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ABSTRACT

RISC processors have approached an execution rate of one instruction per cycle by using
pipelining to speed up execution. However, to achieve an execution rate of more than one
instruction per cycle requires multiple instruction issue (MII) processors which employ multiple
pipelines. This paper evaluates the important architectural features of iHARP, the University of
Hertfordshire's VLIW processor. Using a resource limited scheduler (RLS), the work shows that
the inclusion of various architectural features, for example, conditional instruction execution or the
increase in the number of data cache memory ports can improve the performance of a MII
processor. A review of the work undertaken by a number of groups in the areas of potential
instruction level parallelism and static scheduling show that a great amount of fine-grained
parallelism is theoretically available. However, for a processor with four pipelines, our work
achieves an instruction execution rate approaching two instructions per cycle.







1. INTRODUCTION

The 1980s was the decade where RISC ideas were very much in the forefront. During this decade
the execution of one instruction per cycle was approached by using pipelining to speed up
execution [Hennessy 90]. However, if the one instruction per cycle barrier was to be broken a
different architectural approach would be required. Thus, the early 90s saw the emergence of
architectures which issued more than one instruction in the same cycle. These architectures are
referred to as multiple instruction issue architectures. iHARP is one such processor.

The computer architecture group at the University of Hertfordshire was formed in 1986 to research
and develop novel architectures. The long term aim of the group is to develop VLIW and
superscalar architectures to exploit fine grained parallelism with the objective of achieving an order
of magnitude speed up over RISC. In support of this aim the group has developed iHARP a
VLIW (Very Long Instruction Word) processor. To date rates in excess of two instructions per
cycle have been achieved [Wang 93].

iHARP is a multiple instruction issue (MII) processor which fetches a 128 bit long instruction
word from an instruction cache each cycle. Each long instruction comprises four, 32 bit short
RISC primitives. These are dispatched to four integer pipelines for parallel execution. iHARP is a
VLIW processor which therefore relies on compiler/scheduler software to detect groups of
instructions which can be executed in parallel and to place these groups into a long instruction
word at compile time. This approach contrasts with the superscalar [Johnson 91] approach where
it is left to the hardware to detect and issue instructions which can be executed in parallel at run
time.

The iHARP processor is a single chip, aimed at supporting non-numeric applications. Many
multiple instruction issue processor projects target their processors at numeric applications which
have more potential parallelism to exploit. Non-numeric code tends to be control intensive thereby
restricting any parallelism potential. Research at Stanford University and DEC has shown that the
average degree of exploitable instruction-level parallelism in typical programs is two and rarely
exceeds three to four within a basic block [Wall 91]. Therefore, aiming a processor at
non-numeric code and achieving an execution rate greatly in excess of one instruction per cycle
requires not only a finely tuned processor architecture with multiple parallel pipelines but also
software which can exploit the parallelism offered by a program. Therefore, an efficient
instruction scheduler/compiler is an essential part of a VLIW processor project. To this end, a
scheduler has been developed[Wang 93].

The same scheduling ideas developed for VLIW processors can also be applied to a superscalar
processor and the computer architecture group is also developing a superscalar processor
(HSP)[Steven 93][Collins 93] using the ideas produced during the HARP project.

This paper evaluates eight of the most important architectural features of the iHARP processor.
The first is the instruction issue rate which has a direct effect on the number of instructions which
can be executed each cycle. The second is code expansion which is one of the major disadvantages
of VLIW architectures. The third is the number of cache memory ports as more ports relieve the
data bottleneck. The fourth feature is conditional instruction execution. Very little evaluation of
this feature has been undertaken. The fifth feature examined is ORed indexing which is an
addressing mechanism allowing the removal of one of the stages of a five-stage pipeline and also
the removal of any load delay. The sixth feature is the number of register writeback ports as it is
useful to be able to return more than one result to the register file each cycle. The penultimate
feature examined is the number of branch units as iHARP allows two branches to be executed in
parallel. Finally, the effect of combining shifts with arithmetic operations (combined instructions)
is examined.

The remainder of this paper is organised as follows: Section 2 discusses the problems associated
with data dependencies. Section 3 reviews other research being undertaken in the area of static
instruction scheduling. Section 4 briefly describes the compiler/scheduler software and the HARP




models used in this research. Section 5 considers the architectural features of iHARP examined in
this paper and presents the results obtained. Section 6 offers some concluding remarks.

2. THE REMOVAL OF DATA DEPENDENCIES

Instruction scheduling attempts to place instructions in parallel by moving them up to as early a
point in the code sequence as possible thereby reducing the average number of cycles taken per
instruction. However, there are inherent limitations to the amount of parallelism that can be
obtained owing to data dependencies between pairs of instructions.

In general three data dependencies can be identified. The first is a true data dependency, or read
after write (RAW). A RAW data dependency occurs when instruction i + 1 wants to read data
modified by instruction i. The second is an anti-dependency, or write after read (WAR). A WAR
data dependency occurs when the write operation of instruction i + 1 destroys a value read by i.
Finally, the third is an output dependency, or write after write (WAW). A WAW data dependency
occurs when instructions i and i + 1 write to the same destination. WAR and WAW dependencies
are not true data dependencies, rather they are name conflicts which can be eliminated by renaming
registers during instruction scheduling. The instruction sequence below shows how data
dependencies can be removed by using register renaming:

I1 ADD RS, R6, R7
12 ADD R5,R5,R6
I3 ADD R6, R7, #256

Instruction 12 has a true data dependence on I1 and instruction I3 has an anti-dependency on I2.
However, if the output of I3 is renamed to register R20 and the result is copied to register R6 later,
instruction I3 can be moved ahead of both I1 and 12 as shown below:

I3 ADD R20, R7, #256
I1 ADD RS5, R6, R7
12 ADD RS, R5,R6

MOV R6, R20

Note that the copy instruction in the example above need not introduce further data dependencies as
any later instructions requiring R6 as an input can equally well use R20.

As another example consider the following code sequence:

I1 ADD RS, R6, R7
12 ADD R6, RS, R6
I3 ADD RS, R7, #256

Instruction 12 has a true data dependency on I1 and instruction I3 has an output dependency on I1
as well as an anti-dependency on I2. If the output of I3 is renamed to register R20 and the result
copied to register RS later, instruction I3 can be moved ahead of both I1 and I2. Again subsequent
instructions can use R20 instead of RS to avoid the introduction of additional data dependencies as
shown below:




I3 ADD R20, R7, #256
11 ADD RS, R6, R7
I2 ADD R6, R5, R6

MOV R5, R20

Register renaming is also useful for moving code across edges between basic blocks!. For
example consider the following piece of code:

NE B6, R1, R2 ; set B6if R1 <>R2

BT B6, Label ; if B6 is true branch to Label
NOP
ADD R6,R7,R8 Label: ...

In iHARP conventional condition codes are replaced by eight one-bit boolean registers which are
explicitly set by relational instructions. For example, in the above code the instruction NE B6, R1,
R2 sets boolean register B6 to TRUE if the value of register R1 is not equal to the value of register
R2. The branch instruction then uses register B6 to decide whether to jump to Label or not. Thus,
if B6 is TRUE execution will continue at Label otherwise execution will continue sequentially.

The ADD instruction could be moved up after the relational instruction and executed speculatively.
Speculative execution allows an instruction to be executed before it is known whether the path
containing that instruction is actually taken. The code sequence with the ADD instruction moved
up is shown below:

NE B6, R1, R2

ADD R6, R7,R8

BT B6, Label

NOP Label: ...

However, if R6 is live on the Label path and the ADD is moved up before the branch it will have
executed and changed the R6 value incorrectly in the case where the branch is taken.

One solution to the above problem is to use conditional or guarded execution. iHARP uses the
boolean registers which are set explicitly by relational instructions to control the execution of
subsequent instructions. For example, the instruction TB1 ADD R1, R2, R3 will only add R2 to
R3 and place the result in R1 if boolean register B1 holds the value TRUE.

Applying conditional execution to the example code it becomes:

NE B6, R1, R2

FB6 ADD R6,R7, R8; If B6is false R6 :=R7 + RS§
BT B6, Label
NOP Label: ...

If register R6 is now live on the Label path the value will be the correct one because the ADD
instruction is prevented from executing by the guard register B6. Therefore, the ADD instruction
is no longer speculatively executed.

The ADD instruction can not be moved up any further because there will be no guard available to
prevent it from executing. However, register renaming can be used to allow further code motion.
The example using register renaming is shown below:

1 A sequence of code with no jumps in except at the beginning and no jumps out except at the end.




NE B6, R1, R6
ADD R16,R7,R8
BT B6, Label

MOV R6, R16 Label: ...

Register R6 is replaced by register R16 in this example. If the branch is taken and R6 is live on the
label path, R6 will hold the correct value since it has not been changed at this stage. A MOV
instruction is used to copy the contents of R16 into R6 if the branch is not taken. The added
advantage of register renaming is that the ADD instruction can now be moved up further, before
the relational instruction if necessary. Thus, R16 could be used anywhere R6 is used thereby
preventing the inhibition of code motion. However, conditional execution does have three
advantages when compared with register renaming. The first advantage is that a copy will not be
required thereby conserving resources. The second advantage is that live variable analysis is not
required. The third advantage is that it reduces the number of registers used.

The above code example can also be used to illustrate a problem associated with speculative
execution. During scheduling an instruction may be moved up into an available slot which results
in it accessing an invalid memory location even if it is not subsequently required, that is, if it is on
the wrong branch path. The exception generated by the rescheduled instruction will be spurious
since the instruction would not normally be executed. Therefore, two forms of each instruction
must exist; a speculative form and a normal form. The normal form generates an immediate
interrupt. The speculative form will not generate an immediate interrupt but will result in an
interrupt if the speculative result is used later in a non-speculative instruction. Speculative
instructions are implemented in the following manner: An exception in a speculative instruction
generates a polluted value in the result register. As long as the result is only used by a speculative
instruction further polluted values are generated. If a polluted result is subsequently used by a
non-speculative instruction then an interrupt will result. This allows both loads and ALU
operations to be executed speculatively. The same idea can be applied to relational operations if a
flag is added to each boolean register to indicate when a polluted value is held.

For example, in the code sequence below the load instruction can be moved up just as the ADD
instruction was in the earlier example:

NE B6, R1, R2
BT B6, Label
NOP

LD R6, (RO, RS) Label: ...
Using conditional execution the code becomes:

NE B6, R1, R2
FB6 LD R6, (RO, R5)
BT B6, Label
NOP Label: ...

Again, the instruction guarded by B6 will not be executed if the branch is taken.
However, if the register R6 is now renamed to R16 as shown below

NE B6, R1, R2

LD R16, (RO, R5)

BT B6, Label
NOP Label: ...




there will be a problem if the branch is taken because the memory location at (R0, R5) will still be
accessed possibly causing an exception if it is now an invalid memory address. Therefore, support
will be required for speculative execution if register renaming rather than conditional execution is
the method used.

iHARP's conditional execution can also be employed when multiple guard conditions are required.
The following example involves two branch instructions scheduled in parallel.

LIW i NOP; BT B1,L1; OR B3, B1, B2; FB1 BT B2, L2
LIW i+1 FB3 ST (RO, R8), R6; NOP; NOP; NOP

The scheduler has generated a boolean instruction, 'OR B3, B1, B2', to compute an appropriate
guard for the store instruction which has been scheduled in the final long instruction word.

3. A REVIEW OF WORK UNDERTAKEN IN THE
AREA OF STATIC INSTRUCTION SCHEDULING

The investigation of the limits of potential instruction level parallelism and static instruction
scheduling is being undertaken by many groups. This section reviews the methods and results
produced by these groups.

3.1 Potential Instruction Level Parallelism

Wall [Wall 91] investigated the available parallelism in 17 test programs including the SPEC
benchmarks. These programs were executed to produce a trace of instructions executed plus data
addresses referenced and the results of branches and jumps.

It was further assumed that any cycle could contain up to 64 instructions in parallel. There were no
further limits on replicated functional units or ports to registers or memory. All 64 instructions
could be multiplies or loads. Also every operation had a latency of one cycle. Further, it was
assumed that cache hit rates were 100%. The size of the instruction window was 2048 instructions
by default but could be varied between four and 2048 instructions. Windows could be managed
either discretely or continuously. Discrete management involves an entire window being fetched
then scheduled before a fresh window is used. Continuous management involves a new
instruction entering the window one at a time and old instructions leaving the window whenever
the number of instructions reaches the window size. Continuous window management was used
to obtain the results in this investigation.

Wall assumed that there were three kinds of register renaming: perfect register renaming which
allowed an infinite number of registers; finite register renaming which allocated a set of 256
registers using a LRU algorithm; and no register renaming at all.

Various types of branch prediction were also provided. These were perfect branch prediction,
two-bit branch prediction both infinite and finite, static prediction and an option that no branch
prediction would be provided. Perfect prediction assumed all branches were correctly predicted.
Infinite two-bit prediction meant that two different branches never had the same table entry because
an infinite sized branch prediction table was used whilst finite two-bit prediction used a table
limited to 2048 entries. Static prediction predicted that a branch would always go the way it goes
most frequently. The same schemes were available for jump prediction.

A series of five models was defined from "stupid" which provided no branch predicition, register
renaming or alias analysis to "perfect" which provided perfect branch prediction, register renaming
and alias analysis.

The results showed that infinite, finite and static branch prediction all did equally well. The
"stupid" model with no branch prediction, register renaming or alias analysis rarely achieved a
parallelism above two. The "fair" model with infinite branch prediction and finite register




renaming achieved a parallelism between two and four. The "great" model with infinite branch
prediction and infinite register renaming achieved a parallelism of approximately 8.

The conclusions arrived at by Wall were that good branch prediction seemed necessary for
extraction of more than modest amounts of instruction level parallelism. Register renaming was
also found to increase the amount of parallelism obtained. The average amount of parallelism
found for a hardware-style model with branch and jump prediction using infinite tables, 256 FPU
and 256 CPU registers and windows of 64 instructions maintained continuously was
approximately 7 with the median approximately 5.

Butler, Yeh and Yale Patt [Butler et al 91] also investigated potential instruction level parallelism
using nine integer and floating point programs from the SPEC suite. These were run on an
instruction level simulator for the MC88100 superscalar with different machine configurations.

Each machine was specified by several important factors. These factors were as follows: the set of
functional units provided; the branch prediction mechanism; the issue rate; the size of the
instruction; the characteristics of the load/store pipelines; and the instruction prefetch buffer
configuration. The prefetch buffer configuration comprised the size of the buffer, refill
characteristics and window size (the total number of instructions that can exist in the machine at
any one time). The window size is measured in instruction packets where the size of an instruction
packet is the group of instructions that are issued in a single cycle. A flag indicated whether
instructions could be executed in-order or out-of-issue order for each functional unit. The machine
configurations used ranged from machines, named UDF and RDF.I8, with unlimited numbers of
functional units each of which was capable of executing all instruction classes to one with only
four functional units, each functional unit only executing certain classes of instructions. All the
machine configurations use branch prediction. There are two classes of branch prediction in this
scheme and they are termed synthetic and real. With synthetic branch prediction, the branch
prediction accuracy is specified in the machine configuration file. As branches are encountered in
the dynamic instruction stream, a random number is generated to determine whether the branch is
predicted correctly or not. In Real branch prediction an actual prediction is made and if it fails the
pipeline stalls until the branch is resolved.

The simulator for the MC88100 reads in object code and simulates execution producing an
instruction trace. The RDF simulator reads in a configuration file describing the machine to be
simulated and then begins processing the dynamic instruction stream produced by the MC88100
simulator. The simulator performs data dependency analysis and scheduling and gathers execution
rate statistics.

The highest performance from RDF.I§ which restricted window size to a maximum of 16 packets
and the fetch rate to 8 instructions per cycle was 8 instructions per cycle. This model assumed
branch prediction was always correct and provided an upper bound for machines approximating
this model.

The UDF machine did not restrict window size or fetch rate and provided an absolute upper bound
for a particular benchmark. The parallelism achieved ranged from 17 to 1165 instructions per
cycle.

Each of the other machine configurations combined realistic window size, issue rate, functional
units and one of the following branch prediction schemes: 100% accurate; 85% accurate
(synthetic); and real branch prediction.

Machines with four functional units, two memory units and 100% branch prediction produced a
result of 2.7-2.9 instructions per cycle for integer benchmarks and 1.5-2.8 for floating point.
When the branch prediction was 85% the figures were lower at 1.9-2.2 for integer and 1.4-2.7 for
floating point.

At six functional units and three memory units and 100% branch prediction the figures were higher




at 3.2-3.6 for integer and 1.8-5.7 for floating point.

Several machines used 8 functional units with three memory units. With 85% branch prediction
the figures were 2.2-2.9 for integer and 1.6-5.0 floating point. Using real branch prediction gave
slightly higher figures of 2.4-3.4 for integer and 1.9-5.9 for floating point.

To summarise, Butler achieved results of between approximately 2 and 5.8 instructions per cycle.
The machine with unlimited resources gave results of between 17 and 1165 instructions per cycle.
They concluded that parallelism in excess of 5 instructions per cycle was certainly possible.

Lam [Lam 92] investigated the constraints imposed by control flow on parallelism using six SPEC
benchmarks and four others. Three techniques were used to relax these constraints: control
dependence analysis; executing multiple flows of control simultaneously; and speculative
execution.

Seven abstract machines were specified. The BASE machine used none of the three techniques
and acted as a baseline for comparison. The ORACLE machine used perfect branch prediction and
no constraints due to control flow and acted as an upper bound of parallelism. The other five used
a combination of control dependence analysis (CD), multiple flows of control (MF) and speculative
execution (SP). For example, the CD-MF machine allowed branch instructions to execute in
parallel and control dependence branches had to be resolved before an instruction could execute.
All machines with SP only speculatively executed instructions on the most likely execution path.

The benchmarks were compiled for the MIPS R3000 processor by MIPS C and FORTRAN
compilers with full optimisation. The traces were obtained using the MIPS Pixie tool and each
program was simulated for up to 100 million instructions. All instructions had a latency of one
cycle.

The results ranged from 2.14 for the BASE machine to 158.26 for the ORACLE machine. For the
CD machine the branches must execute in order at one per cycle to reflect the inability to pursue
multiple flows of control. It achieved 2.39 instructions per cycle. The CD-MF machine achieved
6.96 instructions per cycle.

Lam concluded that architectures lack support for control flow. Speculative execution is necessary
to find sufficient parallelism. Lam also suggested that guarded execution on its own is inefficient
for following multiple complex flows of control simultaneously and requires both guarded
execution and speculative execution for higher performance.

There are three factors which can be concluded from studies such as those above. First, these and
other theoretical studies are useful in predicting the upper bound on potential parallelism and
therefore whether or not it is worth looking for more parallelism. Second, since the amount of
resources assumed in such studies is unrealistic the parallelism obtained can not be directly
compared with results from real machines where resources are by necessity limited. Third, the
results of these studies have shown us that there is lot of parallelism theoretically available, in fact,
more than current algorithms can successfully exploit.

3.2 Scheduling Techniques

List Scheduling [Landskov et al 80] is a local microcode compaction technique of polynomial
complexity which uses non-backtracking heuristics to produce a near optimal instruction schedule
and is also used to exploit parallelism in MII architectures. List Scheduling schedules a basic block
consisting of an instruction set I = {il, i2, ..., in } into a long instruction word set W = {L.1, L2,
..., Lp} for a specific MII architecture. In general, List Scheduling can produce a near optimum
length schedule W for a given 1.

List Scheduling assigns a priority to each instruction and schedules each in turn. Scheduling an
instruction using List Scheduling depends upon three factors. First, if instruction i) has a true data




dependency on ij then iy must not be scheduled in W ahead of ij. Second, if instruction ij and iy

are independent, then the one with higher priority is scheduled first. Typically instructions which
initiate a long chain of computations are given a higher priority than those which initiate a shorter
chain of computations or none at all. Third, when an instruction is placed in a non empty L,
resource constraints on L must be checked to prevent a false schedule.

The full benefit of List Scheduling is only realised when a group of basic blocks are combined to
form a single large basic block. Trace Scheduling treats a trace of multiple basic blocks as a single
unit for the purposes of List Scheduling. Trace Scheduling is described below.

Fisher was the leader of the ELI-512 VLIW project. He developed a technique termed Trace
Scheduling [Fisher 81] which uses software branch prediction to combine basic blocks that are
usually executed in sequence into larger blocks called traces. It was originally developed as a
technique for scheduling and packing operations into horizontal microinstructions and has evolved
into the principal technique used in VLIW architectures for numeric applications [Fisher
83][Colwell 87].

Traces are treated as single basic blocks and are scheduled using List Scheduling. Loops,
especially the innermost loops, are unrolled many times to give large traces. The most frequently
executed traces, in particular, innermost loops, are scheduled first. Once a trace has been
compacted, it will not be affected by the later compaction of other traces. When List Scheduling a
trace, program correctness is ensured by book keeping techniques which insert compensation code
into the off-trace blocks. Trace scheduling is a better technique for numeric code than non-numeric
code as it is easier to obtain long traces by unrolling loops. This process improves the
performance of favoured traces at the expense of later traces and also leads to a rapid increase in
code size because of loop unrolling and compensation code.

The results for code size expansion from the work on trace scheduling showed that code size
increased by 30%-60% when using inter block trace selection, loop unrolling and procedure
inlining. When several large (100K-300K) FORTRAN programs were used with unrolling and
trace selection, code size was approximately 3 times larger than VAX object code (compiled with a
VAX/VMS FORTRAN compiler) [Colwell 87].

Speedup varied depending upon the ELI machine being used and therefore the number of resources
available. Work undertaken by Fisher, Ellis and others at Yale [Fisher 84] using an "ideal"
machine with infinite resources and a "Simple" ELI machine with 8 clusters? and 4 functional units
connected by a complete crossbar to multi-ported register bank showed that for a Fast Fourier
Transform program the speedup was 47 for the "ideal" machine and 7.5 for the "simple" machine.
Two other machines were described in the paper, a "realistic" ELI machine also incorporating 8
clusters and very close to the actual ELI being designed at that time, and a pipelined sequential
machine resembling the CDC 6600. However, figures for these other two machines are not given
in the paper.

Instruction boosting [Smith 92] was developed at Stanford using the MIPS R2000 and is a
hardware mechanism to support speculative execution of instructions. In order for the boosting
hardware to correctly maintain the program semantics the compiler must communicate its
assumptions to the hardware. Thus, whenever the compiler moves an instruction above a control
dependent branch, the compiler labels this instruction as a boosted instruction. This labelling
encodes the control dependence information needed by the hardware so that the hardware can
determine when the effects of the boosted instruction are no longer speculative. The labelling
indicates which branch or branches the boosted instruction is control dependent upon and also
indicates the predicted direction of each of these branches. A speculative instruction that is moved
above n control dependent branches is referred to as an instruction that is boosted # levels.

2 A cluster is a RISC with local registers, instruction memory, optional data memory, a few functional units
implementing integer and floating point operations and a partial crossbar connecting these elements within it.




For example, an instruction "y :=y + 1" in block B could be moved up to block A. As part of the
processing a suffix is added to the destination operand as shown below:

y.BL :=y +1; "L" means left else "R" means right.

"BL" indicates to the hardware that "y" is committed if the branch in block A goes to the left.
Similarly, x.BLL := x + 1 means that "x" is committed only if the next two branches all go to the
left.

When an instruction is moved ahead of a branch at compile time, at run time its uncommitted result
will be stored in shadow storage which consists of shadow register files and a shadow storage
buffer. If later the branch outcome is committed, the value stored in shadow storage is transferred
to the main register file or memory. If the branch outcome is not committed, the value stored in
shadow storage is squashed.

Boosting avoids both extra renaming code and live variable analysis. However, it requires extra
resources both in terms of a shadow register structure and extra instruction bits to define the level
of boosting required.

The results of the work by Smith show that a single level of boosting achieves a 17% improvement
over a base superscalar processor which is similar to models commercially designed today, that is,
a small issue rate, typically two which is restricted in that not all pairs of instructions can be issued
together, and a single data memory port. When boosting levels are increased to three and seven the
performance improves by a further 2.3% and 3.5% respectively over the base processor.

Conditional compaction [Gray 91] is a global scheduling technique based on conditional instruction
execution and is the first scheduling method developed at the University of Hertfordshire.
Conditional compaction first uses List Scheduling to locally compact each basic block into long
instruction words. A systematic attempt is then made to move instructions from each basic block

into its predecessors. To preserve program semantics a boolean guard is added to any instruction
moved.

Conditional compaction avoids the need for live variable analysis. However, it requires four extra
instruction bits for defining the boolean register and boolean condition and a limited amount of
parallelism is actually obtained owing to the limited amount of code motion possible using
conditional compaction alone.

The results of the conditional compaction algorithm, using Stanford benchmarks and a GNU CC
HARP compiler, show that for an issue rate of seven a speedup of 1.72 was obtained. This is
significantly lower than the 1.96 obtained by the scheduler used in our evaluation for an issue rate
of five using both register renaming and conditional execution.

Lam was a member of the WARP systolic array computer team at Carnegie Mellon and extended a
well known technique termed Software Pipelining [Lam 88]. Software Pipelining is a method of
overlapping operations from different loop iterations, without initially unrolling the loop, thereby,
attempting to produce a minimum number of cycles between successive loop iterations. Software
Pipelining is most successful for simple loops consisting of one basic block. Lam incorporates
software pipelining into a global scheduling system called hierarchical reduction. In hierarchical
reduction the innermost programming constructs are always scheduled first. Scheduled units are
then incorporated into the next level of the scheduling hierarchy as a single complex node.
Scheduling continues until the whole scheduling unit is reduced to a single node. Hierarchical
scheduling always ensures that scheduling is performed in an optimum order.

For example, an if-then-else construct within an inner loop would be scheduled first. When
software pipelining is applied to the loop, the if-then-else schedule is treated as a single node
within the loop. The scheduled loop and its associated prologue and epilogue are then incorporated
into the next level of scheduling. The new loop body is treated as a single node and code motion is




allowed across the loop body, subject to appropriate scheduling restraints. In contrast, the
epilogue and prologue are simply merged into the code surrounding the loop.

Nicolau was a member of the ELI-512 VLIW project at Yale and developed Percolation Scheduling
[Nicolau 85]. Percolation Scheduling provides a set of core transformations which allow
instructions, including branch instructions, to "percolate" or move from various parts of the
program graph towards the beginning of the program graph. Initially each node in the program
graph represents an individual instruction. However, as percolation proceeds the nodes are
transformed into VLIW instructions.

The four core transformations are as follows:
»  Deletion

If all the instructions in a node have been percolated out, the empty node can be deleted. The
branch instructions in the predecessor nodes must be altered to point to the successor of the deleted
node (Fig 3.1).
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Fig 3.1 Deletion Transformation
*  Move-op

An instruction is moved in parallel with its predecessors if there are no data dependencies. When
an instruction is percolated beyond a convergence point, the node originally containing the
instruction must be duplicated to preserve program correctness. Each copy will then be percolated
up along its own path, possibly being split again, until a true data dependence prevents further
percolation or the top of the graph is reached (Fig 3.2).
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Fig 3.2 Move-op Transformation

°  Move-j

A conditional branch instruction is moved in parallel with its predecessors if there are no data
dependencies. When the branch instruction is percolated beyond a convergence point, the node
originally holding the branch instruction must be duplicated to preserve program correctness. The

node originally containing the branch must be replicated and inserted in the two successor paths of
the conditional branch (Fig 3.3).
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Fig 3.3 Move-cj Transformation
e Unification

Identical instructions are moved up from multiple successor nodes to a single node (Fig 3.4a).

M: {..}
N: {.X.} P: {{X.}
is transformed to
M: {X.}
N: (..} P: {..}

Fig 3.4a Unification Transformation

Copies are required if any of the nodes which contained the moved instruction have multiple entries
(Fig 3.4b).

12




M: (..}

NN

N: {.X.} P: {.X.}
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Fig 3.4b Unification Transformation

These core transformations can form the basis of a wide variety of global scheduling algorithms.
In addition, they can be used as the basis of more complex transformation primitives. However,
register renaming is not considered in Percolation Scheduling.

Ebcioglu [Moon and Ebcioglu 92] has developed a scheduling technique called Enhanced
Percolation Scheduling in conjunction with the IBM VLIW machine at the IBM Watson Research
Center in New York to improve the scheduling of loops. This method develops percolation
scheduling to allow code motion across the loop back edge. It also adds the renaming mechanism.
The loop is composed of a number of instructions termed "tree instructions” by Ebcioglu. Initially
each tree instruction is composed of one instruction plus a jump to the following tree instruction.
Thus if a loop contains five tree instructions labelled from L1 to L5 and the instruction L1 can be
percolated up into L5 some of the operations from iteration M + 1 will be executed in parallel with
the operations from iteration M. If the percolation scheduled loop contains N instructions, the
multiple successive loop iterations can be overlapped by percolating instructions across the loop
back edge N times. Enhanced Percolation Scheduling automatically generates a software pipelined
loop of arbitrary complexity. Loop prologues and epilogues are generated automatically during
code percolation.

Ebcioglu compared VLIW SPEC benchmark performance with the IBM RISC System/6000. Four
integer SPEC benchmarks were used. The C code was compiled using a PL.8 C-compiler and
then parallelised to VLIW code. The VLIW processors was assumed to have a data and instruction
cache of 256kbytes and 4096 VLIW words respectively. Eight cycles penalty for data cache miss
and 15 cycles penalty for an instruction cache miss were also assumed. Each operation is assumed
to take a single cycle. A speedup of 3.7 is obtained when compared to the IBM RISC
System/6000. Although this is an impressive speedup, Ebcioglu's model is unrealistic in two
important respects. First, there are no branch delays in the model. Instead each VLIW instruction
contains all possible next addresses. Second, the results assume 16 operations per LIW with up to
16 ALU operations, 16 branch operations and 8 memory operations. Therefore, as with the work
by Wall and others outlined in Section 3.1 unlimited resources leads to very impressive figures.

In addition to the scheduling techniques described above, there are also scheduling techniques
based on branch prediction. Branches constitute between 15 and 30% of instructions executed on a
typical machine and severely restrict an instruction scheduler's ability to maximise instruction
parallelism.

In general, there are two ways to predict branches. These are hardware branch prediction and
software branch prediction. They both achieve similar prediction accuracy. However, hardware
branch prediction schemes predict branches dynamically at run time and rely on the outcome of a
branch being stable over a period of time. Software branch prediction uses either a static or
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dynamic approach to predict branch directions at compile time. In a static approach, prediction is
based on the likely outcome of each branch instruction format. For example, Smith [Smith 81]
found that "branch if negative", "branch if equal" and "branch if greater than or equal" were
usually taken. Therefore, these branches were always predicted to be taken. Other conditional
branches were always predicted not to be taken. Also, a backward branch to a loop header was
always predicted to be taken. Although a simple technique, Smith claimed a prediction accuracy
from 65.7% to 99.4% with a mean of 86.7%. The problem with this approach is that it relies
heavily on the characteristics of branches within specific workloads, and these characteristics tend
to vary from workload to workload.

In the dynamic approach, branch information is gathered by profiling a program [Hwu 89]. First,
the program is compiled into an executable intermediate form with probes inserted at the entry to
each basic block. The program is then run one or more times using a representative input suite and
the probes are used to gather statistics on the outcome of each branch instruction. These statistics
can then be used to guide the instruction scheduler.

Alternatively, the scalar instruction set can be modified to include a prediction bit in the branch
instruction format. This bit is set by the compiler using the branch prediction bits to prefetch
instructions from the most likely paths. However, since branch prediction is imperfect it generates
additional instruction fetch traffic and increases the instruction cache bandwidth requirements.

Branch prediction is useful for all scheduling methods but is crucial for trace scheduling and
boosting. It helps the other methods to make the best use of scarce resources by directing the
scheduler to schedule the most likely paths first.

4. THE HARP PROJECT

iHARP [Steven 92a] is a VLSI VLIW processor. It has recently been fabricated and is currently
undergoing tests. A range of HARP architectures is defined in Section 4.2 for use in this
investigation and is based on the iHARP VLSI processor.

4.1iHARP Processor

iHARP provides 32, 32-bit general purpose registers and eight 1-bit boolean registers. Four
parallel pipelines and a memory unit share the general purpose register file. The memory unit is
multi-ported with two write and ten read ports. It is implemented physically as five two-port
register files, with common write ports and separate read ports. The two write ports are controlled
by register writeback logic for instructions executed conditionally.

iHARP uses a four-stage pipeline. During the IF stage iHARP fetches a 128-bit LIW from the
instruction cache. In the RF stage, the four instructions are decoded in parallel by four decoders
and register operands are fetched from the register file. In the ALU/MEM stage the four
instructions are dispatched to four functional units for concurrent execution. During the WB stage
all computational results are written to the general purpose register file.

The iHARP instruction set is shown in Fig 4.1 and the short instruction format in Fig 4.2. Integer
division and multiplication are performed by multiple integer step instructions. iHARP also
provides an instruction that is a combination of a separate shift and ALU instruction. Both
conditional execution and combined instructions are among those features evaluated.

The functionality of iHARP's four pipelines is shown in Fig 4.3. Each field in a LIW can specify
several different short instructions. Therefore, the instruction decoders must issue and dispatch
instructions to the appropriate functional unit. iHARP is a real processor and therefore resources
are limited. Therefore the implementation of the four pipelines requires careful consideration in
deciding which pipeline is to execute which functions. Both pipelines one and three can execute
branch instructions. However, when two branches are executed in parallel, the branch instruction
in pipeline three has priority. A short instruction with a long literal must occupy two successive
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words in the instruction memory. Therefore, such instructions must start in either pipeline zero or
pipeline two allowing the literal to be found in pipeline one or pipeline three. Shifts are not
supported uniformly in all four pipelines. Pipelines zero, one and two all support left-shift
operations of one, two and four bits plus right-shift operations of one, two, three and four bits.
Pipeline three supports left-shift operations of one, three, four and eight bits and right-shift
operations of five, six and eight bits.

4.2 The HARP Family

Each member of the HARP family issues a different number of instructions in parallel. The
number issued varies from one to five short instructions per LIW. The architecture with a
one-instruction issue rate is referred to as the HARP RISC. This model is used as a base
architecture and all performance measurements are relative to the performance of this model.

The HARP RISC adopts the instruction set shown in Fig 4.1 and employs the register files,
addressing modes and four pipeline stages used in iHARP. Functional units include a decoder, an
ALU, a shifter, an integer step unit, a PC unit, a boolean unit and an address unit. Complete
register bypassing is provided and three parallel read ports and one write port are provided on the
general purpose register file.

Table 4.1 shows the variations based on the HARP RISC model for a two-instruction issue,
three-instruction issue, four-instruction issue and five-instruction issue HARP model. All but the
HARP RISC provide two address units enabling two memory reference instructions to be executed
providing they are executed on mutually exclusive boolean values. Two variations of these models
are also considered. The first allows two memory reference instructions to be executed in parallel
by providing two independent 32-bit wide paths between the CPU and a two-port data cache. The
second investigates the impact of allowing two branch instructions to be executed in parallel.
Support is also provided for speculative execution.

4.3 Compiler and Scheduler

This section presents a brief overview of the software used during the course of this investigation.

4.3.1 iHARP Compiler

Stanford benchmarks were compiled using a C compiler constructed using leading public domain
software, GNU CC version 1.30. Code was generated for the iHARP processor. The code
produced was then scheduled by RLS a resource limited scheduler. It is a resource limited
scheduler in the sense that code motions resulting in the duplication of resources are limited. The
scheduled code was then executed on the HARP simulator [Whale 92].

4.3.2 RLS a resource limited scheduler

RLS, a resource limited scheduler, is used to exploit the fine-grained parallelism inherent in
non-numeric programs. RLS allows the instructions belonging to more favoured basic blocks to
consume hardware resources first. The topology of the flow graph and a set of scheduling
heuristics determine these scheduling precedences. In contrast many approaches take no account
of limited hardware resources. VLIW architectures inevitably expand object code size since in
practice it is impossible to fill every long instruction with useful short instructions. RLS aims to
control the number of long instructions generated thereby giving a higher cache hit rate than many
other scheduling algorithms which produce many more long instructions are able to do. RLS does
not require branch profiling so that it is more flexible when applied to commercial or non
predictable user applications.

Conceptually, RLS consists of high level and low level code transformations which are performed

at the procedural level. The high level code transformation maintains overall control of the
scheduling process while the low level code transformation is performed at the basic block level.
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The high level directs the low level code transformations and rearranges the flow graph each time a
low level code transformation is complete. The high level transforms the scalar instruction of a
procedure into a linked data structure, constructs a flow graph, detects loops, unrolls loops, and
selects the next basic block for the low level code transformations. Instructions in the basic blocks
are then moved in topological order into the instruction window. Instructions are moved towards
the top of the flow graph while respecting data dependencies and resource constraints.

Low level code transformation is complete when all instructions in the basic blocks have been
scheduled. High level code transformation is complete when all basic blocks in a procedure have
been selected for scheduling. RLS is complete when all procedures in the program have been
scheduled. The resultant window is a single stream of parallel code which can be executed on a
specific multiple instruction issue processor.

5. THE ARCHITECTURAL FEATURES OF iHARP EVALUATED

This section presents and discusses the results of the evaluation of the architectural features under
investigation. The architectural features under investigation are those features outlined in the
introduction. The purpose of obtaining these results is to show how these features can affect the
performance of a multiple instruction issue processor. The cache hit rate is assumed to be 100% in
all cases.

The single pipeline scheduler attempts to fill branch delay slots with useful instructions. Fig 5.1
shows the number of cycles required to execute eight Stanford benchmarks on the HARP RISC
before and after the delay slots have been filled. Performance improved by 7.3% on average
(harmonic mean), after the branch delay slots had been filled. All the results presented for the
investigation of the architectural features use the HARP RISC after, and not before, the branch
delay slots have been filled as the base measurement which could otherwise show deceptive
parallelism.
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Fig 5.1 HARP Scalar RISC dynamic cycle counts
Before and after filling delay slots

5.1 Instruction Issue Rate

A MII architecture's performance is to some extent dependent upon the number of instructions it
can issue for execution in each cycle. However, there are limitations and costs associated with the
issue rate. These are limited parallelism of the source code, limited hardware resources and code
size increase. Limited parallelism can be overcome by a smart scheduler unrolling loops and other
such similar techniques. Limited hardware resources can be overcome by duplicating functional
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units. However, this will require an increase in the memory and register file bandwidth. Also,
keeping these functional units busy requires enough work in the LIW so that code size does not
increase too excessively. This leads to the third point of code size increase since NOPs in unused
instruction slots and loop unrolling will increase code size. Thus considering all of the above
points makes it interesting to find out the most cost effective issue rate.

The adeptness of RLS's parallelising capabilities was measured by comparing the cycle count and
code size generated for both serial and parallel code. The serial code was that produced by the
single pipeline scheduler. The parallel code was produced by the different configurations of the
HARP RISC discussed in Section 4, namely, two instruction issue, three instruction issue, four
instruction issue and five instruction issue processors. In all cases one memory port was assumed.
Tables 5.2-5.5 show the speedup obtained over the original serial code. Fig 5.2 shows the
average speedup obtained over the original serial code. The speedup is 1.45 for an issue rate of
two and 1.66, 1.74 and 1.76 for issue rates of three, four and five respectively.

There is a significant speedup as the issue rate increases from two to four and a slight speedup as
the rate increases from four to five. Speedup then begins to level off. The speedup obtained over
the HARP RISC with the delay slots filled is 1.76 for five pipelines and 1.74 for four pipelines.
These figures compare favourably with other groups working in the area. The IMPACT group
[Chang 91] obtained a. speedup of 1.6 for an issue rate of two and 2.00 for an issue rate of four.
The group at Stanford working on boosting [Smith et al 92] achieved a speedup of 1.24 for their
base superscalar with an issue rate of two and no boosting, 1.45 for their base superscalar using a
boosting level of one and 1.5 for their base superscalar using a boosting level of three. Although
the figures for HARP are slightly lower than for the IMPACT group the speedup for HARP would
in fact be 1.6 for two and 2.00 for four if the base measurement was for HARP before the delay
slots were filled. IMPACT do not say what the base model is i.e. delay slots filled or unfilled.

iHARP is a real processor which has been fabricated and therefore has a limited number of
resources. Therefore, 1.8 is a good result and does compare well with other research groups
which tend to use a paper design and unlimited resources. For an issue rate of four a speedup of
two is probably the best that can be expected, that is, 50% of the pipelines working each cycle.

Figs 5.3 and 5.4 shows the code size increase as the issue rate increases. At an issue rate of two
code size increases by 1.38. At higher issue rates the increase is 1.86, 2.34 and 2.82 for issue
rates of three, four and five respectively. This emphasises the main problem of VLIW
architectures that of code explosion. NOPs are inserted in any unused instruction slots in the long
instruction word and as the amount of parallelism obtained by the scheduler reaches a limit so the
percentage of NOPs increases dramatically. Fig 5.5 shows the percentage of NOPs in each
program. For example, the percentage of NOPs in the program perm increases from 36% for an
issue rate of two to 70% for an issue rate of five. Fig 5.6 shows that the average increase in the
percentage of NOPs is from 33% for an issue rate of two to 65% for an issue rate of five, a
two-fold increase. The problem of code explosion is addressed in superscalar architectures which
do not insert NOPs in instruction slots. Therefore code size does not increase with increased issue
rate. The computer architecture group at the University of Hertfordshire are developing a minimal
superscalar processor to address this problem.
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5.2 The number of cache memory ports

Traditionally only one memory port is available to microprocessors to access data. A second data
cache memory port is added which gives enough capacity to do two parallel reads or writes each
cycle. Thus, the impact on performance of using two data cache memory ports was investigated for
issue rates from two to five. Tables 5.6-5.9 shows the speedups obtained for individual
benchmarks. Fig 5.7 shows the average speedup obtained for all eight benchmarks for both one
memory port (1IM) and two memory ports (2M). The speedup obtained ranges from 1.51 for an
issue rate of two to 1.96 for an issue rate of five.

Low parallelism realised in programs can, in part, be attributed to a high percentage of memory
reference instructions. Several programs could be said to be memory intensive. These are
identified as perm, bubble, queens and tower. These programs have benefited significantly from
the extra data cache port. Fig 5.7 shows that a performance increase is obtained at all issue rates.
For example at an issue rate of four performance improves by approximately 10% when two cache
ports are available.
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The cause of the speedup will be in part due to the fact that two loads can now take place in
parallel. Therefore, more data is available for use each cycle and therefore more useful work can
also be undertaken each cycle. Thus it would be expected that a performance improvement would
be obtained which is indeed the case.
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Fig 5.7 Speedup versus the number of data cache ports
5.3 Conditional execution

Conditional execution has been proposed by a number of people including Hsu and Davidson [Hsu
86], Acorn ARM processor [Furber 89] and Moon and Ebcioglu [Moon 92]. However, little if
any evaluation of its benefits has been carried out. Therefore, scheduling is compared with both
register renaming and conditional execution, conditional execution only and register renaming only
to establish the effectiveness of conditional execution on performance.

Tables 5.19-5.42 and Fig 5.8 shows the results obtained using the various combinations of
register renaming and conditional execution for both one and two memory ports. For one memory
port the speedup obtained for both register renaming and conditional execution is 1.45 for an issue
rate of two increasing to 1.76 for an issue rate of five. Using conditional execution only the
speedups are 1.45 to 1.67 for issue rates from two to five. With register renaming only the
speedups are 1.38 to 1.62 for issue rates from two to five. When two memory ports are
considered an improvement in the speedup is obtained. Thus, using both register renaming and
conditional execution the speedups are 1.51 to 1.96. Using register renaming only the figures are
then 1.51 to 1.82. Finally, for register renaming only the figures are 1.44 to 1.70. Thus, at an
issue rate of two conditional execution and a combination of both conditional execution and register
renaming improves performance by 5% when compared with register renaming only for both one
and two memory ports. At higher issue rates a combination of both methods improves
performance significantly when compared with register renaming whilst conditional execution lies
somewhere in between. In fact the combination is still increasing at an issue rate of five suggesting
that an examination of higher issue rates is necessary. The surprising result is that conditional
execution improves performance more than register renaming. It would be expected that register
renaming would show a greater speedup than conditional execution. This result is probably a
consequence of the scheduling algorithm used which is designed to make very good use of the
conditional execution feature.

The improvement in performance when both methods are used shows the benefit of using
conditional execution as well as register renaming.
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There are advantages and disadvantages associated with both methods. The advantages of register
renaming are twofold. First, it is more flexible and supports code motion across multiple
branches. Second, it can be used to resolve anti and output data dependencies. However, its
disadvantage is that it introduces restoring code which consumes extra hardware resources. This,
in turn may prevent further code motion. The advantages of conditional execution are fourfold.
First, it conserves resources in that restoring code is not required. Second, live variable analysis is
not required. Third, it reduces the number of registers used. Fourth, it avoids the requirement for
speculative execution. There are two main disadvantages. First, it requires a boolean guard which
introduces a dependence between the boolean guard and the instruction being moved thereby
limiting code motion. Second, it cannot resolve anti and output data dependencies.

Thus, both methods have advantages and disadvantages. However, a better performance is
produced when both methods are used together than when either is used separately. Therefore,
both methods should be incorporated into future instruction schedulers.
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5.4 ORed Indexing

A RISC processor typically requires five pipeline stages to execute a load instruction [Hennessy
90]:

IF:  Instruction Fetch.

RF: Register Fetch.

ALU: Memory address calculation.
MEM: Data cache access.

WB: Write result to register file.

Since the data accessed from the cache is not available until the end of the MEM stage, it can only
be used by the next instruction if the pipeline is stalled for one cycle. The load delay is therefore
one.

In contrast, iHARP uses a four stage pipeline as outlined in Section 4.1:

IF: Instruction Fetch.

RF: Register Fetch.

ALU/MEM: Perform operation or access data.
WB: Write result to register file.

Two changes have been made to the original RISC pipeline. First, the address calculation has been
moved to the RF stage. Second, the ALU and MEM stages have been combined. This second
change is possible because loads and stores no longer use the ALU to compute memory addresses.
The major advantage is that the result of a load operation is now available at the end of the
ALU/MEM stage and can therefore be bypassed directly to the next sequential instruction with no
load delay.

The key to moving the address compuation to the RF stage is to reduce the computation to a
bitwise logical OR between the two address components [Steven 88]. A logical OR is equivalent
to an addition if no carries are generated. This condition is met if the address components never
have a logical one in the same bit position.

In order to use a logical OR in address computations, the compiler ensures that the bottom n bits of
the stack pointer are always zero by aligning the stack pointer on a power of two memory address
boundary. A stack offset can then be added safely to SP using a logical OR. Glew [Glew 89]
suggested the term ORed indexing to describe this addressing mechanism.

iHARP's addressing mechansims of offset(Ri) and (Ri,Rj), where Ri and Rj can be any
general-purpose register and since RO is always zero register indirect and direct addressing are also
available, are compared with three other addressing mechanisms for both serial and parallel
execution. The other addressing mechanisms are traditional RISC addressing modes with a five
stage pipeline where the load delay is one, register indirect and direct addressing only where the
four stage pipeline can be used thus avoiding a load delay, and register indirect, direct and stack
pointer relative addressing where a dedicated address adder is required for adding the SP to an
offset and where SP must be implemented as a register outside the general-purpose register file.

Performance in terms of cycle counts and dynamic code size is obtained for each addressing
mechanism.

Execution times and dynamic instruction counts are shown in Tables 5.14-5.16. The relative
performance of the addressing modes are shown in Fig 5.9.

The best execution times for serial code were obtained with ORed indexing and with a dedicated

SP adder. Using traditional RISC addressing modes degraded performance by 3%, while using
register indirect addressing degraded performance by 10%.
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The move from serial to parallel code significantly changed the relative performance. With parallel
code, ORed indexing, register indirect and a dedicated stack pointer adder all performed equally
well, while using traditional addressing mechanisms degraded performance by 10%. The VIPER
group [Abnous et al 92] found that register indirect addressing yielded a similar 8.4% performance
improvement over traditional addressing modes in a VLIW environment.

In all cases the performance advantage over traditional addressing mechanisms is achieved by
executing more instructions. Using ORed indexing or a dedicated SP address adder, 4% more
instructions are executed, while with register indirect addressing 14% more instructions are
executed.

Traditional addressing modes perform relatively well in a single pipeline because the compiler can
usually hide the load delay by scheduling useful instructions in the load delay slot. In contrast, in
parallel code any instruction which could be used to fill load delay slots can also be executed in
parallel with the load instruction. As a result increasing the latency of load instructions has a
greater impact on the execution time of parallel code.

In contrast register indirect addressing performs significantly better in a parallel environment. This
improved performance is a direct result of a VLIW processor's ability to precompute addresses in
parallel with other instructions. While these address computations increase the instruction count,
the impact on performance is minimal.

While both ORed indexing and register indirect addressing are easily incorporated into a VLIW or
superscalar design, the traditional addressing mechanisms are less easily accommodated. One
approach is to replicate the five-stage pipeline described above. Unfortunately, delaying the ALU
write back for one cycle significantly increases the number of bypassing paths required. A more
attractive alternative is to allow ALU instructions to return their results to the register file in the
fourth pipeline stage. However, since ALU and load instructions now write to the register file in
different pipeline stages, an extra write port is required to avoid pipeline stalls. Alternatively, if an
extra port is not provided, the variable instruction latency makes it more difficult for the instruction
scheduler to minimise stalls by allocating write ports to instructions.

Although the use of a dedicated stack pointer adder produces excellent results, this mechanism is
very dependent on the most common addressing mode being SP plus offset. In contrast, the other
addressing modes treat all registers identically. The mechanism also scales very badly. For
example, if parallel loads are required, a dedicated adder is required for each load. In general this
mechanism is the least flexible of the alternatives examined and is therefore less attractive than the
performance figures suggest.
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5.5 The number of register writeback ports

Parallel writes to the general-purpose register file are essential in maintaining high execution rates in
MII architectures. iHARP provides two writeback ports. Therefore, during each cycle a maximum
of only two results can be returned to the register file. Thus, the writeback capability is varied
between two, three and four writebacks to ascertain the effect this has on performance. As it is
more complex implementing write ports than read ports the results will show whether the increase
in hardware costs and complexity incurred in providing extra writeback ports can be justified.

Tables 5.10-5.12 and Fig 5.10 shows the impact on performance of varying the number of register
writeback ports. In all cases one memory port and an issue rate of four is assumed. The speedups
obtained are 1.66, 1.73 and 1.74 for two, three and four register writebacks respectively.
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Fig 5.10 Speedup using a different number of register writebacks
Parallel writes to the general-purpose register file are essential to MII HARP architectures.
iHARP's register file provides only two writeback ports. Therefore, during each cycle only two

results can be returned to the register file. The figures show that increasing the number of register
ports from two to three increases performance by approximately 4% while a further increase in the
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number of register writeback ports from three to four has a negligible effect. This suggests that in
most cases not more than two or three instructions will be returning values to the register file in a
four pipeline machine. Therefore, the fourth writeback port will not be used and the additional
feature of a writeback bit could therefore only improve performance by 4%.

5.6 The number of branch units

iHARP is assumed to have two parallel branch units but since the extra cost of an additional
branch unit is small many VLIW architectures provide multiple branch units [Ebcioglu 88][Fisher
83]. The impact of providing a single branch unit is investigated for a four instruction issue rate
model to find out whether multiple branch units are actually necessary.

Table 5.13 and Fig 5.11 shows the speedup using one and two branch units. The results show
that the performance impact was in fact negligible suggesting that most of the time only one branch
is used per cycle.

Although the RLS scheduler allows two branches to be sheduled in parallel, code motion is always
upwards. A branch at the end of a basic block will therefore only be scheduled in parallel with
another branch if all the other instructions in the basic block have already been moved in parallel
with a preceding basic block. Even when parallel scheduling of branches does occur there is no
guarantee that execuing two branches in parallel will reduce the average execution time. The
frequent occurrence of recursive subroutine calls in some benchmarks further reduces the
opportunities to schedule branch instructions in parallel.
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Fig 5.11 Speedup using one and two branch units
5.7 Combined instructions

iHARP provides instructions which are a combination of a shift instruction followed by an ALU
instruction in source code. Combining was also proposed by Nakatani and Ebcioglu [Nakatani
89]. For example, the two separate instructions

ASL R6, R7, #6
ADD RS, R6, R2

could be combined to become

ADD RS, R7(ASL #6), R2
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providing R6 is not live after the ADD instruction. Preliminary studies [Steven 92b] have found
that 16% of instructions involving a shift can be combined in this way.

Tables 5.17-5.18 and Fig 5.12 show the results of the simulations for this feature. Table 5.17
shows the impact of instruction combining on sequential code. The speedup is almost identical for
both sequential and parallel code at 1.02 and 1.03 respectively.

Different factors have played a part in the effect combining may have. In sequential code each
instruction requires a cycle so combining shifts with another instruction essentially reduces the
cycle count by one each time the sequence is executed. In parallel code however, without
combining, a shift instruction and an ALU instruction could be scheduled in parallel thereby both
being executed in the same cycle. However, if the instructions are then combined they will still be
executed in the same cycle thereby incurring no savings or very little at all.

However, the conclusions are that too few instructions are combined to have a significant impact
and is therefore not a critical factor in the speedup.

h.mean combining present parallel

intmm combining absent parallel

puz -5 74 combining present sequential

tower —£4 e o combining absent sequential

perm

Program

queens
tree
quick 1§
bub

0 200000 400000 600000 800000
Cycle count

Fig 5.12 Impact of instruction combining on serial and parallel code
6. CONCLUSIONS

This paper has described RLS a resource limited scheduler which has been used to evaluate several
architectural features of iHARP. This evaluation has been carried out using a HARP family of
processors issuing two, three four and five instructions per cycle.

Speedup increases significantly as the issue rate increases from two to four and less significantly
from four to five. This suggests that there will not be much impact on speedup if the issue rate is
increased any further and therefore further development of the scheduling algorithm is required.

Both the number of register writeback ports and number of data cache ports has an affect on
processor performance although the effect of the number of data cache ports is more significant. In
contrast two parallel branch units do not significantly improve performance. This suggest that one
branch unit is sufficient for a HARP processor. However, the recursive nature of the benchmarks
may have removed some of the opportunities to schedule branch instructions in parallel.

Conditional execution has performed particularly well for both one and two memory ports.

Register renaming has not performed as well as might be expected. However, this result is
presumably because RLS has been designed to make good use of the conditional execution feature
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which has therefore been favoured. Interestingly, when both conditional execution and register
renaming are combined it improves performance by approximately 5% for one memory port and
approximately 8% for two memory ports when compared with conditional execution only.

Considering ORed indexing the results support the use of ORed indexing on HARP. A
performance increase of 10% is achieved over traditional RISC addressing mechanisms while code
expands by only 4%. Register indirect addressing performs equally well in a VLIW environment.
However, code expansion is 14%. Finally, a dedicated stack pointer address adder performs as
well as ORed indexing but is less flexible and involves greater hardware complexity.

The HARP instruction set provides for limited shifting to be performed before each ALU
operation, thus allowing two scalar instructions to be combined into one complex operation.
Although some speedup has occurred for both sequential and parallel code the impact obtained is
not very significant and suggests that instruction combining is not a critical factor in processor
performance.

It can be concluded that when scheduling for four pipelines with limited resources the best
instruction execution rate that can be achieved is two, that is half the pipelines working each cycle.
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Fig 4.1 iHARP Instruction Set

Computational Relational

ADD Rdst,src1,src2 GTS Bdst,Rsrcl,src2
ADDV Rdst,srcl,src2 GES Bdst,Rsrcl,src2
ADDC Rdst,srcl,src2 LTS Bdst,Rsrcl,src2
SUB Rdst,src1,src2 LES Bdst,Rsrcl,src2
SUBV Rdst,srcl,src2 GTU Bdst,Rsrcl,src2
SUBC Rdst,srcl,src2 GEU Bdst,Rsrcl,src2
AND  Rdst,srcl,src2 LTU Bdst,Rsrcl,src2
OR Rdst,srcl,src2 LEU Bdst,Rsrcl,src2
EOR Rdst,src1,src2 EQ  Bdst,Rsrcl,src2
BIC Rdst,srcl,src2 NE Bdst,Rsrcl,src2

DSTEP Rdsta:Rdstb,Rsrcla:Rsrc2a,Rsrc2b
MSTEP[i] Rdst,srcl,src2
MSTEPV][i] Rdst,src1,src2

Memory Reference Boolean
LD Rdst,<ea> AND Bdst,Bsrcl,Bsrc2
LDB Rdst,<ea> OR  Bdst,Bsrcl,Bsrc2
LD Bdst,<ea> EQ  Bdst,Bsrcl,Bsrc2
ST <ea>,Rsrc3 NE Bdst,Bsrc1,Bsrc2
STB <ea>,Rsrc3 GT  Bdst,Bsrcl,Bsrc2
ST <ea>,Bsrc3 LT Bdst,Bsrc1,Bsrc2
LE Bdst,Bsrc1,Bsrc2
Special Purpose GE  Bdst,Bsrcl,Bsrc2
MOYV Rdst,SPR Branch
MOYV SPR,src2
EI BT  Bsrc3,label
DI BF Bsrc3,label
TRAP #n,Bsrc3 BSR Rdst,label
Notes
Rsrel, Rsre2, Rsre3: 32-bit, general-purpose source registers.
Rsrcla, Rsrc2a, Rsrclb:  32-bit, general-purpose source registers.
Rdst, Rdsta, Rdstb 32-bit, general-purpose destination registers.
srcl : Rsrcl optionally shifted.
src2 : Rsrc2, 11-bit literal(signed) or 32-bit literal.
<ea>: Rsrcl ORed with src2
Bsrcl, Bsrc2, Bsre3: Boolean source registers
Bdst: Boolean destination register
SPR: PC or Status Register

i Specifies bit in Multiplication Register
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Fig 4.2 iHARP Short Instruction Format

31 30 2827 23 22 21 19 181716 14131211 10 9 87 54 21 0O
1

—

Rdst/Rsrc3 pid—Rsrcl —B | 1=00 (g—Rsrc2 ——p

L=01

Function

L=1, Un/signed literal
r———— Un/signed literal —
Signed branch offset »
Key
BC Boolean for Rsre2/ | General purpose/Boolean regi-
conditional execution Bsrc2  {ster containing 2nd operand
B Boolean reg. to test 01 { Inter-register format
e - .
g for conditional execution L 00 | Long-literal format (32-bits)
Functi Instructi it
bl b u‘c 1orf function code 1X § Short-literal format
PW Permit write-back -
to register file Shift Shift control code
Rdst/ | General purpose destination Special purpose register.
Rsre3  Jregister / store source Spreg  Used for Load and Store
Special Purpose Register
Bdst/ Boolean destination register / Second Boolean Condition for
Bsrc3 store source Bcond TRAP and Branch
Rsrel/ Ger-leral pu1p<?s§/B oolean Bits not used in some formats
Bsrcl _Jregister containing 1st operand

Fig 4.3 Functionality of iHARP pipelines

Pipeline0 Pipelinel Pipeline2 Pipeline3
1. computational computational computational computational
2. relational relational relational relational
3. memory reference - memory reference -
4., - - boolean -
5 - branch & return - branch & return
6. - special purpose - -
1. - - - traps
L. - 32-bit literal - 32-bit literal
Note

Instructions in pipeline 0 and 1 can use a 32-bit literal from an adjacent pipeline.
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TABLES

Table 2.1 Functional Units provided on the HARP Family of processors
HARP 2-inst 3-inst 4-inst 5-inst
RISC Issue Issue Issue Issue
Issue Rate 1 2 3 4 5
Decoder 1 2 3 4 5
ALU 1 2 3 4 5
Shifter 1 2 3 4 5
Integer Step Unit 1 2 3 4 5
PC Unit 1 1 1 1 1
Address Unit 1 2 2 2 2
Read Port
GP Reg. File 3 6 8 10 12
Write Port
GP Reg. File 1 2 3 4 5

Boolean Unit 1 1 1 1 1
Speculative
Execution ? N/A Yes Yes Yes Yes
Table 6.1 HARP RISC dymanic cycle counts

Before and after filling branch delay slots

Program Delay Slots  Delay Slots ~ Speedup

Unfilled Filled

Bubblesort 623,643 601,750 1.04

Quick 286,649 271,469 1.06

Treesort 472,531 428,951 1.10

Queens 521,790 480,504 1.09

Perm 758,804 669,362 1.13

Tower 580,070 524,836 1.11

Puzzle 80,080 77,170 1.04

Intmm 242,767 236,225 1.03

Speedup (harmonic mean) 1.07
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Table 6.2

Table 6.3

Speedup over HARP RISC

Issue rate: 2

Program Serial Parallel Speedup
Bubblesort 601,750 403,868 1.49
Quick 271,469 191,396 1.42
Treesort 428,951 317,710 1.35
Queens 480,504 312,682 1.54
Perm 669,362 519,402 1.29
Tower 524,836 389,380 1.35
Puzzle 77,170 51,088 1.51
Intmm 236,225 131,206 1.80
Speedup (harmonic mean) 1.45
Speedup over HARP RISC

Issue rate: 3

Program Serial Parallel Speedup
Bubblesort 601,750 318,260 1.89
Quick 271,469 169,672 1.60
Treesort 428,951 283,342 1.51
Queens 480,504 284,278 1.69
Perm 669,362 502,604 1.33
Tower 524,836 336,288 1.56
Puzzle 77,170 44,568 1.73
Intmm 236,225 107,094 2.21
Speedup (harmonic mean) 1.66
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Table 6.4

Table 6.5

Speedup over HARP RISC

Issue rate: 4

Program Serial Parallel Speedup
Bubblesort 601,750 315,860 1.91
Quick 271,469 156,870 1.73
Treesort 428,951 278,340 1.54
Queens 480,504 276,720 1.74
Perm 669,362 502,062 1.33
Tower 524,836 325,992 1.61
Puzzle 77,170 39,280 1.96
Intmm 236,225 93,312 2.53
Speedup (harmonic mean) 1.74
Speedup over HARP RISC

Issue rate: 5

Program Serial Parallel Speedup
Bubblesort 601,750 314,258 1.91
Quick 271,469 152,868 1.78
Treesort 428,951 274,338 1.56
Queens 480,504 269,378 1.78
Perm 669,362 502,058 1.33
Tower 524,836 325,970 1.61
Puzzle 717,170 38,972 1.98
Intmm 236,225 87,650 2.70
Speedup (harmonic mean) 1.76
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Table 6.6

Table 6.7

Speedup over HARP RISC using two cache memory ports

Issue rate: 2

Program Serial Parallel Speedup
Bubblesort 601,750 364,060 1.65
Quick 271,469 188,734 1.44
Treesort 428,951 316,978 1.35
Queens 480,504 296,660 1.62
Perm 669,362 487,598 1.37
Tower 524,836 364,964 1.44
Puzzle 77,170 51,008 1.51
Intmm 236,225 132,640 1.78
Speedup (harmonic mean) 1.51

Speedup over HARP RISC using two cache memory ports

Issue rate: 3

Program Serial Parallel Speedup
Bubblesort 601,750 277,254 2.17
Quick 271,469 161,648 1.68
Treesort 428,951 272,282 1.58
Queens 480,504 266,454 1.80
Perm 669,362 415,462 1.61
Tower 524,836 305,540 1.72
Puzzle 77,170 44,448 1.74
Intmm 236,225 106,294 2.22
Speedup (harmonic mean) 1.79
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Table 6.8

Table 6.9

Speedup over HARP RISC using two cache memory ports

Issue rate:; 4

Program Serial Parallel Speedup
Bubblesort 601,750 275,252 2.19
Quick 271,469 151,616 1.79
Treesort 428,951 265,272 1.62
Queens 480,504 245,216 1.96
Perm 669,362 395,304 1.69
Tower 524,836 289,102 1.82
Puzzle 77,170 39,140 1.97
Intmm 236,225 92,912 2.54
Speedup (harmonic mean) 1.91

Speedup over HARP RISC using two cache memory ports

Issue rate: 5

Program Serial Parallel Speedup
Bubblesort 601,750 273,650 2.20
Quick 271,469 147,612 1.84
Treesort 428,951 260,270 1.65
Queens 480,504 235,774 2.04
Perm 669,362 375,140 1.78
Tower 524,836 289,080 1.82
Puzzle 77,170 38,808 1.99
Intmm 236,225 87,450 2.70
Speedup (harmonic mean) 1.96

37




Table 6.10 Speedup over HARP RISC using two register writeback ports
Issue rate: 4

Program Serial Parallel Speedup
Bubblesort 601,750 356,060 1.69
Quick 271,469 161,268 1.68
Treesort 428,951 281,356 1.52
Queens 480,504 286,180 1.68
Perm 669,362 502,072 1.33
Tower 524,836 342,458 1.53
Puzzle 77,170 43,002 1.79
Intmm 236,225 95,714 2.47
Speedup (harmonic mean) 1.66

Table 6.11  Speedup over HARP RISC using three register writeback ports
Issue rate: 4

Program Serial Parallel Speedup
Bubblesort 601,750 315,860 1.91
Quick 271,469 157,756 1.72
Treesort 428,951 278,340 1.54
Queens 480,504 276,940 1.74
Perm 669,362 502,062 1.33
Tower 524,836 330,110 1.59
Puzzle 77,170 39,686 1.94
Intmm 236,225 93,272 2.53
Speedup (harmonic mean) 1.73
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Table 6.12 Speedup over HARP RISC using four register writeback ports
Issue rate: 4

Program Serial Parallel Speedup
Bubblesort 601,750 315,860 1.91
Quick 271,469 156,870 1.73
Treesort 428,951 278,340 1.54
Queens 480,504 276,720 1.74
Perm 669,362 502,062 1.33
Tower 524,836 325,992 1.61
Puzzle 77,170 39,280 1.96
Intmm 236,225 93,312 2.53
Speedup (harmonic mean) 1.74

Table 6.13  Speedup over HARP RISC using one and two branch units
Issue rate: 4

Program One Branch  Two Branch Difference
Unit Units

Bubblesort 315,864 315,860 4
Quick 156,876 156,870 6
Treesort 279,344 278,340 1,004
Queens 280,740 276,720 4,020
Perm 502,064 502,062 2
Tower 325,992 325,992 0
Puzzle 39,334 39,280 54
Intmm 93,352 93,312 40
Difference (harmonic mean) 0.73
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Table 14 Serial Execution Time (Cycles)

Program ORed Trad. Register SP Address
Indexing Modes Indirect Adder
Bubblesort 48946 44552 48962 48946
Intmm 235624 236232 238084 235624
Perm 16032 16940 19346 16046
Puzzle 75076 77492 75316 75076
Queens 47654 49858 52174 47648
Quick 48632 51242 49716 48632
Tower 33106 34610 37798 33106
Treesort 72790 78894 74806 72790
Average 72233 73728 74525 72234
H. mean 43043 44505 47422 43055

Table 15 Parallel Execution Time (Cycles)

Program ORed Trad. Register SP Address
Indexing Modes Indirect Adder
Bubblesort 26510 29562 26510 26510
Intmm 95570 96578 95570 95570
Perm 12010 13316 12010 12010
Puzzle 39302 41816 39302 39302
Queens 29278 31290 29502 29274
Quick 28698 31382 28876 28698
Tower 22952 25804 22952 22952
Treesort 47818 54198 47818 47818
Average 37767 40493 37818 37767
H. mean 27551 30278 27596 27550
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Table 16 Parallel Instruction Count (Bytes)

Program ORed Trad. Register SP Address
Indexing Modes Indirect Adder
Bubblesort 25871 19505 25879 25871
Intmm 37709 35709 38939 37709
Permute 7994 7994 9644 7994
Puzzle 48877 46825 48997 48997
Queens 37251 37695 39189 37248
Quick 18704 18704 19346 18704
Tower 17873 17189 19156 17873
Treesort 31733 31631 32741 31733
Average 28252 26907 29236 28255
H. mean 21136 20227 22964 21139
Table 6.17 Impact of instruction combining on sequential code
Program Without With Speedup
Combining  Combining
Bubblesort 624,039 623,643 1.00
Quick 303,531 286,649 1.06
Treesort 475,523 472,531 1.01
Queens 524,810 521,790 1.01
Perm 786,214 758,804 1.04
Tower 580,106 580,070 1.00
Puzzle 85,768 80,080 1.07
Intmm 245,367 242,767 1.01
Speedup (harmonic mean) 1.02
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Table 6.18 Impact of instruction combining on parallel code

Table 6.19

Issue rate: 4

Program Without With Speedup
Combining  Combining
Bubblesort 356,058 315,860 1.13
Quick 167,698 156,870 1.07
Treesort 282,352 278,340 1.01
Queens 276,860 276,720 1.00
Perm 520,326 502,062 1.04
Tower 325,992 325,992 1.00
Puzzle 40,278 39,280 1.03
Intmm 93,312 93,312 1.00
Speedup (harmonic mean) 1.03

Speedup over HARP RISC using both register renaming
and conditional execution for one memory port

Issue rate: 2

Program Serial Parallel Speedup
Bubblesort 601,750 403,868 1.49
Quick 271,469 191,396 1.42
Treesort 428,951 317,710 1.35
Queens 480,504 312,682 1.54
Perm 669,362 519,402 1.29
Tower 524,836 389,380 1.35
Puzzle 77,170 51,088 1.51
Intmm 236,225 131,206 1.80
Speedup (harmonic mean) 1.45
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Table 6.20 Speedup over HARP RISC using both register renaming
and conditional execution for one memory port

Table 6.21

Issue rate: 3

Program Serial Parallel Speedup
Bubblesort 601,750 318,260 1.89
Quick 271,469 169,672 1.60
Treesort 428,951 283,342 1.51
Queens 480,504 284,278 1.69
Perm 669,362 502,604 1.33
Tower 524,836 336,288 1.56
Puzzle 77,170 44,568 1.73
Intmm 236,225 107,094 2.21
Speedup (harmonic mean) 1.66

Speedup over HARP RISC using both register renaming
and conditional execution for one memory port

Issue rate: 4

Program Serial Parallel Speedup
Bubblesort 601,750 315,860 1.91
Quick 271,469 156,870 1.73
Treesort 428,951 278,340 1.54
Queens 480,504 276,720 1.74
Perm 669,362 502,062 1.33
Tower 524,836 325,992 1.61
Puzzle 77,170 39,280 1.96
Intmm 236,225 93,312 2.53
Speedup (harmonic mean) 1.74
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Table 6.22 Speedup over HARP RISC using both register renaming
and conditional execution for one memory port
Issue rate: 5

Program Serial Parallel Speedup
Bubblesort 601,750 314,258 1.91
Quick 271,469 152,868 1.78
Treesort 428,951 274,338 1.56
Queens 480,504 269,378 1.78
Perm 669,362 502,058 1.33
Tower 524,836 325,970 1.61
Puzzle 77,170 38,972 1.98
Intmm 236,225 87,650 2.70
Speedup (harmonic mean) 1.76

Table 6.23  Speedup over HARP RISC using conditional execution
only for one memory port
Issue rate: 2

Program Serial Parallel Speedup
Bubblesort 601,750 363,680 1.65
Quick 271,469 189,190 1.43
Treesort 428,951 327,580 1.31
Queens 480,504 332,242 1.45
Perm 669,362 519,406 1.29
Tower 524,836 412,140 1.27
Puzzle 77,170 48,340 1.60
Intmm 236,225 133,264 1.77
Speedup (harmonic mean) 1.45
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Table 6.24 Speedup over HARP RISC using conditional execution
only for one memory port
Issue rate: 3

Program Serial Parallel Speedup
Bubblesort 601,750 318,260 1.89
Quick 271,469 175,170 1.55
Treesort 428,951 296,706 1.45
Queens 480,504 297,718 1.61
Perm 669,362 502,068 1.33
Tower 524,836 379,436 1.32
Puzzle 77,170 45,124 1.71
Intmm 236,225 109,174 2.16
Speedup (harmonic mean) 1.59

Table 6.25 Speedup over HARP RISC using conditional execution
only for one memory port
Issue rate: 4

Program Serial Parallel Speedup
Bubblesort 601,750 316,258 1.90
Quick 271,469 166,658 1.63
Treesort 428,951 290,706 1.48
Queens 480,504 294,960 1.63
Perm 669,362 502,070 1.33
Tower 524,836 369,158 1.42
Puzzle 77,170 41,716 1.85
Intmm 236,225 95,610 2.47
Speedup (harmonic mean) 1.66
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Table 6.26 Speedup over HARP RISC using conditional execution
only for one memory port
Issue rate: 5

Program Serial Parallel Speedup
Bubblesort 601,750 314,656 1.91
Quick 271,469 162,656 1.67
Treesort 428,951 286,704 1.50
Queens 480,504 295,438 1.63
Perm 669,362 502,062 1.33
Tower 524,836 369,154 1.42
Puzzle 77,170 41,586 1.86
Intmm 236,225 90,148 2.62
Speedup (harmonic mean) 1.67

Table 6.27 Speedup over HARP RISC using register renaming only
for one memory port
Issue rate: 2

Program Serial Parallel Speedup
Bubblesort 601,750 442,418 1.36
Quick 271,469 195,080 1.39
Treesort 428,951 332,862 1.29
Queens 480,504 366,502 1.31
Perm 669,362 529,490 1.26
Tower 524,836 397,650 1.32
Puzzle 77,170 53,688 1.44
Intmm 236,225 133,898 1.76
Speedup (harmonic mean) 1.38
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Table 6.28 Speedup over HARP RISC using register renaming only
for one memory port

Table 6.29

Issue rate: 3

Program Serial Parallel Speedup
Bubblesort 601,750 356,814 1.69
Quick 271,469 176,262 1.54
Treesort 428,951 299,728 1.43
Queens 480,504 339,258 1.42
Perm 669,362 509,314 1.31
Tower 524,836 365,100 1.44
Puzzle 77,170 47,272 1.63
Intmm 236,225 109,412 2.16
Speedup (harmonic mean) 1.54

Speedup over HARP RISC using register renaming only
for one memory port

Issue rate: 4

Program Serial Parallel Speedup
Bubblesort 601,750 354,414 1.70
Quick 271,469 166,174 1.63
Treesort 428,951 293,732 1.46
Queens 480,504 324,980 1.48
Perm 669,362 509,322 1.31
Tower 524,836 358,920 1.46
Puzzle 77,170 47,146 1.64
Intmm 236,225 95,830 2.47
Speedup (harmonic mean) 1.59
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Table 6.30 Speedup over HARP RISC using register renaming only
for one memory port

Table 6.31

Issue rate: 5

Program Serial Parallel Speedup
Bubblesort 601,750 352,812 1.71
Quick 271,469 159,810 1.70
Treesort 428,951 289,730 1.48
Queens 480,504 324,978 1.48
Perm 669,362 509,314 1.31
Tower 524,836 358,916 1.46
Puzzle 77,170 44,450 1.74
Intmm 236,225 90,368 2.61
Speedup (harmonic mean) 1.62

Speedup over HARP RISC using both register renaming
and conditional execution for two memory ports

Issue rate: 2

Program Serial Parallel Speedup
Bubblesort 601,750 364,060 1.65
Quick 271,469 188,734 1.44
Treesort 428,951 316,978 1.35
Queens 480,504 296,660 1.62
Perm 669,362 487,598 1.37
Tower 524,836 364,964 1.44
Puzzle 77,170 51,008 1.51
Intmm 236,225 132,640 1.78
Speedup (harmonic mean) 1.51
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Table 6.32  Speedup over HARP RISC using both register renaming
and conditional execution for two memory ports

Table 6.33

Issue rate: 3

Program Serial Parallel Speedup
Bubblesort 601,750 277,254 2.17
Quick 271,469 161,648 1.68
Treesort 428,951 272,282 1.58
Queens 480,504 266,454 1.80
Perm 669,362 415,462 1.61
Tower 524,836 305,540 1.72
Puzzle 77,170 44,448 1.74
Intmm 236,225 106,294 2.22
Speedup (harmonic mean)

1.79

Speedup over HARP RISC using both register renaming
and conditional execution for two memory ports

Issue rate: 4

Program Serial Parallel Speedup
Bubblesort 601,750 275,252 2.19
Quick 271,469 151,616 1.79
Treesort 428,951 265,272 1.62
Queens 480,504 245,216 1.96
Perm 669,362 395,304 1.69
Tower 524,836 289,102 1.82
Puzzle 77,170 39,140 1.97
Intmm 236,225 92,912 2.54
Speedup (harmonic mean) 1.91
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Table 6.34 Speedup over HARP RISC using both register renaming
and conditional execution for two memory ports
Issue rate: 5

Program Serial Parallel Speedup
Bubblesort 601,750 273,650 2.20
Quick 271,469 147,612 1.84
Treesort 428,951 260,270 1.65
Queens 480,504 235,774 2.04
Perm 669,362 375,140 1.78
Tower 524,836 289,080 1.82
Puzzle 77,170 38,808 1.99
Intmm 236,225 87,450 2.70
Speedup (harmonic mean) 1.96

Table 6.35 Speedup over HARP RISC using conditional execution
only for two memory ports
Issue rate: 2

Program Serial Parallel Speedup
Bubblesort 601,750 363,672 1.65
Quick 271,469 187,410 1.45
Treesort 428,951 323,074 1.33
Queens 480,504 316,400 1.52
Perm 669,362 470,278 1.42
Tower 524,836 366,992 1.43
Puzzle 77,170 48,180 1.60
Intmm 236,225 132,440 1.78
Speedup (harmonic mean) 1.51
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Table 6.36  Speedup over HARP RISC using conditional execution
only for two memory ports
Issue rate: 3

Program Serial Parallel Speedup
Bubblesort 601,750 317,054 1.90
Quick 271,469 167,146 1.62
Treesort 428,951 287,704 1.49
Queens 480,504 272,834 1.76
Perm 669,362 432,784 1.55
Tower 524,836 334,290 1.57
Puzzle 77,170 44,962 1.72
Intmm 236,225 107,542 2.20
Speedup (harmonic mean) 1.70

Table 6.37 Speedup over HARP RISC using conditional execution
only for two memory ports
Issue rate: 4

Program Serial Parallel Speedup
Bubblesort 601,750 315,450 1.91
Quick 271,469 158,744 1.71
Treesort 428,951 280,700 1.53
Queens 480,504 266,036 1.81
Perm 669,362 412,630 1.62
Tower 524,836 328,148 1.60
Puzzle 77,170 41,556 1.86
Intmm 236,225 93,978 2.51
Speedup (harmonic mean) 1.78
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Table 6.38 Speedup over HARP RISC using conditional execution
only for two memory ports
Issue rate: 5

Program Serial Parallel Speedup
Bubblesort 601,750 313,848 1.92
Quick 271,469 154,742 1.75
Treesort 428,951 274,700 1.56
Queens 480,504 266,034 1.81
Perm 669,362 392,466 1.71
Tower 524,836 324,010 1.62
Puzzle 77,170 41,424 1.86
Intmm 236,225 88,316 2.67
Speedup (harmonic mean) 1.82

Table 6.39 Speedup over HARP RISC using register renaming only
for two memory ports
Issue rate: 2

Program Serial Parallel Speedup
Bubblesort 601,750 402,614 1.49
Quick 271,469 193,302 1.40
Treesort 428,951 330,858 1.30
Queens 480,504 355,200 1.35
Perm 669,362 477,528 1.40
Tower 524,836 368,924 1.42
Puzzle 77,170 53,608 1.44
Intmm 236,225 133,282 1.77
Speedup (harmonic mean) 1.44
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Table 6.40 Speedup over HARP RISC using register renaming only
for two memory ports
Issue rate: 3

Program Serial Parallel Speedup
Bubblesort 601,750 356,008 1.69
Quick 271,469 172,484 1.57
Treesort 428,951 292,728 1.47
Queens 480,504 327,956 1.47
Perm 669,362 437,196 1.53
Tower 524,836 332,258 1.58
Puzzle 77,170 47,152 1.64
Intmm 236,225 107,996 2.19
Speedup (harmonic mean) 1.62

Table 6.41 Speedup over HARP RISC using register renaming only
for two memory ports
Issue rate: 4

Program Serial Parallel Speedup
Bubblesort 601,750 354,010 1.70
Quick 271,469 163,396 1.66
Treesort 428,951 286,732 1.50
Queens 480,504 318,478 1.51
Perm 669,362 437,204 1.53
Tower 524,836 330,212 1.59
Puzzle 77,170 44,658 1.73
Intmm 236,225 94,814 2.49
Speedup (harmonic mean) 1.67
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Table 6.42 Speedup over HARP RISC using register renaming only

for two memory ports
Issue rate: 5

Program Serial Parallel Speedup
Bubblesort 601,750 352,406 1.71
Quick 271,469 157,032 1.73
Treesort 428,951 281,730 1.52
Queens 480,504 313,676 1.53
Perm 669,362 437,196 1.53
Tower 524,836 326,074 1.61
Puzzle 77,170 44,330 1.74
Intmm 236,225 89,352 2.64
Speedup (harmonic mean) 1.70
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