, for example, the magnitude of an activation (as in Lange and Dyer's model) or
sets of nodes encoding binary values. Indeed, the technique presents significant
implementational difficulties (involving the propagation and enforcement of synchrony)
that do not arise in other, functionally-equivalent methods. As a computational device,
temporal synchrony may prove to be most powerful when used as a supplement to other
encoding techniques, to provide an additional dimension to the information content of
an activated node.

Shastri and Ajjanagadde's principal justification of their approach is the
'biological plausibility' of temporal synchrony. They cite research on the cat visual
cortex which suggests that the binding of visual features is realised by synchronous
activity (Eckhorn et al. 1990). However, the plausibility of their model diminishes as
they elaborate it with mechanisms that have no clear biological precedent: e.g., the
temporal and-nodes needed to perform dynamic pattern matching, and the switched
banks of nodes that hold multiple instantiations. Furthermore, the existence of certain
mechanisms at the cellular level (the level of Eckhorn's research) is, arguably, poor
evidence of their significance at the cognitive level (the level which Shastri and
Ajjanagadde attempt to model). To implement high-level processes directly in a base-
level mechanism is to gloss over the many intermediate levels (the virtual machines of
the brain) by which simple mechanical processes (such as, perhaps, the propagation of
sychrony) are built up, layer upon layer, into complex cognitive ones.

As a model of human psychological performance, the reasoning system
described above has two advantages over classical models: the parallel firing of rules,
which enables multiple inferences to be performed simultaneously; and the fact that the
efficiency of any given episode of inference is unimpaired by the size of the rule-base.
As a direct implementation of a rule-based system, however, the model suffers from
some of the same deficiences as a classical system. In particular, it exhibits brittleness -
a failure to cope with situations for which explicit rules have not been provided (if
unable to answer a question precisely, Shastri and Ajjanagadde's model simply returns
an unhelpful, Prolog-like 70). Ron Sun's CONSYDERR model, described in the next
section, directly addresses this issue. '

9

A second problem is that the phase encoding technique is unlikely to exhibit the
graceful degradation that we would expect of a cognitive model: a slight
synchronisation error could result in the representation of an entirely different concept
from the one intended. In Section 4, I shall discuss a model which, by using activation

encodings with semantic content, goes some way towards solving this problem.

3. Similarity-Based Reasoning in a Two-Level Model (Sun)

One reason for implementing rule-based systems as neural networks is to soften the
rigid formalism of such systems by introducing some of the 'nice' features of
connectionism (pattern completion, graceful degradation, generalisation, etc.). A model
which attempts to combine the power of rule-following with the more psychologically
plausible features of connectionism is Ron Sun's CONSYDERR system (Sun 1992a,
1993, etc.). The network is designed to model a variety of commonsense reasoning
patterns (including property inheritance) by treating them as instances of rule-following,
similarity-matching or a combination of both. Here are two examples of commonsense
reasoning (from Collins and Michalski 1990) that Sun models in this way:

1. Q: Is the Chaco the cattle country?
R: It is like Western Texas, so in some sense I guess it's cattle country.

2. Q: Are there roses in England?
R: There are a lot of flowers in England. So I guess there are roses.

The first example illustrates the use of similarity-matching to overcome a lack of
explicit knowledge: Western Texas -> cattle country, Chaco is-like Western Texas,
therefore Chaco -> cattle country. The second example illustrates a form of top-down
property inheritance: England has flowers, rose is-a flower, therefore England has
roses. Neither of these conclusions is certain (as indicated by the respondent's 'I guess');
each depends (or can be made to depend) on a similarity judgment,

Similarity is defined in Sun's model in terms of overlapping feature descriptions.
Two concepts are similar if they share a sufficiently large proportion of their features,
the degree of similarity (and the degree of certainty of any judgments based upon that
similarity) depending on the extent of the overlap of the feature sets.

Given this definition, category membership may be regarded as a special case of
similarity. For example, we can represent the fact that rose is-a flower by making the
feature set of flower a subset of the feature set of rose. We can do this because flower,

being the more general term, requires a less precise, less detailed description; in

10

defining a rose, we begin by defining a flower and then add extra features (e.g., has-
thorns) that distinguish it from other flowers. It is possible in this way to construct an
ISA-hierarchy using sets and subsets of features. The advantages of this approach

become apparent when the network is used to implement property inheritance.

3.1. The CONSYDERR Architecture

The CONSYDERR network consists of two interconnected levels: a localist
level (CL) for explicit, rule-based reasoning, in which nodes represent concepts and
links represent inference rules; and a distributed level (CD) in which nodes represent
features of the concepts in CL. An example (adapted from Sun 1992a) is illustrated in
Figure 3.

CL WESTERN-TEXAS
CHACO
CATTLE-
COUNTRY
\.. s
\‘

\ .

e ™
CD
(5 temp.
subtr. de
) B>
plain cattle-c
woodland scrub

. A

Figure 3. The CONSYDERR network for the Chaco protocol (from Sun 1992a).

Here, the localist concept CHACO is represented in the CD level by a set of five
features (woodland, subtropical, plain, temperate, and desert); WESTERN-TEXAS is
represented by four features (three shared by CHACOQ); and CATTLE-COUNTRY by
one feature. Each CL node is connected to each of its CD feature nodes by two
weighted links (here represented by a single line), one passing activations top-down
from CL to CD, the other propagating bottom-up. The rule WESTERN-TEXAS ->

11

CATTLE-COUNTRY is represented by the directed link between the two nodes in CL. It
is also represented distributedly in CD by links from the feature nodes of WESTERN-
TEXAS to the feature node of CATTLE-COUNTRY.

Having defined the network and established the weights of the connections (as
explained below), we activate and clamp the CL node that we are interested in, and
propagate its activation through the network in three phases. Phase 1 enables the top-
down links, activating (and clamping) the CD feature nodes corresponding to the active
CL concept. Phase 2 enables the intra-level (rule) links, allowing the CL and CD
activations to propagate and settle. Finally, phase 3 enables the bottom-up connections.
The results of the enquiry are read off as activations in CL.

In the example network of Figure 3, it is the CHACO concept that interests us,
so we begin by clamping this node in CL. The top-down phase then activates and
clamps the five nodes in CD that correspond to the feature description of CHACO
(incidentally activating three quarters of the feature description of WESTERN-TEXAS at
the same time). Nothing happens in the CL settling phase, since there are no links from
the activated CHACO node to either of the two other CL nodes. In the CD settling
phase, however, the activations of three of the feature nodes (plain, temperate and
desert) are propagated to the cattle-country CD node along links that distributedly
represent the rule WESTERN-TEXAS. Finally, in the bottom-up phase, the CL nodes
WESTERN-TEXAS and CATTLE-COUNTRY are activated by their feature nodes. We
read the answer to the original question (Is the Chaco the cattle country?) by examining
the CATTLE-COUNTRY node in CL: the activation of this node indicates a yes reply.

Two points should be noted here. First, the similaﬂty-matching and rule-
following are each done in parallel, and in time independent of the number of concepts,
features and rules involved - an important property in a model of spontaneous reasoning
processes. Secondly, a node activation can take a range of values, allowing a measure of
confidence to be attached to each conclusion: e.g., a result derived from a marginal
similarity-match is indicated by a low level of activity in the corresponding node.

In the following sections, I describe an implementation of Sun's model, and

discuss the issues arising from it.

3.2. Implementation Details

A certain amount of detail must be added to this basic description before we have a
working model. Most importantly, we must define the activation functions of the CL
and CD nodes, and the formulae for calculating the link weights. The functions and
formulae given here are slightly simplified versions of those in (Sun 1993).

12

In the top-down phase, the activation of each CD node i is found by calculating
(WEIGHT4; * ACTIVATIONY) for each CL node A that is linked to i by a top-down
connection, and then choosing the maximum weighted input as the activation value.

In the settling phase, the activation of a CL or CD node is the sum of its
weighted inputs from activated nodes in the same level.

In the bottom-up phase, the activation of a CL node is EITHER its activation
from the CL settling phase OR the sum of its weighted inputs from the CD nodes to
which it is connected. The larger of these two values is chosen as the activation value of
the node (since we do not want an uncertain result from one level to diminish a more
certain result from the other).

The connection weights are defined as follows. The rule weights in CL are
specified by the user, and indicate the certainty of a rule. In this implementation, rule
weights are floating point numbers in the range O to 1, so if it is 90% certain that X
implies Y, this could be indicated by a weight of 0.9 on the directed link from X to Y.

The CL rules are represented distributedly in CD by connecting each feature
node of the antecedent to each feature node of the consequent. The weight on each
connection is the same, and is found by dividing the rule weight in CL by the number of
features in the antecedent.

The top-down weights from a concept X to its feature nodes are all set at 1, and
the bottom-up weights from the feature nodes to X are each (1 / the number of features
in X). This arrangement ensures that in passing the activation of X to the distributed
layer and back again, we end up with the same activation value at X that we started
with. ' ‘

The configuration of the rule weights and the activation functions involves a
number of simplifying assumptions about the knowledge domain. In particular, it is
implied that each feature contributes equally in the representation of a concept and in
the rules in which the concept is involved. The problems arising from this assumption
will be discussed later.

In this implementation, the top-down, bottom-up, and CD intra-level weights are
calculated automatically in the initial set-up procedure of the program. The user
supplies (within the program code) a list of the concepts to be represented in CL,
together with their feature definitions. A list of CL rules and rule strengths must also be
provided, along with the activation level of the initial enquiry node. The program then
constructs the network and runs the three phases, as described above.

3.3. Some Example Runs

13

The first example implements the network in Figure 3. The output of the program is
given below:

Nodes in CL, and their features:
WESTERN-TEXAS = {temperate, plain, desert, scrub}
CHACO = {subtropical, woodland, plain, temperate, desert}
CATTLE-COUNTRY = {cattle-country}

Rules in CL:
WESTERN-TEXAS -> CATTLE-COUNTRY (Rule strength = 1.000)

Activated nodes in CL, initially:
CHACO (1.000)

The program begins by displaying the information supplied by the user. It now
constructs the two-level network and displays the connection strengths within CD:

Links in CD:
temperate -> cattle-country (Link weight = 0.250)
plain -> cattle-country (Link weight = 0.250)
desert => cattle-country (Link weight = 0.250)
scrub -> cattle-country (Link weight = 0.250)

Notice that each of the four link weights in CD is a quarter of the value of the
rule weight in CL: the implication, that each feature contributes equally to the high-
level properties of a concept, is a convenient, though unrealistic, assumption (Western
Texas may be cattle-country in spite of being desert). The top-down phase is now
performed, activating the distributed representation of CHACO:

Activated nodes in CD, after top-down phase:
temperate (1.000)
plain (1.000)
desert (1.000)
subtropical (1.000)
woodiand (1.000)

The settling phase now enables the internal connections in each level, and the

activations are propagated according to the rule-based knowledge represented in the
links:

14

Activated nodes in CL, after settling phase:
CHACO (1.000)

Activated nodes in CD, after settling phase:
temperate (1.000)
plain (1.000)
desert (1.000)
subtropical (1.000)
woodland (1.000)
cattle-country (0.750)

The settling phase has had no effect in CL (there are no explict rules involving
CHACO), but in CD the cattle-country node has become partially active. The activation
of 0.75 recognises that the use of the CD representation of the rule WESTERN-TEXAS
-> CATTLE-COUNTRY is uncertain (since only three quarters of the feature description
of WESTERN-TEXAS have been activated). Finally, the bottom-up phase converts the

distributed representations into localist activations:

Activated nodes in CL, after bottom-up phase:
WESTERN-TEXAS (0.750)
CHACO (1.000)
CATTLE-COUNTRY (0.750)

Here the cattle-country activation has simply been propagated to the CL node,
where its value may be interpreted as the certainty of the conclusion 'Chaco is cattle
country'. The activation value of WESTERN-TEXAS is not exactly a measure of the
similarity of WESTERN-TEXAS to CHACO, but rather an indication of the extent to
which the former may be regarded as a superclass of the latter. (If the CHACO feature
description had contained all four features of WESTERN-TEXAS, the activation of
WESTERN-TEXAS (and CATTLE-COUNTRY) would have been 1.)

The second example run implements top-down property inheritance in an ISA
hierarchy.

Nodes in CL, and their features:
BIRD = {flies, bipedal, has-feathers, lays-eggs, has-beak}
CANARY = BIRD + {is-yellow, sings}

15

TWEETY = CANARY -+ {lives-in-cage, belongs-to-john}

PENGUIN = {bipedal, has-feathers, lays-eggs, has-beak, likes-cold, eats-fish}
PONGO = PENGUIN + {lives-in-london-zoo}

SCARED-OF-CATS = {scared-of-cats}

CHASES-MICE = {chases-mice}

Rules in CL:
BIRD > SCARED-OF-CATS (Rule strength = 1.000)

Activated nodes in CL, initially:
TWEETY (1.000)

The network constructed from this data represents the following facts: TWEETY
isa CANARY, CANARY isa BIRD, PONGO isa PENGUIN, PENGUIN isa BIRD, and
BIRD has-property SCARED-OF-CATS. Each of the isa facts is represented in terms of
overlapping feature sets. Thus the BIRD feature set is a subset of the CANARY feature
set. Notice that one member of the BIRD feature set (flies) is not included in the set of
PENGUIN features, indicating that BIRD is not an exact superclass of PENGUIN and
that PENGUIN isa BIRD does not have the same degree of certainty as the other isa
facts. (This does not seem entirely unnatural if we interpret BIRD as meaning 'typical
bird'.) The has-property fact is represented by a link between two CL nodes. In
activating the TWEETY node, we effectively ask the question What can we infer about
Tweety? ' ‘

Activated nodes in CD, after top-down phase:
flies (1.000)
bipedal (1.000)
has-feathers (1.000)
lays-eggs (1.000)
has-beak (1.000)
is-yellow (1.000)
sings (1.000)
lives-in-cage (1.000)
belongs-to-john (1.000)

Activated nodes in CL, after settling phase:
TWEETY (1.000)

Activated nodes in CD, after settling phase:

16

flies (1.000)

bipedal (1.000)
has-feathers (1.000)
lays-eggs (1.000)
has-beak (1.000)
is-yellow (1.000)

sings (1.000)
lives-in-cage (1.000)
belongs-to-john (1.000)
scared-of-cats (1.000)

Activated nodes in CL, after bottom-up phase:
BIRD (1.000)
CANARY (1.000)
TWEETY (1.000)
PENGUIN (0.667)
PONGO (0.571)
SCARED-OF-CATS (1.000)

The firing of the SCARED-OF-CATS node with activation 1.0 indicates that
Tweety, as a typical bird, is scared of cats. It is an important feature of this network that
the retrieval of this fact was achieved without the kind of path-following activity that is
typical with inheritance hierarchies. Class membership is decided simultaneously at all
levels of the hierarchy as an automatic consequence of the feature set system of
representation.

It is interesting to see what can be inferred about Pongo, as an atypical bird. We
do this by reinitialising the network with PONGO as the activated node, and performing

the three-phase propagation as before. The final result is as follows:

Activated nodes in CL, after bottom-up phase:
BIRD (0.800)
CANARY (0.571)
TWEETY (0.444)
PENGUIN (1.000)
PONGO (1.000)
SCARED-OF-CATS (0.800)

The atypicality of penguins means that the properties of a typical bird cannot be
assigned to Pongo with complete certainty.

17

The final example run implements the second example of commonsense
reasoning in the introduction to this section:

Q: Are there roses in England?

R: There are a lot of flowers in England. So I guess there are roses.

Nodes in CL, and their features:
ENGLAND = {england}
FLOWER = {has-stem, has-petals, grows-in-soil, needs-sunlight, needs-water, scented}
ROSE = FLOWER + {has-thorns, fragrant}
RED-ROSE = ROSE + {is-red}
WHITE-ROSE = ROSE + {is-white}

Rules in CL:
ENGLAND -> FLOWER (Rule strength = 1.000)

Activated nodes in CL, initially:
ENGLAND (1.000)

Activated nodes in CD, after top-down phase:
england (1.000)

Activated nodes in CL, after settling phase:
ENGLAND (1.000)
FLOWER (1.000)

Activated nodes in CD, after settling phase:
england (1.000)
has-stem (1.000)
has-petals (1.000)
grows-in-soil (1.000)
needs-sunlight (1.000)
needs-water (1.000)
scented (1.000)

Activated nodes in CL, after bottom-up phase:
ENGLAND (1.000)
FLOWER (1.000)

18

ROSE (0.750)
RED-ROSE (0.667)
WHITE-ROSE (0.667)

3.4. Discussion

Many of the problems with Sun's model are problems of microfeature representation in
general. There is not just the considerable difficulty of constructing a feature set for
each concept; we must also make decisions about the relevance of each feature for a
given task. Sun's approach, though suitable for the highly specific examples illustrated
here, cannot easily be generalised to handle a range of tasks in which the notion of
relevance may change from one episode of reasoning to the next. As a simple example,
the CONSYDERR representations of John Major and Tony Blair would each contain
the whole of the politician feature set, which in turn would contain all the features of
human, and so on. The very large number of shared features would encourage the model
to assume that anything true of John Major is also true of Tony Blair; whereas in fact
most questions involving these two would require the reasoner to focus on their political
differences.

Sun hints at a solution to this problem when he talks of an 'attention-focusing
module external to the system' (Sun 1991 p.441). He gives no details, but one can
imagine a device that masks out parts of the CD layer (perhaps by sending a strong
negative bias to selected CD nodes), forcing the model to focus its similarity judgments
on a limited set of microfeatures - those concerned with political policy, for example.
There remains, of course, the question of how the external module would itself
determine relevance (also the problem of predefining the feature sets to cope adequately
with all possible contexts in which they might be required).

An aspect of microfeature representation that is highlighted in the example runs
is that some features are clearly more central to the definition of a concept, and
contribute more to its high-level properties, than others. This idea is not captured in
Sun's model, which automatically assigns equal importance to all features of a concept
representation. A simple remedy might be to give each feature an importance rating or
centrality (Sutcliffe 1992), represented by the weights of the interlevel links. But the
issue of relevance again raises problems: features may need to assume different
centralities in different contexts.

Even greater difficulties arise when we consider concepts that do not readily
lend themselves to microfeature representation. What, for example, are the
microfeatures of SCARED-OF-CATS, which we chose to represent as a high-level

concept in the second example run? To say that there are no microfeatures because we

19

cannot name them seems unreasonable: we should not expect microfeatures, being
subconceptual, to have names anyway. But if we cannot even name the features of a
concept, how can we assign plausible centralities? These sorts of questions plague Sun's
model, and indeed any model which relies heavily on feature representation.

One of the properties of the model that Sun draws attention to is its ability to
merge concepts by simultaneously activating their feature descriptions. The example he
gives (Sun 1991 p.440) is that by activating the description of utility-vehicle at the same
time as passenger-vehicle, we end up with a description of van. However, this tendency
of the model to merge everything it represents can also be regarded as a serious
limitation. Suppose we wished to ask a question involving more than one concept, e.g.,
Is Tweety scared of Sylvester? Activating Tweety and Sylvester simultaneously and
propagating the activations to CD would not produce two separate representations but
one merged representation of the two entities together. Unless some form of activation
encoding (temporal synchrony?) is employed to identify members of separate
distributed representations, the model is restricted to reasoning about a single concept
(or set of semantically related concepts) at a time.

A further serious restriction of the model as presented here is the propositional
nature of the rules in CL. The system is capable of representing facts such as All birds
are scared of cats (in the second example run), but the reasoning component falls far
short of the expressiveness of first-order logic (or even the subset of FOL implemented
in Shastri and Ajjanagadde's model). Sun's proposed solution (Sun 1992a, 1992b)
involves replacing each CL node with an assembly of nodes representing a predicate
(e.g., IS-BIRD(X), SCARED-OF(X,Y)), each argument of the predicate being
represented by a separate node within the assembly. To associate a predicate argument
with an entity, the appropriate node is activated with a value that represents that entity
(in this respect, Sun's approach resembles Lange and Dyer's (1989) method of variable
binding by activation signatures). To perform an inference, as in Shastri and
Ajjanagadde's model, the argument node activations are passed along links to the
argument nodes of other predicate assemblies in CL. In CD, node assemblies are used
to represent predicates and their arguments in distributed form; argument fillers are
again represented by node activations, and take their values from the argument nodes of
the predicate assemblies in CL during the top-down phase.

In other words, it is predicates such as SCARED-OF(X,Y) which are now being
represented explicitly in CL and distributedly in CD (as a set of feature predicates:
SX)Y), f2(X,)Y), etc.). But this raises a number of new difficulties. First, the
construction of microfeature sets seems even more problematic when applied to two- or
more place predicates (Sun gives no concrete examples, and indeed it is hard to think of
many relationship predicates which can be adequately deconstructed into microfeatures,
as the model requires). Secondly, the communication of bindings between CL and CD

20

will lead to frequent conflicts in both the top-down and bottom-up phases. Since the
feature sets in CD may overlap, there will be a conflict whenever a CD predicate is
required to participate in the representation of two differently instantiated CL predicates
(do the argument nodes in the feature predicate take bindings from the first CL
predicate, from the second, or from a combination of both?). A similar problem arises in
the bottom-up phase when the features of a single CL predicate have been instantiated
with conflicting bindings in the settling phase. Sun discusses these problems (Sun
1992a p.312), but proposes no satisfactory solutions.

As a cognitive model, the two-level architecture corresponds, to some degree, to
Shastri and Ajjanagadde's distinction between reflective and reflexive reasoning, the
former being implemented in the CL settling phase, the latter in the CD settling phase.
The top-down phase models the process by which we internalise concepts to prepare
them for reflexive (unconscious) reasoning, while the bottom-up phase merges the
results of the two reasoning processes in a form suitable for communication to others.
One point at which the correspondence fails, however, is in the duplication of the CL
rules in CD. Part of Shastri and Ajjanagadde's thesis is that the rules involved in
reflexive reasoning are of a different nature from those used reflectively - not just the
same rules represented differently, as in Sun's model. (In fact, the duplication of rules
leads to some superfluous processing in the model: in each of the example runs, the
removal of the CL settling phase made no difference to the result.) An interesting
experiment might be to implement different sets of rules in the two levels, to capture

more closely the distinction between the two forms of reasoning.

In the first-order version of Sun's model, as in Lange and Dyer's system,
dynamic variable binding is performed by firing a node representing a variable with an
activation signature representing an entity. The same principle is employed in the
Shastri and Ajjanagadde model, though here the signature is encoded by phase rather
than magnitude: two node activations must be in synchrony if they are to represent the
same entity. In all three models, a signature is an arbitrary value chosen more or less at
random - the only requirement is that it be distinct from other signatures simultaneously
employed in the same model.

There are two difficulties here. First, a reasoning system may need to access a
large number of separate items. If each is to be represented by a distinct signature, there
must be a very high degree of precision in the activation encoding at each argument
node. This is both biologically implausible (if the nodes are intended to correspond in
some way to neurons) and technically difficult to enforce in a physical implementation
of a network. The technical difficulties are particular severe in Shastri and
Ajjanagadde's model, since the propagation of activations inevitably involves slight
delays, leading to corruption of the phase signatures. In fact, Shastri and Ajjanagadde

21

estimate that their model can unambiguously represent only about ten distinct
individuals at one time. Their proposed solution to this problem is a system of dynamic
allocation of phase signatures from a small pool, to which each signature is returned
when no longer needed. The recycled signature is then made available for reallocation.
If the system is required to reason simultaneously about more items than it has
signatures to label them with, it becomes 'forgetful' (in fact, Shastri and Ajjanagadde
note the close correspondence of their figure of ten to the number 7 + 2, the estimated
measure of short-term memory capacity (Miller 1956)). The signature pool is an
ingenious solution, but it is difficult to imagine how a mechanism of this sort could be
realistically incorporated into the model.

A second problem arises when a signature is corrupted, perhaps by transmission
delays (in the case of Shastri and Ajjanagadde's model) or by unavoidable noise
interference. We would like the model to exhibit graceful degradation in such
circumstances: i.e., to make plausible errors such as confusing one object for another
that is very similar. But this is unlikely to happen in a system which uses arbitrary
values as its signature encodings. One way around this problem is to use signatures
which have semantic content - which are, in effect, reduced descriptions of the things
they represent. This is the approach adopted in the model described in the next section.
It will be shown also that this approach allows other desirable features of connectionism

(generalisation and pattern completion) to be incorporated into the process of reasoning.

4. Parallel Distributed Semantic Networks (Sumida and Dyer)

A Parallel Distributed Semantic (PDS) Network (Sumida and Dyer 1989) combines two
forms of knowledge representation: a semantic network and a parallel distributed
processing (PDP) system. A semantic network is a localist representation of a
hierarchically structured knowledge base in which concepts are represented by nodes
and the relationships between concepts by labelled arcs connecting the nodes. An
example is given in Figure 4.

Clearly this network is no more than a graphical representation of the following
facts:

Bill is an instance of a human;
Mary is an instance of a human;
John is an instance of a human;

a human is the agent of a hit-act;
a human is the patient of a hit-act;

a hit-act is an instance of competitive-activity;

22

ompetitiv-
_activity

Figure 4. A semantic network.

a hit-act is an instance of anger.

It is possible to imagine how a simple reasoning system might be developed
from this network of nodes and links. Suppose that the uman node is activated in some
way that represents the individual Bill, and then again in some way that represents John.
The hit-act node, taking input from Auman, is then activated to represent Bill hits John,
and the activation is propagated to the competitive-activity node or the anger node,
representing one of the following inferences:

If Bill hits John then Bill and John are involved in competitive activity

or
If Bill hits John then Bill is angry with John.

There are two main problems here. First, it is not immediately obvious how the
activation of a single node can unambiguously represent a composite statement such as
Bill hits John. Secondly, a semantic network that represents all possible inferences is
indeterminate as to which inferences are applicable in any given situation (e.g., it cannot
determine whether a particular hit-act is an instance of competitive activity or anger).

In Sumida and Dyer's model, the first of these problems is handled by the use of
reduced descriptions, the second by propagation filters.

23

4.1. Role Binding by Reduced Descriptions

In a PDS network, the binding of a concept to a particular instance is encoded by a
pattern of activation across a set of units representing that concept. For example, the
concept human might be represented by an ensemble of three units, each taking values
in the range -1 to +1. A particular human is then represented by a unique activation
pattern across this conceptual ensemble, e.g., [-1, 0, 0.5] for Bill, [0.5, -0.3, 1] for John.

The activation pattern for each instance is constructed from a feature description
of that individual using an auto-associative encoder/decoder network (Rumelhart &
McClelland 1986). This is a three-layer PDP net which is trained to recreate its input (a
feature description of an instance) on its output layer, creating in the process a reduced
feature description in its layer of hidden units. This reduced description is the activation
pattern that is used to instantiate the conceptual ensemble. An example network for the
HUMAN concept is shown in Figure 5.

This is a completely-connected, strictly-layered, 7-3-7 network which relates a
7-unit feature description in its input layer to a 3-unit reduced description in the hidden
layer. A feature description is initialised using conversion information such as that in
Table 1. So, for example, a boxer who is male, tall, strong and young would be
represented by clamping the input layer with the values [1, -1, -1, -1, 0.5, 0.5, -0.5].
(Obviously, a more realistic implementation would need to include many more feature
roles than this. The idea is to define each individual uniquely in terms of his or her

feature description, so the larger the number of distinct individuals to be represented,

job sex height strength age

Figure 5. An encoder/decoder net for the Auman concept.

24

the larger the number of feature roles - or at least feature role values - required to define

them.)

Role Value Encoding
job boxer 1-1-1
ballerina -1 1-1
schoolchild -1-11
sex male -1
female 1
height very tall 1
tall 0.5
medium height 0
short -0.5
very short -1
strength very strong 1
strong 0.5
medium strength | O
weak -0.5
very weak -1
age very old 1
elderly 0.5
middle-aged 0
young -0.5
very young -1

Table 1. Encodings of features for the human concept.

The network is trained by backpropagation on a set of individuals, each defined

in terms of these features, until it is capable of recreating each individual's feature

description on the output layer (with an acceptable degree of error). The purpose of this

training process is twofold: first, to produce a compact, portable representation of each

member of the training set; and secondly, to enable generalisation beyond the training

set. Generalisation arises because the net, in compacting the feature descriptions, is

forced to classify the training data by discovering and exploiting the underlying

regularities (Hinton 1986). (These regularities are exploited also by Sumida's

propagation filter mechanism, to be described shortly.)

25

In a simple example run, the network of Figure 5 was trained on a sample of 21
individuals (mostly typical cases, e.g., strong, male, tall young boxers), then tested on a
set of nine new individuals. After 120 epochs, the average squared error did not drop
significantly below 0.1177 for the training set, and 0.1532 for the testing set; some
features in both sets were distorted by the encoding/decoding process. The network's
ability to encode and decode the examples in the testing set was, in part, a measure of
the extent to which these new instances share the discovered regularities of the training
set.

Allowing for these errors, we now have a (less than perfect) mechanism for
constructing reduced descriptions of human beings, even those which the network has
not seen before. Referring back to the semantic network of Figure 4, and remembering
that each concept node in the network is now a conceptual ensemble of units, it is
possible to see how role binding may be performed, at least in the case of the HUMAN
node. This node is an ensemble of three units which are activated with the reduced
description of the individual that we wish to represent.

Similarly, the HIT-ACT node is a conceptual ensemble that is activated with
reduced descriptions of particular instances of hitting. As before, these reduced
descriptions come from the hidden layer of a PDP network (Figure 6). The agent and
patient unit groups in the input layer are clamped with values taken directly from the
HUMAN conceptual ensemble. So to find the reduced description of Mary hits John,
for example, we get reduced descriptions of Mary and John from the network in Figure
5, clamp the input layer of the HIT-ACT network with these values, and pass the
activations forward to the hidden layer, where the encoding of Mary hits John now
appears.

agent patient

Figure 6. An encoder/decoder network for the Ait-act concept.

As with the HUMAN network, the weights of the HIT-ACT network must be
learned through training. In the example run, the loss of detail was even worse than in
the HUMAN net - the mean squared error was 0.2697 for the training set (20 members),

26

and 0.2956 for the testing set (10 members) after 120 epochs. (These figures did not
improve significantly with longer training periods, but there may be other ways of
reducing the error rate - see the discussion section.)

The relationship between the two concepts so far defined in the PDS net is
illustrated in Figure 7. The narrow lines from the HUMAN ensemble to the agent and
patient groups indicate that the reduced descriptions are passed along these connections
unaltered. The lines from agent and patient to HIT-ACT are weighted connections
corresponding to the weighted links between the input layer and the hidden layer of the
HIT-ACT network in figure 6.

HIT-ACT

agent O Q 7 O O patient

HUMAN

Figure 7. A PDS net fragment.

In theory, this PDS net can be expanded to any number of levels, with reduced
descriptions being combined into higher-level reduced descriptions in much the same
way as in recursive auto-associate memory (Pollack 1988). (The main difference is that
RAAM uses just one auto-associative net, rather than several, to encode a nested
structure.) We could, for example, set up the concept KNOWS to take inputs from
HUMAN and HIT-ACT and train it on instances of X knows that Y hit Z; we could then
add a CAUSES concept to represent instances of 'X knows that Y hit Z' causes X to hit Y
(figure 8). In the first paper on this model (Sumida and Dyer 1989), this is the means by
which inference is implemented.

To see how this works, suppose that the KNOWS conceptual ensemble of Figure
8 is instantiated with a reduced description of Bill knows that John hit Mary. This set of
activations is propagated unchanged to the antecedent unit group. Meanwhile, the
consequent unit group is left uncommitted. When the antecedent and consequent
activations are combined to form a reduced description of a CAUSES instance, the
pattern at the CAUSES node completes itself (i.e., it settles to a reduced description of
Bill knows that John hit Mary CAUSES Bill hits John). We can then extract the details

27

of the inferred consequent (Bill hits John) by decoding the reduced description (using
the top halves of the appropriate encoder/decoder networks).

CAUSES

antecedent O O O

O consequent

KNOWS (¢ HIT-ACT

Figure 8. The CAUSES concept.

In practice, this mechanism of inference has severe limitations. First, a PDP net
which is designed to perform pattern completion is unlikely to generalise well beyond
the specific instances that it has been trained on (it will tend to assume that an
unfamiliar instance is an incomplete version of a familiar one, and correct it
accordingly). Secondly, as we have already seen, there is a loss of detail in the
production of a reduced description. The more levels we add to the PDS net, the worse
this problem becomes, and a point is inevitably reached when it is impossible to
unambiguously represent complex instances in this way (though some of the errors
generated by this loss of definition may nevertheless be cognitively interesting - see
discussion).

4.2. Dynamic Inferencing using Propagation Filters

In (Sumida 1991), propagation filters are introduced as a new mechanism for
performing inference in PDS networks. Propagation filters (inspired by the idea of
skeleton filters in (Sejnowski 1981) and (Hinton 1981)) are groups of units which gate
the connections between other unit groups (Figure 9). When a filter group is open,
activation patterns pass freely along the connections; when closed, propagation is
inhibited. The filters are opened and closed by a group of selector units: the pattern over
the selector group opens up the appropriate filter by pushing its units above threshold.
For example, in Figure 9, the selector group is set up to open filter group 1 when the
pattern [1, O] appears in selector units 1 and 2. This allows the activation pattern of
sourcel to be passed across to destinationl. The pattern in source2 is not propagated
because the units in filter group 2 remain below threshold.

28

(0 '

sorce1 filter group 1 destination
00O O0O0 O0O0O
source?2 filter group 2 destination2

Figure 9. A propagation filter with group 1 open and group 2 closed.

This mechanism may be applied to the PDS net described in the previous section
to make decisions about which of several possible inferences is appropriate in any given
situation (e.g., whether a hit-act is an instance of competitive activity or anger). It was
observed, when describing the PDP components of this model, that the process of
squeezing a training set through the hidden layer of a PDP network forces the network
to classify the input by discovering and exploiting regular features in the training data.
Hinton (1986) showed how it is possible to inspect these regularities by analysing the
activations of the hidden units under different inputs. Sumida's proposal is that it is
possible to exploit these regularities to control propagation filters.

For example, an analysis of training set results for the HIT-ACT concept
revealed that in every case where both the agent and patient were boxers, and in no
other cases, the first value in the reduced description was strongly positive (> +0.5), and
the third was very strongly negative (< -0.9). We may therefore use the HIT-ACT
conceptual ensemble as a selector group to control the propagation of the agent and
patient patterns from HIT-ACT to COMPETITIVE-ACTIVITY (in the case where a boxer
hits a boxer) or from HIT-ACT to ANGER (in all other cases). This is illustrated in
figure 10.

There are three main advantages that this method of inference has over the
pattern completion technique. First, it provides an autonomous mechanism for selecting
among possible inferences: the opening and closing of the propagation filters is an
automatic response of the network when the HIT-ACT ensemble is instantiated.
Secondly, there is no loss of information in performing the inference: the role bindings
are simply passed across from the HIT-ACT role groups to those of COMPETITIVE-
ACTIVITY through the open filters. Thirdly, this method seems to generalise well: an

29

compeTiTive (O O O

009

filter

patient |

filter B

Figure 10. An example of the use of filters to control the propagation of
bindings. A strong +ve value (> +0.5) in unit 1 of the HIT-ACT ensemble
combined with a very strong -ve value (< -0.9) in unit 3 (indicating boxer-hits-
boxer) opens up filters A and B, and generates the inference that this hit-act is an
instance of competitive activity. Filters C and D remain below threshold.

analysis of the testing set results for the HIT-ACT concept revealed that even with
examples not included in the training process, the convention of [unit 1 > 0.5, unit 3 <
-0.9] was adhered to. This suggests that the PDS net with propagation filters will
correctly classify instances of hitting as anger or competitive activity even if it has
never seen the participants before.

4.3. Discussion

An obvious problem with PDS nets is the loss of resolution as the data is recursively
compressed. Reducing a reduced description may make it impossible to recover the full
details of a feature description at some later stage - at the end of an episode of
reasoning, for example. This could be a serious problem if, as in this model, individuals
are identified solely by their feature descriptions.

There are two responses to this criticism. One is to attempt to patch up the fault

by modifying the mechanism - e.g., Sumida and Dyer (1989) suggest the addition of an

extra layer of units to each conceptual ensemble, to increase its representational power;
other simple improvements might involve expanding the training set, and using a fully
binary representation for the feature descriptions (in the example runs, it was the one-
unit continuous-valued features that were the most easily distorted).

The second response is to argue that the sorts of errors that arise from this loss of
detail are at least cognitively plausible, and may indeed provide useful analogues for

30

certain aspects of cognitive performance. For example, if Frank the boxer has an
identical' twin brother Barry, who is also a boxer, we might find it hard to remember
which of the two we saw at a boxing match several weeks ago. In much the same way,
the PDS network will have a tendency to confuse or blur together individuals and
events with near-identical feature descriptions. Also, the fact that the errors worsen in
proportion to the unfamiliarity of the data and the depth of encoding seems to
correspond to our own difficulties in retaining novel, complex propositions (e.g., John
knew that because Mary wanted Bill to hit Tom ...).

Similar 'plausible' errors will arise from noise interference, a potential problem
in a hardware implementation of a PDS network. Because the binding mechanism
employs representations that have semantic content, a slight distortion of the values in a
conceptual ensemble will cause the binding to blur into another that is semantically
related - e.g., Barry hit John instead of Frank hit John (an analogue of this in human
experience might be the effect of trauma on long-term memory). This is in contrast to
the effects that will be observed in models that use more or less arbitrary values to
represent bindings. In Shastri and Ajjanagadde's model, for example, a slight distortion
in the activation waveform of a role node could bring the node into synchrony with a
totally unrelated value node elsewhere in the network.

One practical difficulty with the system of propagation filters as described here
and in (Sumida 1991) is the problem of initialising the connections between the selector
units and the filter groups. The system designer must perform this task himself by
analysing the training results for each PDP network and determining which hidden units
are being used to classify which aspects of the training data. A useful development of
this model would therefore be the addition of mechanisms which automate or at least

assist this process.

5. General Discussion

A common feature of the three models discussed in this paper is the use of hard-wired
structure to represent rules. In each system, rules are implemented as links between
nodes or groups of nodes, and the process of inference by the propagation of activations
along the connections. This is a convenient and potentially powerful form of
representation, permitting the direct and precise implementation of a variety of simple
rule structures in a way that compares favourably with classical rule-based models. The
parallelism of activation propagation allows multiple reasoning processes to proceed
simultaneously (subject to the model's ability to handle multiple instantiations of a
predicate) and eliminates the search and backtracking that characterises more traditional
systems,

31

The three models elaborate on this mechanism in a variety of ways. For Shastri
and Ajjanagadde, the main concern is to overcome the technical limitations of the basic
model (e.g., the multiple instantiation problem) and to enhance it with the features that
would normally be available in an advanced reasoning system (property inheritance,
typed variables, the processing of wh-questions, etc). The resulting system is an
impressive demonstration of the extent to which essentially classical processes may be
implemented in a connectionist model without a central controller. It is questionable,
however, whether this conflation of low-level mechanisms and high-level processes
really adds anything at the performance level other than the efficiency of parallel
processing: as a cognitive model, Shastri and Ajjanagadde's system may be no more
plausible and no less brittle than a speeded-up expert system.

Sun addresses the issue of brittleness by augmenting the same structure-based
rule representation with feature-based similarity matching. This produces a degree of
flexibility, not in the rules themselves, which are permanently and rigidly embedded in
the system, but in the decisions about which rules to apply. In Sun's model, a concept X
may be partially activated as a side-effect of the activation of another concept Y; thus
rules which apply to X may be employed in the response to a question about Y. The
problem here is that similarity judgments, such as that between X and Y, are almost
always context-dependent, a fact which Sun's model does not adequately acknowledge.
In constructing a CONSYDERR network to solve some particular problem, we must
effectively solve the problem in advance, in the decisions we make about which features
to specify and how the feature sets overlap.

Sumida and Dyer also employ feature-based representations within a fixed, rule-
based structure, though here the intention is to induce generalisation at the various
levels of the structure. Thus it is hoped that the model will learn how to recognise
instances of boxers hitting boxers, and to correctly categorise these examples as
instances of competition rather than anger. Some of the practical limitations of this form
of generalisation were explored in this report.

There are wider concerns which affect all three of these models, and which
derive from their use of hard-wired structure to explicitly represent the rules that they
encode. Explicit representation lays each of these models open to Fodor and Pylyshyn's
(1988) charge that this sort of connectionist model does no more than implement
classical processes, and is therefore uninteresting at the cognitive level. The use of
novel mechanisms does not in itself constitute a novel approach or provide a new
insight into cognitive processing if the symbol structures (in this case, the rules) are
essentially the same as before.

A more practical concern is the inflexibility of structure-based representation,
and the consequent difficulty of inducing change within it. It is clear, for example, that

none of these models can acquire new rules or delete or modify existing ones, without

32

intervention at a much higher level than the basic operation of the system. Hadley
(1993) argues that dynamic rule acquisition is an essential feature of human cognitive
performance, and should be reflected in a model of rule processing. Our ability to
acquire arithmetic skills, for example, seems dependent on our capacity for learning the
rules by which basic operations are combined into more complex ones.

The ability to represent novel rules of variable structure and content from those
defined in the initial model requires a different approach from those discussed here.
Some hint may be taken from connectionist approaches to natural language processing,
where a similar problem arises - that of representing novel sentences within a fixed
architecture. One approach in particular seems relevant here: recursive auto-associative
memory or RAAM (Pollack 1988). This is the means by which a complex nested
structure may be encoded, level upon level, and using the same auto-associative
network, into a compressed representation of fixed bandwith. The principle is similar to
that employed in the Sumida and Dyer model, with one important difference: it is
structure as well as content that is being encoded in the reduced descriptions.

Chalmers (1990) has shown that the reduced, RAAM-encoded description of a
simple sentence contains sufficient syntactic information for active-passive
transformations to be accurately performed by a pattern associator network. This
network sees only the reduced descriptions of the sentences and thus operates
holistically upon the sentences, i.e., without the usual extraction and reconstruction of
the parse tree. Applying this principle to rule processing, a model might be constructed
to perform holistic application of RAAM-encoded rules. The ability of the model to
acquire and correctly apply rules of novel structure and content would be a measure of
its ability to generalise. A possible architecture for such a model is given in Figure 11.

This model has two components: a rule encoding component by which rules of
arbitrary size and structure are compressed (by RAAM or otherwise) into a fixed-
bandwith reduced description; and a rule application component which feeds the rule
and its datum into a (trained) backpropagation network to produce a resultant at the
output layer. In this example, the rules are designed to perform operations upon number
strings. The fact that there is no explicit structural representation in the reduced
description of a rule means that the rule application component is not implementing
explicit, 'classical' rule-processing but something uniquely connectionist. Notice, in
particular, that there is a form of implicit variable binding in the way that the rule
applicator processes terms such as first and fifth which is very different from the explicit
mechanisms employed in the Shastri and Ajjanagadde and Sun (first-order) models.

It remains to be seen if such a model is capable of producing the degree of
generalisation that would be required for the effective encoding of novel rules. As was
observed with the Sumida and Dyer model, the iterative encoding of reduced

descriptions leads to a progressive deterioration of the original data. Furthermore, the

33

rule application component may itself be severely limited in the complexity of the rules

that it can handle. These issues are the subject of present investigation.

“14325"
é oo?oo
RULE .

APPLICATION O QO
d \ OOTOO O0ODOO
IF ‘54321

RULE |
ENCODING /
/ >\ S/WlTQ4

\ FIRST FIFTH FIRST FIFTH

1

(IF (> FIRST FIFTH) (SWITCH FIRST FIFTH))

‘IF FIRST IS GREATER THAN FIFTH,
SWITCH FIRST AND FIFTH"

Figure 11. A model of holistic rule application.

References

Collins, A, & Michalski, R. (1990), 'The Logic of Plausible Reasoning', Cognitive Science, 13(1), 1-49.

Chalmers, D. J. (1990), 'Syntactic Transformations on Distributed Representations', Connection Science,
Vol. 2, Nos. 1 & 2, 53-62.

Diederich, J. (1988), 'Connectionist Recruitment Learning', Proceedings of the Eighth European
Conference on Artificial Intelligence , Munich, Germany.

Eckhorn, R., Reitboeck, H. J., Arndt, M. & Dicke, P. (1990), 'Feature Linking via Synchronisation among
Distributed Assemblies: Simulations of Results from Cat Visual Cortex', Neural Computation, 2, 293-
307.

34

Elman, J. L. (1988), 'Finding Structure in Time', Cognitive Science, 14, 179-211.
Fodor, J. A. (1975), The Language of Thought, Thomas Cromwell, New Y ork.

Fodor, J. A. & Pylyshyn, Z.W. (1988), 'Connectionism and Cognitive Architecture: A Critical Analysis',
Cognition, 28, 3-71.

Hadley, R. F. (1993), 'Connectionism, Explicit Rules, and Symbolic Manipulation', Minds and Machines,
3,201-218,

Hinton, G. E. (1981), Tmplementing Semantic Networks in Parallel Hardware', Parallel Models of
Associative Memory, Lawrwnce Erlbaum.

Hinton, G. E. (1986), 'Learning Distributed Representations of Concepts', Proceedings of the Eighth
Annual Conference of the Cognitive Science Society.

Lange, T. E. & Dyer, M.G. (1989), 'High-Level Inferencing in a Connectionist Network', Connection
Science, Vol. 1, No. 2, 181-217.

Mani, D. R. & Shastri, L. (1992) 'A Connectionist Solution to the Multiple Instantiation Problem Using
Temporal Synchrony', Proceedings of the Fourteenth Annual Conference of the Cognitive Science
Society.

Miller, G. A. (1956), 'The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for
Processing Information', Psychological Review, 63(2), 81-97.

Pollack, J. B. (1988), 'Recursive Auto-Associative Memory: Devising Compositional Distributed
Representations', Proceedings of the Tenth Annual Conference of the Cognitive Science Society.

Rumelhart, D, E. & McClelland, J. L. (1986), Parallel Distributed Processing, Volume 1. MIT Press.

Sejnowski, T. J. (1981), 'Skeleton Filters in the Brain', Parallel Distributed Processing, Volume 1, MIT
Press.

Shastri, 1. & Ajjanagadde, V. G. (1993), 'From Simple Associations to Systematic Reasoning: A
Connectionist Representation of Rules, Variables and Dynamic Bindings using Temporal Synchrony',
Behavioral and Brain Sciences, 16, 417-494,

Smolensky, P. (1990), 'Tensor Product Variable Binding and the Representation of Symbolic Structures
in Connectionist Systems', Artificial Intelligence , 46, 159-216.

Sumida, R. A. & Dyer, M. G. (1989), 'Storing and Generalizing Multiple Instances while Maintaining
Knowledge-Level Parallelism', Proceedings of the Eleventh International Joint Conference on
Artficial Intelligence.

Sumida, R. A. (1991), 'Dynamic Inferencing in Parallel Distributed Semantic Networks', Proceedings of
the Thirteenth Annual Conference of the Cognitive Science Society.

Sun, R. (1991), ‘Connectionist Models of Rule-Based Reasoning', Proceedings of the Thirteenth Annual
Conference of the Cognitive Science Society, 437-442,

Sun, R. (1992a), 'A Connectionist Model for Commonsense Reasoning Incorporating Rules and
Similarities', Knowledge Acquisition, 4,293-321.

Sun, R. (1992b), 'On Variable Binding in Connectionist Networks', Connection Science, 4, 2, 93-124.

Sun, R. (1993), 'An Efficient Feature-Based Connectionist Inheritance Scheme', IEEE Transactions on
Systems, Man, and Cybernetics, Vol. 23, No. 2, March/April, 512-522.

Sutcliffe, R. F. E. (1992), 'Representing Meaning Using Microfeatures', Connectionist Approaches to
Natural Language Processing, R. G. Reilly & N. E. Sharkey (Eds.).

