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Abstract

HARP (the HAtfield Risc Processor) is a reduced instruction set processor
being developed at Hatfield Polytechnic, UK. The major aim of the HARP
project is to develop a VLIW (Very Long Instruction Word) RISC (Reduced
Instruction Set Computer) processor capable of a sustained instruction execution
rate in excess of one instruction per cycle [1, 2], by the paralle! execution of
RISC type instructions.

Investigations to date support our hypothesis that this goal can be achieved
by the development of an integrated processor-compiler pair designed to support
low level parallelism identified by the compiler. This paper describes the
HARP architecture and discusses those hardware features which will support
parallel instruction execution.

Parallelism is provided in the hardware by multiple instruction pipelines
which execute independent RISC-like instructions simultaneously. The principal
techniques employed to exploit the available parallelism are efficient pipelining,
register bypassing, optional register writeback and conditional execution of
instructions.

In ction

Current RISC implementations aim to complete an instruction every
machine cycle by executing simple, easily decoded instructions in a streamlined
pipeline{3]. However, this level of performance represents a maximum execution
rate which is not achieved in practice. MIPS-X, for example, requires an average
of 1.7 cycles per instruction when all overheads are included [4].

The HARP project is one of several recent research projects which have
attempted to increase the instruction execution rate by specifying several
operations (short instructions) in a single instruction word (long instruction). A
number of the resulting architectures, for example, VLIW [S], WM [6], WARP
[7], and Cydra [8], while detecting parallelism at compile time, are specifically
aimed at scientific code and therefore require a floating point unit in addition to
an integer unit. In contrast HARP aims to exploit the low level parallelism
available in general purpose computations.

The HARP compiler selects short RISC type instructions which can be
executed in parallel and packs them into long instructions, which are fetched
from an instruction cache by the processor. The component short instructions
are passed to a multiple pipelined structure for execution.

HARP uses several characteristic RISC features to achieve a sequential
instruction rate of one instruction per cycle, these include:

1) Simple instruction formats which permit fast hardwired decoding

2) A small number of simple instructions. Each short HARP instruction
carries out a single RISC-like operation.

3) A small number of addressing modes. HARP provides two addressing
modes, base register indirect plus offset and base register indirect with index.
from which typical CISC (Complex Instruction Set Computer) addressing
modes can be synthesised.

4) A load and store architecture, Only load and store instructions reference
memory, all other instructions operate on the contents of registers.

5) Efficient instruction pipelining. The HARP mode! uses a four stage
instruction pipeline and a two instruction branch architecture. in which the
result of a test or compare instruction is stored in a register or flag. and then
the result is used by a separate branch instruction. The use of this branch
architecture results in a branch delay of one cycle. Register bypassing allows
the result of a short instruction to be used as an operand in any immediately
following instruction.
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Optimising compilers, The HARP compiler performs classical
optimisations. reorders code to minimise the effects of data dependencies.
and employs an extension of the delayed branch mechanism [9] to reduce the
cost of branches.
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Having addressed the problem of single cycle execution, the features of HARP
which allow the processor to utilise the maximum amount of low-level
paratlelism inherent in a program include the following:

1) Multiple instruction pipelines. The model provides multiple instruction
pipelines which execute independent short instructions in parallel. Each
short instruction field of a long instruction is associated with a particular

pipeline.

2) Conditional execution of short instructions. All short instructions may be
conditionally executed. Conditional execution reduces the number of short
branches in a program, thus increasing the average length of a basic block
and hence the potential for parallelism. It also increases the number of
instructions which can be placed in branch delay slots.

3) Optional register writeback. All computational and load instructions
optionally change the contents of their specified result register, thus
allowing the compiler to detect and prohibit unnecessary writes to the
general purpose register file. This feature increases the potential for
parallelism which is limited in implementation by a restriction on the
number of paratlel writes to the general purpose register file.

Instruction Set

The HARP instruction set has five types of short instruction:
computational, relational, memory reference, Boolean and branch. All short
instructions are 32-bits long. The short instruction format is shown in figure 1.
All computational and relational instructions operate on signed and unsigned
integers, and will evaluate to the following expression:

destination := sourcel op source2

where sourcel and source2 are the values held by two of the general purpose
registers. The destination is either a general purpose register (R0-R31, where RO
always holds zero and is read only) or, in the case of a relational instruction. a
boolean register (B0-B7, where BO always holds zero and is read only). Boolean
instructions operate on the contents of the Boolean registers, and have the same
format as the computational and relational instructions.

Data can only be transferred between memory and CPU registers by
employing either a load or a store instruction. The format of the memory
reference instructions is as follows:

LOAD destination ,offset(sourcel) STORE offse(sourcel j source3
or LOAD destinationsourcel source2) STORE (sourcel source2)sourcel

where source3 is the contents of a general purpose or Boolean register. The
address for such an instruction is computed by ORing sourcel with source2 or
an offset [10] . Load and store instructions can transfer either 32-bit words or
bytes. Load Boolean and store Boolean instructions are used to transfer Boolean
values.

A branch instruction tests a specified Boolean register (Bsrcl ). The format of a
branch instruction is:
OP Bsrcl label

Where OP can either be branch if Bsrc/ is true or branch if Bsrel is false.
Testing BO will always or never produce a branch.

Conditional Execution of Short Instructions

Short HARP instructions. including conditional branches. can be
conditionally executed. The execution of a specified short instruction will
depend on the value held by a specified Boolean register. e.g.

TB1 ADD R1.R2,R3
If Boolean register B1 is true (logic 1), then add the contents of registers R2 and

R3. and store the result in register R1. Unconditional execution is achieved by
omitting the condition.and is in reality implemented by testing BO.
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Figure 1 : HARP Short Instruction Format

The following example illustrates how conditional execution can reduce the
number of short branches, hence increasing the potential for parallelism within a
basic block. Consider the following program fragment:

IF R1>R2
THEN R1:=Ri-R3
ELSE R2:=R2+R3
(*End IF *)

R3 :=R4

R4 :=R4 +2

Translated into unconditional sequential HARP code :

GT BI,R1,R2 (* B1 holds Boolean result *)
BF  Bl.else
NOP (* No operation *)
SUB RI,R1,R3 (*THEN*)
BF  BO,out (* Branch always to "out” ¥)
NOP (* No operation *)
clse ADD R2,R2,R3 (*ELSE*)
out MOV R3,R4 (*R3:=R4 %)
ADD R4 R4, #2 (*R4:=R4+2%)

Translated into conditionally executed sequential HARP code :

GT B1,RI1,R2  (*B1 holds Boolean result *)
TBI SUB RI.R1,R3
FB1 ADD R2,R2,R3

MOV R3,R4 (*R3:=R4 %)

ADD R4,R4.#2 (*R4:=R4+2%)

Translated into conditionally executed parallel HARP code :

GT BlRILR2
SUB RI1,R1,R3; FB1
ADD R4,R4.#2

TBI ADD R2,R2,R3; MOV R3,R4

Implementation Issues
HARP CPU Architectural Model

An ELLA behavioural simulation [11] for the HARP architectural model
[12] has been produced. This simulation is being used to assess the validity of
compiled code and the effectiveness of the novel architectural features. The
ELLA simulation provided the means to test and evaluate a number of HARP
implementations derived from an abstract HARP architectural model with a
variable number of pipelines and pipeline functions. This process has revealed a
number of architectural flaws, which were resolved before the hardware
specification was defined {13]. The VLSI integrated version of HARP (i(HARP)
is a subset of the HARP abstract model, and is being designed using Seattle
Silicon ChipCrafier [14] software, which provides a relatively high level of
design abstraction through the use of data-path components, compiled cells and
logic synthesis.
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iHARP

The iHARP CPU architecture is shown in figure 2 and contains a number of
major blocks:

1) Four parallel pipelines.

2) Boolean unit.

3) Two memory address calculation units.
4) Branch unit.

The system is provided with data and instructions from separate external
caches. The data port has a 26-bit address bus and a 32-bit data bus,which
implies a maximum main memory of 256Mbytes. The instruction port has a
24-bit address bus and a 64-bit multiplexed data bus. Since the instruction port
is read only it can operate at approximately twice the speed of the bi-directional
data port and so it is possible to read a long instruction in two 64-bit blocks.
This also substantially reduces the number of I/O pins, thus easing packaging
constraints. The general purpose register file has 32 32-bit registers, with RO
holding the read-only value zero. The Boolean register file contains eight 1-bit
registers, with BO holding the read-only value zero.

The four computational units operate in parallel and apply standard 32-bit
arithmetic and logic operations to data from the general purpose register file.
Literal values may also provide the computational units with data directly from
the instruction register. Boolean values are generated by integer comparisons
within each pipeline or by standard logical operations computed in a separate
Boolean Unit attached to pipeline two. Values stored in the Boolean Register
File are used to control the conditional execution of short instructions.

A long instruction may contain a maximum of two branch instructions
which are usually executed on mutually exclusive conditions. However, if two
branch instructions are scheduled to execute on the same condition, then pipeline
three always takes priority. The branch unit will compute the next sequential
long instruction address and any branch targets. The appropriat®next long
instruction address is selected by testing the appropriate Boolean register(s).
Similarly, up to two memory reference instructions can be placed in the same
long instruction, providing they are always executed on mutually exclusive
Boolean conditions, since there is only one data memory port. The address unit
allows parallel computation'of two data addresses using values from the general
purpose register file and/or immediate values from the instruction register

The table below summarises how iHARP internal functions are allocated to
the four pipelines:

Pipeline 0 Pipeline 1 Pipeline 2 Pipeline 3
1 Computational — Computational Computational Computational
2 Relational Relational Relational Relational
3 Memory ref. - Memory ref. -
4 - - Boolean -
5 . - Branch Branch
6 - - Special purpose -
L - 32-bit literal - 32-bit literal
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Figure 2: HARP CPU Architecture

Pipelines zero and two are able to use the 32-bit literal from the succeeding
pipeline.

The iHARP instruction pipeline has been developed from the MIPS-X pipeline
[15,16). iHARP has a 4-stage pipeline [17], which operates as follows:

IF Fetch long instruction word from instruction cache.

Instruction decode.

Fetch registers from general purpose register file and Boolean
Tegister file.

Calculate branch addresses in branch unit.

Calculate memory addresses in address units.

RF

ALU operation for computational or relational instructions.
Calculate Boolean result in Boolean unit.

Wait for data from memory for a load instruction.

Write Boolean or relational result to the Boolean register file.
Output data for a store instruction.

ALU/MEM

WB Write computational or relational instruction result to general
purpose register file.
Write Boolean load instruction result to Boolean register file.

Write data load instruction result to general purpose register file.

Figure 3 shows the timing of the Boolean register file reads and writes.
The IF cycle has been omitted for clarity, and each cycle of the instruction
pipeline is divided into two phases. All Boolean reads (conditional execution
Boolean, store data and Boolean sources) occur in phase two of the RF cycle.
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The timing of Boolean data writes is dependent on the instruction being
executed. Boolean values are not bypassable.

Figure 4 shows the timing of the general purpose register file reads and
writes. This diagram shows when data can be bypassed to an instruction and
when bypassed data can be accepted from an instruction.

ner: Register Fil

The silicon compiler provides a RAM block which will allow two parallel
reads or two parallel writes. These read/write restrictions could result in a
bottleneck, as the register file may need to provide several operands to different
pipelines. The problem of multiple reads can be resolved by replicating the
general purpose register file, i.e. four identical register files [18], each with two
read ports. The problem of multiple writes can be resolved by ensuring that each
long instruction generates a limited number of parallel writes. This limiting of
parallel writes, is based on two observations.

1) A significant number of iHARP instructions e.g. relational, store, branch
and Boolean instructions do not generate a write to the register file. and a
number of instructions only produce one write-back at run time. as the
compiler frequently generates mutually exclusive execution conditions.

iHARP uses register bypassing to remove the potential delays caused by
computational and load instructions. Data computed or loaded in the
ALU/MEM stage of the short instruction, is then written back to the
destination register in phase one of the WB stage. This data cannot be used
until phase two of the RF stage of the next instruction. The delay can be
removed by preventing the initial computational result from being writien
to the register file, and passing it directly to the ALU/MEM stage of the

2
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Figure 4 : General Purpose Register Read/Write Timing

next instruction. Many RISC ALU operands are obtained via the register
bypass logic. If such operands are redundant after the current instruction,
there is no need to write them back, although they are allocated register
addresses. The only restriction to this operation is during exception
processing, where iHARP enters a special state that writes-back all of the
pipeline registers to the allocated addresses in two cycles.

Figure 5 illustrates the architecture of one instance of the fully bypassable
from 4:1

register file [13]. The registers WdA and WdB contain data to be written to the
register file. This data is selected from a number of sources by two write-back
_multiplexers (top of figure 2).

In order to determine whether data should be read from the register file or
bypassed from another pipeline, each of the four current destination addresses
(Rdst0 - Rdst3) are compared with the two possible read addresses (Rsrc1 and
Rsrc2). Permit bypass controls generated in the instruction decode units are used

from 8:1
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Figure 5 : Fully Bypassable Register File
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to qualify the results of the five bit address comparisons. These qualified
comparisons produce eight bypass signals that are used by the bypass control
blocks. These blocks generate the signals ssel and tsel which select data that
bypasses the register file. Possible bypass sources are pipeline results , memory
data, long and short literals.  If there is no bypass match for either Sreg or Treg
sources, then data read from the register file is passed to the pipeline data input
registers.

S mmary

This paper has described the iHARP hardware architecture with particular
reference to those features which support parallel pipelined instruction execution,
Notable features of iHARP which significantly increase performance are:

1) RISC like instruction set.

2) Compact four-stage pipeline.

3) An ORed indexed addressing mechanism.

4) Load and store architecture with simple addressing modes.
5) Optional conditional execution of all short instructions.
6) Complete register bypassing.

The success of the project is dependent on how successfully the compiler
schedules instructions in parallel. Short benchmark tests indicate that
instruction scheduling will reduce the instruction count of sequential iHARP
code by 55 %. This performance requires approximately two short instructions
scheduled in every long instruction. Such results suggest that an iHARP chip
will be capable of achieving a sustained execution rate in excess of one
instruction per cycle.

Preliminary characterisation of pipeline one (the least complex pipeline),
including its' general purpose register file, indicates an area of less than 17 sq.
mm., with an approximate speed of 10MHz. The design database is complete,
and layout, timing analysis and simulation will begin in the near future. It is
hoped that an iHARP prototype chip will undergo tests in 1992.
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