
Segmenting Handwritten Text Using Supervised
Classification Techniques

Yi Sun∗, Timothy S. Butler†, Alex Shafarenko‡, Rod Adams§, Martin Loomes¶, Neil Davey‖

Department of Computer Science
Faulty of Engineering and Information Sciences

University of Hertfordshire
College Lane, Hatfield

Hertfordshire AL10 9AB
∗Y.2.Sun@herts.ac.uk
†t.s.butler@herts.ac.uk

‡a.shaferenko@herts.ac.uk
§r.g.adams@herts.ac.uk
¶m.j.loomes@herts.ac.uk
‖N.Davey@herts.ac.uk

Abstract— Recent work on extracting features of gaps in
handwritten text allows a classification into inter-word and intra-
word classes using suitable classification techniques. In this paper,
we apply 5 different supervised classification algorithms from the
machine learning field on both the original dataset and a dataset
with the best features selected using mutual information. The
classifiers are compared by employing McNemar’s test. We find
that SVMs and MLPs outperform the other classifiers and that
preprocessing to select features works well.

I. INTRODUCTION

In this paper, we address the problem of identifying word
boundarys in handwritten text: a process known as word
segmentation. We make use of a selection of contemporary
classification algorithms, such as multi-layer perceptrons, sup-
port vector machines, and Gaussian mixture models.

Surprisingly, little attention has been paid to the word seg-
mentation problem by the neural net community. Nevertheless,
recent work on extracting features of gaps between pieces
of handwritten text allows for attaining segmented words by
classifying gaps to inter-word and intra-word classes directly
[3]. In this paper we try to find a suitable classifier to automat-
ically segment so-called digital ink, i.e. graphically enhanced
fragments of pen trace representing handwritten words, shapes
and symbols of the sort that usually appear on paper when
real ink is used for writing. Further details about the problem
domain can be found in the next section. The previous work
was done by using statistical methods to classify gaps into
two classes based on one significant feature, named river,
which is described in more detail in the following section.
Each stroke involves an array of time-stamped sample points.
However, as indicated in [12], exceptions are commonplace
because of flourishes in writing styles with leading and trailing
ligatures in handwriting. It is important to consider other
possible features, as combinations of variables can provide
significant information which is not available in any of the
individual variables separately. The task is therefore to propose

a classifier which can make as few errors as possible, based
solely on the set of features.

In this work, we test 5 different supervised classification
learning algorithms from the machine learning field to cat-
egorise gaps. We are also interested in selecting the most
significant features. Since there is a proportion of gaps which
can be classified with 99 percent accuracy in terms of the value
of river directly, we apply these classification techniques for
those patterns which cannot be judged easily by the feature
river.

We expound the problem domain in the next section. In
section III, we introduce the datasets used in this paper. We
explain how we select a subset of features in terms of mutual
information. In addition, a fuzzy dataset is obtained by using
thresholds of river. Section IV briefly lists the classifiers used
in our experiments and gives all the experimental results. We
analyse the classification results by applying McNemar’s test
as well. The paper ends in section V with a discussion.

II. PROBLEM DOMAIN

Despite the widespread use of office computers, handwriting
has been and remains an important mode of capturing and
annotating textual information. Computer-assisted handwriting
is an increasingly important part of the general interface
between the electronic media and the business world. Indeed,
apart from the niche market of Personal Digital Assistants
(including mainly smart phones and palmtop PCs), where
the use of pen input devices is motivated primarily by their
greater compactness, the mainstream computing technology
now includes so called Tablet PCs. A tablet PC is a portable
computer with a sensitive screen and a digital stylus, which
is used as the main, or even the only, input device. The
OS of a tablet PC is augmented with components that can
handle digital ink. It is important to understand the difference
between the digital ink and character-recognition interfaces.
While the latter is merely a form of machine intelligence



capable of recognising letters of an alphabet so that a keyboard
can be replaced by an equivalent, but more compact, tablet
and pen, the digital ink represents a separate form of input.
It persists in documents as long as desirable for the author
or/and readers. More importantly though, it is processed in its
native form, i.e. as a graphical object. Words may be inserted,
deleted or replaced at will without first being converted into
a semantically focused form, such as an ASCII string. Such
a conversion may happen eventually, when the final copy is
produced.

There is therefore a fine balance for digital ink applica-
tions, namely one between the graphical form and semantic
substance. One would like to benefit from the immediacy of
pen input, its highly informal nature and potentially unlimited
alphabet of letters, features and symbols, while at the same
time having the computer penetrate the structure of the ink to
the extent that it is necessary to be able to edit distinct parts
of it. The depth of such penetration needs to be no more than
superficial, down to a level of large self-contained units, such
as lines and words, where the structuring is fairly well (albeit
informally) defined. On the other hand, if no analysis is done
of the ink input, then it is not really treated as handwriting, but
as a general freehand graphical input. Consequently computer
assistance (in the form of automatic placement, formatting and
linkage with the rest of the document environment) would be
very limited.

In this paper we focus on one level of the semantic
penetration of pen input: the level of words. By ‘word’ we
mean a group of pen strokes that have lexical significance, i.e.
one that represents a word in a human language or a distinct
symbol that can be used as a word. We wish to automatically
segment digital ink represented as a sampled pen trace into
word fragments purely on the basis of spatiotemporal relations
between consecutive strokes, ignoring any meaning that may
be represented by each such stroke. This has been a known
problem in handwriting recognition research as well, although
in this area of technology, word segmentation is seen merely
as a precursor to full character recognition. In their recent
comprehensive survey of handwriting recognition research,
Plamondon and Srihari state that “prior to any recognition
the acquired data is generally preprocessed to... segment the
signal into meaningful units” [12].

The history of word segmentation research is delimited by
the survey [12] and the one 10 years earlier [16], which is
also referenced in [12]. The significant achievements reported
in [16] for this area are confined to straightforward geometric
segmentation using convex shells [8] with some consideration
given to stroke timing. It is noteworthy that these early
proposals have not been developed any further as is evidenced
by [12]. One can only speculate about the reason why no
further progress has been reported. Our experience shows that
simple segmentation methods are prone to error due to an
individual writer’s idiosyncrasies as well as the fact that these
methods fail to capture more subtle structural and temporal
signals which would strengthen the basis for segmentation.
More recent work is attempting to improve structure recog-

nition by introducing hierarchical agglomerative clustering,
see [14], [9] in a broader context of automatic structural
analysis of handwritten document. These in our opinion are
interesting approaches, though they are susceptible to writing
idiosyncrasies while being insensitive to any recurrent features
of the language (or symbolic system) used by the writer.

The variability of one’s writing style as well as the inherent
diversity of writers would strongly advocate an adaptive so-
lution. The solution would not be confined to any specific ad
hoc metric of the pen trace as the basis of segmentation, but
would accommodate a reasonably large set of these metric,
taking into account both prime features (such as the size and
duration of inter-stroke gaps) as well as any secondary ones
which may be significant. Such features are still proposed on
the basis of their plausibility, without much formal basis or a
priori evidence. However, we have been guided by [13] where
a thorough geometric and temporal classification was provided
for a pen gesture recogniser. To give an idea of the sort of
features that were being used there, we illustrate some of them
in figure 1. It presents a single pen stroke with its bounding
box. The features x and y as shown give the dimensions of the
bounding box and the angle α is linked with its aspect ratio.
The distance s is between the end points of the stroke, and β
is the angle between the line connecting those points and the
vertical. Finally, if θi is the angle between two consecutive
pen segments of the stroke, i and i + 1 then one can use the
feature

σ =
n−1
∑

i=1

θi

as a measure of curvature. The proposed features were not
all purely geometric; there were a few related to the time
interval of the stroke and the speed of the pen tip. Note
that most of these features are inapplicable to inter-stroke
gaps, but some still make sense, e.g., x, y β, etc. We have
introduced a gap feature which has proven especially useful for
our purposes. We call it river width or river for short, following
Fox and Tappert [8]. The river of a gap is the shortest distance
between two consecutive strokes, i.e. the length of the shortest
chord drawn between pen position samples from neighbouring
strokes, as shown in figure 2. Two rivers are indicated there
by double-headed arrows.

We have expanded the set proposed therein by our own form
factors, see [3] for each pen stroke. The pen trace has thus been
abstracted to a sequence of stroke and gap, where each gap is
represented by 14 variables. In this work, we are interested in
classifying gaps, so we ignore the strokes. A human reader has
annotated the gaps in our experimental traces as either intra-
word or inter-word by recognising the words in the language.
Thus the task is to search for a classification method which can
produce the same annotations with as few errors as possible.

III. THE DESCRIPTION OF THE DATASETS

A. Gaps Datasets

In this paper, we present experimental results on the gap
datasets. The original gap dataset includes 2482 data points
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Fig. 1. An illustration: the sort of features of a single pen stroke with its
bounding box.

Fig. 2. An illustration: two rivers of gaps are shown by double-headed
arrows.

labeled by inter-word and 4980 intra-word. In the experiments,
2/3 of the data points from the dataset are used for training,
while 1/3 for test. We do experiments with all 14 features
and reduced features involving the 8 most significant to
the classification found by analysing mutual information as
discussed in section III-B.

B. Feature Extraction by Using Mutual Information

The features associated with gaps are reduced by employing
mutual information. The mutual information of two variables
is a measure of the common information shared between them
[10]. In this work, the two variables are the class variable
c and the feature variable x. c may take one of two values
and x one of 14 features. The bigger the value of the mutual
information, the more common information is shared. If two
variables are independent, their mutual information is zero.
An advanced treatment of feature extraction using mutual

information maximization can be found in [5].
Assuming data points are generated from C classes (In this

paper, C = 2). Mutual information, denoted by MI, is given
by [4]

MI = H(c) − H(c|x), (1)

where H(c) is the entropy of the classes prior probability
P (ci) given by

H(c) = −
C

∑

i=1

P (ci) log P (ci), (2)

and H(c|x) is conditional entropy having the form, as follows

H(c|x) = −

C
∑

i=1

P (ci, x) log P (ci|x), (3)

where P (ci, x) are the joint probability distributions, and
P (ci|x) are posterior probabilities. Equation (3) can be further
written as

H(c|x) = −

C
∑

i=1

P (ci)

∫

p(x|ci) log P (ci|x) dx. (4)

Note that
∫

p(x|ci) log P (ci|x)dx is the expectation of
log P (ci|x) given the probability density p(x|ci).

Empirically the conditional entropy H(c|x), which is based
on the probability density function of the variable x, can be
approximated as follows, when considering two classes:

H(c|x) ≈ −
1

N1

P (c1)

N1
∑

k=1

log P (c1|x
k)

−
1

N2

P (c2)

N2
∑

l=1

log P (c2|x
l), (5)

where xk and xl denote the feature values given that the data
points are generated from two densities p(x|c1) and p(x|c2),
respectively. N1 and N2 are the number of samples from
the two distributions, respectively. Here we use the arithmetic
average to approximate the expectation of log P (ci|x). As the
sample size N tends to infinity, then the arithmetic average
tends to equal the common mean of each variable (weak law
of large numbers).

To sample a large number of independent points from two
probability density functions, we need to estimated them first,
and then a sufficient number of data points: N1 plus N2, are
sampled from the two estimated distributions. We employ two
Gaussian mixture models to model the distributions of the
gaps data collected from the class inter-word denoted by c1

and intra-word denoted by c2. The expectation-maximisation
(EM) algorithm [6] is used for finding parameters of each
model. A mixture distribution having M components (in this
work, M = 5) can be calculated using:

p(x|ci) =

M
∑

j=1

p(x|j, ci)P (j), (6)



where P (j) are mixing coefficients and

p(x|j, ci) =
1

√

2πσ2

j

exp

{

−
1

2σ2

j

(x − µj)
2

}

, (7)

where µj and βj are mean and variance of each component j
respectively. More details about Gaussian mixture models can
be found in [1]. Then 500, 000 data points were sampled from
these two distributions. Finally, the posterior probability can
be computed using Bayes’ theorem

P (ci|x) =
P (ci)p(x|ci)

∑C

i=1
P (ci)p(x|ci)

. (8)
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Fig. 3. Mutual information of class variable and each feature of gaps: each
value is shown as a star sign. The background are dashed lines that are major
grid lines to the current axes. The horizontal dash-dot line denotes the cut off
value.

Figure 3 shows the mutual information of each feature with
the class variable sorted by their values. As shown, there is
a reasonable “jump” from the ninth value to the eighth. We
ignore those features indexed from 9 to 14. Thus 8 features
with mutual information values more than 0.3, a subset of all
of the features, can be obtained.

C. The Fuzzy Dataset with Thresholds

As seen in Figure 3, there is one feature which is the most
significant to classification, named river. Since it measures
the shortest distance between samples in adjacent strokes,
gaps between words usually have a larger value than gaps
within words. One can expect to benefit from this variable as
much as possible, though exceptions often occur with variety
in writing styles as mentioned in the introduction section.
Two boundaries of the values of river can be determined as
displayed in figure 4. In this figure, the river values increase
from left to right. Boundary 1 specifies a river value, on the
left of which one can ensure that the probability that the gap
belongs to class intra-word is not less than 99 percent; while
boundary 2 specifies another value of river, on the right of
which the probability that the gap belongs to class inter-word
is not less than 99 percent. Then the whole dataset is filtered

by means of these two thresholds. In this way, a sub-dataset
called fuzzy, whose values of the river feature are within these
two boundaries, is obtained. This subset therefore consists of
3361 gaps that cannot easily be classified by the river feature.

boundary 1

inter−word

boundary 2

intra−word

river values

original set

fuzzy set (3361 data points)

Fig. 4. A diagram: explaining how the fuzzy dataset is generated with two
boundaries.

IV. EXPERIMENTAL RESULTS WITH SUPERVISED

CLASSIFIERS

A. Supervised Classifiers

In this section, we first list the supervised classifiers used
in our experiments. Readers who are interested in those
classification techniques can follow the references to learn
more.

• Logistic discrimination analysis (LDA) [1];
• K-nearest neighbor classification (KNN) [11];
• Guassian mixture model (GMM) [1];
• Multi-layer perceptron (MLP) using scaled conjugate

gradients algorithm [1];
• Support vector machine (SVM) using Gaussian kernel

[15].

Parameters of each class-condition density were estimated
from the training dataset in the GMM. For the MLP, a two-
layer architecture was set up, since it has been proved for
classification tasks that the MLP with sigmoidal activation
function and two layers of weights can approximate any
decision boundary to arbitrary accuracy [2].

B. Experiments

Experiments were performed on both the original dataset
and the fuzzy dataset with all 14 features and the selected set
of 8 features. The user-chosen parameters for each classifier
were selected by cross-validation, where the training set was
divided into 10 partitions. 9 partitions were used to train the
model and the other one was used as a validation set. The
SVM experiments were completed using LIBSVM, which is
available from the URL
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.
The others were implemented using the NETLAB toolbox,
which is available from the URL
http://www.ncrg.aston.ac.uk/netlab/.

In Table I, we present all the user-chosen parameters at-
tained by using cross-validation.



TABLE I

USER-CHOSEN PARAMETERS FROM CROSS-VALIDATION. K DENOTES THE

NUMBER OF NEIGHBOURS; nc1 AND nc2 ARE THE NUMBER OF GAUSSIAN

MODELS IN EACH MIXTURE; j SIGNIFIES THE NUMBER OF HIDDEN UNITS

IN THE MLP; A IS THE UPPER BOUND OF COEFFICIENTS αi IN THE SVM;

AND σ IS WIDTH OF RADIAL BASIS FUNCTION.

KNN GMM MLP SVM

(K) (nc1, nc2) (j) (A, σ2)

fuzzy 8 9 6, 6 8 25, 0.16

fuzzy 14 9 6, 4 5 20, 0.1

orig. 8 5 8, 9 15 25, 0.25

orig. 14 5 9, 9 5 5, 0.16

C. Classification Results

Classification results for each test dataset with different
supervised classifiers are displayed in Table II. The accuracy
is defined as the number of correct classified patterns over the
number of total patterns in the test set. The results to the GMM
and MLP shown in Table II are average of 10 repetitions with
different random initial conditions.

TABLE II

RESULTS ON GAP DATASETS: ACCURACY RATE %

LDA KNN GMM MLP SVM

fuzzy 8 86.0 90.1 86.6 92.1 92.2

fuzzy 14 87.5 89.2 84.5 91.5 92.5

orig. 8 92.7 93.8 92.0 95.3 95.8

orig. 14 93.2 93.8 90.4 96.1 96.2

Table II shows that using the reduced features as found by
mutual information one can obtain a result as good as using
all 14 features when employing the KNN, MLP and SVM.
In addition, it also suggests that the MLP and SVM provide
more accurate classification than the LDA, KNN and GMM
classifiers. Interestingly, one can work on the fuzzy dataset
and still achieve comparable results. The values given in the
first two rows of Table II for the dataset are the accuracy rate
for just the fuzzy gaps. Since the rest of original dataset has
already been classified with 99% accuracy, the classification
for the whole dataset achieved by this quicker method can
be calculated. For instance, the SVM classifier gives a full
classification rate for the whole dataset, when processing a
dataset involving 3361 fuzzy gaps among all 7462 gaps, as
follows,

3361

7462
× 92.5% +

7462 − 3361

7462
× 99% = 96.1%.

D. Statistical Test for Comparing Supervised Classification
Learning Algorithms

Our primary goal is to choose the best learning algorithm
for recognising the two class gaps. Looking at Table II, it can

be seen that there is no big difference between the MLP and
SVM algorithms. As addressed in [7], McNemar’s test can be
used for determining whether one learning algorithm is better
than another on a special task with acceptable the probability
of incorrectly detecting a difference when no difference exists.
Thus we apply McNemar’s test for comparing these two
algorithms. In addition, we provide results of McNemar’s test
on the KNN and SVM as a comparison.

We first calculate the contingency table assuming there are
two algorithms I and II , illustrated in Table III [7], where

TABLE III

2 × 2 CONTINGENCY TABLE

n00 n01

n10 n11

n00 is number of samples misclassified by both algorithms;
n01 number of samples misclassified by algorithm I but not
II; n10 number of samples misclassified by algorithm II but
not I; n11 are correctly classified by both algorithms.

McNemar’s test has a chi-square distribution with 1 degree
of freedom [7]. Quantity χ2 is computed as follows:

χ2 =
(|n01 − n10| − 1)2

n01 + n10

. (9)

The null hypothesis assumes that the performance of two
different learning algorithms is the same, i.e. n10 = n01. The
P -value from a chi-square value is computed with McNemar’s
test. Since small P -values suggest that the null hypothesis is
unlikely to be true, we may reject the null hypothesis if the
probability that χ2 ≥ 3.84 is less than 0.05 [7].

TABLE IV

RESULTS OF MCNEMAR’S TEST FOR COMPARING THE MLP WITH THE

SVM AND THE KNN WITH THE SVM ALGORITHMS.

mlp-svm knn-svm

dataset χ2 P -value χ2 P -value

fuzzy 8 0.77 0.38 7.22 0.0072

fuzzy 14 1.47 0.23 13.28 0.0003

orig. 8 1.80 0.18 22.52 0.0001

orig. 14 0.62 0.43 31.65 0.0001

Table IV displays results for comparing the MLP with the
SVM and the KNN with the SVM algorithms. The χ2 for
the MLP and SVM is an average calculated over the 10
runs. Looking at the third column, since all P -values are
greater than 0.05, we cannot reject the null hypothesis which
suggests that applying the MLP and SVM learning algorithms
to construct classifiers for this application can achieve the same
classification results. In addition, since the SVM outperforms
the LDA, KNN and GMM, as seen in Table II, one can expect
that the P -value should be smaller than 0.05 when comparing



them with the SVM. This is illustrated in the last column
where the KNN and SVM classifier results are compared.

V. DISCUSSION

In this paper, we apply a variety of contemporary classi-
fication algorithms to the word segmentation problem. We
report classification results obtained by using 5 different
supervised classifiers: LDA, KNN, GMM, MLP and SVM.
The various classifiers are compared by McNemar’s test. The
results show the best result can be achieved by using non-
linear classification techniques: the MLP and SVM algorithms.
Mutual information is employed to select the most significant
subset of features.

The results show the smaller set of features characterises
the data as well as the full set. One of the features allows
for 99% correct classification of roughly half the data by
simple thresholding. Removing these data points leaves a
reduced dataset which can then be classified using the more
sophisticated non-linear techniques. The results show that this
work well and it is faster than using the full dataset.
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