DIVISION OF COMPUTER SCIENCE

An Investigation of Types leading to an
Examination of some aspects of F-bounded
Interfaces and the Type Classes of Haskell

Technical Report No. 154

K. M. Buchanan
R. G. Dickerson

April 1993

1

Any discussion of object-oriented concepts inevitably involves the use of terms
such as types, classes and inheritance. However, there are no universally ac-
cepted definitions of these terms and consequently it is essential to be clear on

An Invest‘iga,tion of Types leading to an
Examination of some aspects of F-bounded
Interfaces and the Type Classes of Haskell

Mary Buchanan and Bob Dickerson
School of Information Science, University of Hertfordshire
College Lane, Hatfield, Herts AL10 9AB

April 1993

Abstract

The treatment of types in programming and in type checking is con-
sidered briefly and types are distinguished from classes. The subtyping
relation is discussed with particular emphasis on the consequences of com-
bining the inheritance and subtyping hierarchies in object-oriented pro-
gramming. Less restrictive type relationships for inheritance are discussed
and it is concluded that there are advantages in separating implementa-
tion inheritance from subtyping. Further work is needed to establish the
significance of such a separation throughout the system development pro-
cess.

Introduction

the interpretation intended in any particular context.

We discuss various interpretations given to types in order to illustrate these
differences. Classes and inheritance are considered in the context of types. Some
knowledge of object-oriented concepts and the use of types in programming

languages is assumed.

2 Why are types useful?

If we consider untyped universes, for example A-expressions in the A-calculus
or sets in set theory, types tend to arise informally as a means of categorising
objects according to their usage and behaviour [1]. In A-calculus, some func-
tions are chosen to represent integers and others to represent booleans. In set
theory, some sets are chosen to denote ordered pairs and some sets of ordered
pairs are chosen to represent functions. However, without a type system, there
is no means of enforcing any such type distinctions. A type system imposes
constraints on the usage of types such that their correct usage can be enforced.
Over and above this, type systems have sometimes been imposed in order to
overcome logical inconsistencies. For example, typed set theory arose from the
need to overcome inconsistencies such as Russell’s paradox (described in [2]) in
naive set theory.

3 What is a type?

In general terms, we can consider a type as being a means of classifying values.
The type to which a value belongs defines the set of contexts in which the value
may be used correctly. The classification can be derived merely from the values
themselves or from the values and the ways in which the values can be used.

At the very least, a type can be considered as a Predicate Type [3] which
simply denotes a set of values. For example, the type Bool denoting the values
{true, false}. In terms of many sorted algebra, a predicate type is a sort.

More often, a type is considered as a set of values together with operations
on those values. An algebraic specification of an Abstract Data Type declaration
[3] defines one or more predicate types with a collection of operations on the
type. For example, the type Nat with the operation add defined as:

add : Nat x Nat — Nat

In many sorted algebra, an abstract data type declaration is a signature.

If we wish to provide a meaning for an abstract data type, then we can do so
in terms of many sorted algebra by naming an algebra such that the operations
are interpreted in terms of semantic constructs in the algebra. For example, the
signature (Nat, {succ, add ...}) could map onto the algebra of natural numbers.
This provides a denotational model for the signature though it should be borne
in mind that this is not the only possible model.

3.1 Types in programming languages

Types are used in programming languages to help establish the correctness of
source code. We can consider the types identified above in terms of a strongly
typed language such as Modula-2 or Ada:

e A Predicate type = Modula-2 type or Ada type

e Abstract Data Type declaration = Modula-2 module definition or Ada
package specification

e Abstract Data Type model = Modula-2 module implementation or Ada
package body

The concept of hiding implementation, such that a type is used through
operations which are defined in an interface, is widely adopted. We need to
remember that it is possible in Modula-2 to show the type representation in the
definition module; it is only by using opaque types that the type representation
can be hidden in the implementation module. The operation implementations
can always be hidden in the implementation module but if the type represen-
tation is declared in the definition module, there is nothing to prevent a user
from accessing the type directly, rather than using the given operations.

A type can be completely hidden in Modula-2 such that not even its name
appears in the definition module but this is restricted to a single instance of the
type which is represented as a hidden variable in the implementation module. In
general, however, programming languages implement abstract data types such
that the abstract data type manipulates data but does not store data. This
is consistent with the algebraic model of abstract data types (described above
in section 3) which models the manipulation of data but not its storage. Such
a model contrasts with the object-oriented programming approach in which
objects store the data they manipulate.

3.2 In system development

Types can be used as a means of defining intuitive ideas about a system under
development. At the analysis stage, types (sometimes called classes) can be
identified such that values in the problem domain can be classified according to
kind and behaviour. During design, extra types may well be added to incorpo-
rate hardware/software constraints and the types derived by analysis may be
altered due to constraints within the implementation language.

Types can be used as a basis for the choice of modules in a structured
framework. Information concerning which types communicate with which other
types can be used to improve the efficiency of an implementation.

3.3 Type interfaces

A type interface, also called a protocol, specifies the functionality of the op-
erations associated with the type. If such a specification does not declare the
implementations of the operations, the interface provides a boundary between
implementations of the type and users of the type. “Ideally, interfaces should
contain a formal description of the behaviour of operations, for example as a
logical theory” [4]. Without such formality, there is the risk that the intended
purpose of the operations may be ambiguous.

A formal specification could be a signature but this is purely syntactic and
gives no information about the intended behaviour of the operations. The op-
erations add and mult have the same rank, that is they have the same number
and sort of arguments and the same result sort:

add : Nat x Nat — Nat

mult : Nat x Nat — Nat

However, although the operations have the same signatures, they do not have
the same semantics in that the intended behaviour of the operations is different.
For interfaces to be used by clients, the semantics of the operations should be
given. However, for type checking, syntactic information alone may be adequate.

We must consider whether, in any given situation, a type is being viewed as:
o just a signature
e a signature AND semantics

e a signature, semantics AND an implementation.

4 What is type checking?

Type checking is used to detect type errors which can arise from attempts to
apply an invalid operation to a value. An operation is invalid if the actual
parameter passed to the operation is not compatible with the formal parameter

‘defined for the operation. Similarly, a value assigned to a variable must be type

compatible with the variable type.

A programming language can restrict the ways in which a value can be bound
to a name (or a variable or a parameter). In static type checking, the compiler
checks that names are bound to values of the permitted types; this guarantees
that operations will be applied to names which refer to values of the appropriate
type. Dynamic type checking is required when names can be associated with
values of more than one type and the actual type is not known until run-time.

Run-time type checking can be done manually by means of conditional (case)
statements which are written by the programmer and which identify all the
permitted types with which a name may be associated. Alternatively, run-time
type checking can be done automatically by the programming language and
run-time environment.

Instance variables (names) in all known object-oriented languages can be
used to store references to objects. The instance variables are polymorphic if
they can refer to instances of several different classes during the life of a program
[6]. When a message is sent to such an instance, dynamic binding is used to
invoke the particular implementation of the method which is appropriate to the
class to which the instance refers at that time. In Smalltalk such polymorphism
and dynamic binding are permitted without restraint, allowing any object to
be assigned to any instance variable. There is therefore no way of the compiler
checking whether an object will possess a method to correspond to the message
sent to it. If there is no such method, dynamic type checking will detect this
and a run-time error will occur.

To prevent this happening, instance variables can be constrained to accept
only certain object assignments and static typing can then be used to ensure that
the constraints are not violated. The assignments which an instance variable
may accept can be determined by conformance. A type (or class) conforms to
another if it can be used in all the contexts where the other is expected; that is, it
can respond to all the messages handled by the other type. In theory the ability
of a compiler to check conformance should depend only on the interface of a
type/class and not on the implementation of the methods. However in practice
what is actually checked by the compiler varies from language to language. In
Eiffel classes have to have their implementations related by inheritance if they
are to be type compatible.

5 Polymorphic types

Monomorphic type systems constrain values to belong to only one type and
hence to exhibit only one type of behaviour. Polymorphic type systems permit
values to belong to more than one type. Strachey subdivided polymorphism into
- universal and ad hoc polymorphism. Cardelli and Wegner [1] have elaborated
the Strachey classification: universal polymorphism is subdivided into paramet-
ric and inclusion polymorphism and ad hoc polymorphism is subdivided into
overloading and coercion. Coercions map one type to another before operations
are applied whereas in overloading, different code is invoked for arguments of
different types. In a parametric function the same code is invoked by arguments
of different types which share a common structure; for example a list of integers
has the same structure as a list of strings and operations such as heed and tail

can be applied to either. Parametric polymorphism is also known as functional
polymorphism [6].

Subtyping is a form of inclusion polymorphism in which a value of a sub-
type may be used in any context which requires a value of the supertype. The
semantics of subtyping are based on the mathematics of partial orders; subtype
relations are reflexive, transitive and antisymmetric [7]. Reflexivity means that
all types conform to themselves. Transitivity means that if a type T1 is a sub-
type of type T2 (expressed T1 < T2) and T2 < T3, then T1<T3. Antisymmetry
ensures that two types are equal if they are subtypes of each other.

For any particular type system involving subtypes, it will be necessary to
have some means of establishing whether two types have a subtype relationship.
The interpretation of integer subranges as subtypes of integers is conceptually
simple. Cardelli and Wegner [1] have identified rules for record subtyping and
for function subtyping. A record is a subtype of another if its fields (defined by
label and type) are a superset of the other’s and the types of the common fields
are in a subtype relation. As an example [6, page 55] we consider the records
defining a vehicle_type and a car_type

vehicle_type = <age:int; fuel:int>
car_type = <age:int; fuel:int; speed:int>

Since the fields of car_type are a superset of the fields of vehicle_type and
the types of the common fields are in a subtype relation since they are identical,
car_type is a subtype of vehicle_type. The subtype relationship is totally
dependent on the implementation of the records; subtype relationships could
arise purely as a result of coincidental representations and similarly records
which are conceptually in a subtype relationship may not have a record subtype
relationship in a particular implementation [6, page 55].

Function subtyping is more complicated and less intuitive. The rule for
subtyping between two functions is given by [7]:

(F;:B—C)<(Fj:A—= D) (A<B)A(CLD)

For F; to be a subtype of Fj, the result type, C, of F; must be a subtype
of the result type, D, of F;. This requirement expresses the fact that the result
type, C, of F; must be acceptable in any context where the result type, D, of F;
is acceptable; it seems intuitive that this will be so if C' is a subtype of D. The
requirement for the argument types can at first sight seem counter intuitive:
for F; to be a subtype of Fj, the argument to F; must be a supertype of the
argument to Fy, that is A < B. On reflection it is clear that if F; is to be used
anywhere F; can be used, then it must be able to accept any parameter that
F; can accept. For this to be possible, the domain of F; must not be less than
the domain of F;. Taking an example from [7, page89], F1: 2..7 — 10..15 is

a subtype of F2: 3..6 — 7..20 since 2..7 is a supertype of 3..6 and 10..15is a
subtype of 7..20. The requirement that the argument of the subtype function
must be a supertype of the argument to the supertype function is known as
contravariance.

The contravariant rule guarantees that a subtype instance can be used any-
where a supertype instance is specified. Contravariance can be used in object-
oriented languages to prevent the possibility of dynamic type errors [8]. Sub-
types are usually intended to portray a specialised version of a supertype and in
this respect contravariance has its limitations. It is not often useful to redefine
a function in a subtype so that its domain is larger than that of the supertype
function since this has connotations of generalisation rather than specialisation.
In contrast to contravariant rules, covariant rules for function subtyping do per-
mit the arguments of a subtype function to be specialised to subtypes of the
arguments to the supertype function. However, covariant rules do not prevent
the possibility of dynamic type errors and in addition there is no static covariant
type checking algorithm that precisely separates all type-correct programs from
type-incorrect programs. In contrast, there are algorithms for reliably separat-
ing type-correct from type-incorrect programs under contravariant rules.

It would be desirable to have the security of dynamic type checking as pro-
vided by contravariance together with the ability to specialise subtypes as pro-
vided by covariance. This might be achieved by extending the present concept
of subtyping so that it encompassed more than the inclusion relation. Alterna-
tively, we require that the relationship between superclasses and their subclasses
is not limited to the subtype relation; we return to this view in section 8.

6 Classes and Types

6.1 Are classes the same as types?

Types can be concerned with abstract behaviour as defined by signatures or
interfaces which are independent of implementation. Thus a type may be im-
plemented in more than one way but still remain the same type: a Stack imple-
mented as an array and a Stack implemented as a linked list have the same type.
Implementation is irrelevant in that a Stack implemented as an array (which is
itself a type) and a Queue implemented as an array are different types.

Classes as used in object-oriented programming languages are implementa-
tion dependent. A class which implements a Stack as an array and a class which
implements a Stack as a linked list are different classes even though they have
the same type. Classes provide templates from which objects of the class are
created and classes have a type; a type however need not have a class, it can be
implemented by other means.

Consider two classes, StackA and StackL, which implement a Stack as an
array and a linked list respectively. An object s1 of class StackA and an object
82 of class StackL have the same type Stack. If types and classes are kept
separate, then it would be possible to use object s1 in place of object s2 because
they have the same type. However in many languages, of which Eiffel is one,
types and classes are not separated; s1 and s2 would not be considered to have
the same type and would not therefore be dynamically interchangeable.

6.2 Subtypes and subclasses

There is a distinction between subtypes and subclasses. A subtype encompasses
all the behaviour of a supertype. A subclass inherits implementation from a
superclass and this may or may not result in the subclass being a subtype of the
superclass. A subclass may specialise a superclass by extension, new methods
are added and the subclass is a subtype of the superclass. If a subclass redefines
superclass methods by changing the implementation, then the subclass and
the superclass have the same type. If a subclass restricts the behaviour of a
superclass by only inheriting some of the superclass methods, then the subclass
will be a supertype of the superclass.

It is also possible for two classes to have a subtype relationship but not a
subclass relationship. In other words, the behaviour of the classes is in a subtype
relation but the classes are not related in the implementation hierarchy.

It is apparent that behaviour hierarchies as defined by types and implemen-
tation hierarchies as defined by classes need not necessarily coincide. If types
and classes are not distinguished, as in Eiffel, then type and class hierarchies
are forced to coincide.

7 Inheritance

7.1 Inheritance as subtyping

Taking the view of inheritance that it is a type composition mechanism means
that the properties of one or more types can be reused in the definition of a new
type [1). The structure imposed upon a collection of related types can enhance
the conceptual clarity of a system specification.

If the implementation of a type is ignored, then inheritance can be viewed
as interface inheritance; that is, inheritance of the signature and maybe of the
semantics.

However, in many object-oriented languages (Eiffel, C++, Modula-3, Trellis)
inheritance of implementation via classes is tightly coupled with subtyping such

that the class inheritance hierarchy determines the subtype relation. In untyped
languages such as Smalltalk, the relationship between classes in an inheritance
hierarchy is purely one of code reuse.

7.2 Inheritance is more than subtyping

However, inheritance is not just subtyping [9]. When inheritance is considered
to include implementation, then a new class created by inheritance may not
stand in a subtype relation to the class from which it inherited. The erroneous
assumption that a subclass is always a subtype of the superclass from which it
inherits caused early versions of Eiffel to have an insecure type system [8]. If
the subtype relation is to be based on the implementation inheritance hierarchy
then, in order to maintain a secure type system, inheritance must be restricted
such that subclasses always maintain a subtype relation with their superclasses.
Cook et al [9] propose a type system for inheritance which does not restrict
subclasses to being subtypes. They define three forms of inheritance:

1. Object inheritance which subsumes both delegation and the traditional
concept of class inheritance; new objects in classless languages reuse the
implementation of the prototype objects which delegated to them and new
classes reuse the implementation of the classes from which they inherit.

2. Class inheritance which is related to meta-classes and supports incremen-
tal definition of classes for instance creation.

3. Type inheritance used for the definition and checking of recursive types.
Type inheritance is a means of constructing the types of objects produced
by object inheritance. :

In type inheritance, F-bounded quantification [10] is used to enable func-
tions to be written such that they can be applied to variables of different types
which are related by implementation (object) inheritance but which are not in a
subtype relationship to each other. The advantage of this approach is that it is
possible to have the protection of static type checking but still to have the flexi-
bility to inherit implementation without the constraint that the subtype relation
must be maintained between classes related by implementation inheritance.

In order to understand the Cook inheritance model, we need to consider
polymorphic functions in more detail.

8 Polymorphic functions

8.1 Polymorphism and bounded quantification

Bounded polymorphism was used by Cardelli and Wegner [1] as a way of typing
functions that operate uniformly over all the subtypes of a given type. Cardelli
and Wegner modelled objects as records whose fields contained functions repre-
senting methods. Subtypes are obtained by adding fields. The type of a record,
which describes the interface of the object, is a mapping of the field labels to the
field types. If we let such a mapping be called T then any type which contains
T as a subset of its own record type is considered to be a subtype of the type
with T as interface. Thus if a type, T1, that merely prints a representation of
itself is defined as:

Ti = {print: void — string}

Then any type which has a print record of this type is considered to be a
subtype of T1. Thus,

{..., print: void — string, ...} < Ti

It is possible to write a polymorphic function which is quantified such that
its use is restricted to subtypes of T1:

V+t <Ti. list[t] — list[string]

The function will take a list of subtypes of T1 and print a list of the type
representations.

This form of bounded polymorphism works well for simple types whose defi-
nitions are not self referential. Recursive types are defined by self reference; the
signature of a recursive type contains at least one function in which. the type
itself appears as an argument and, or a result. The type Point defined below in
section 8.2 is recursive since reference to Point is made in the functions move
and equal. In object-oriented languages, an object refers to itself by the use of
a pseudo variable such as self (Smalltalk), current (Eiffel) and this (C++). For
recursive types bounded-quantification is too restrictive. A problem that can
arise is that application of a polymorphic function to a recursive type can result
in loss of information due to a supertype being returned when the desired result
is for a subtype to be returned. The reasons why this is so are outlined below.

8.2 Polymorphism and F-bounded quantification

Cook et al [9] use a functional language based on typed polymorphic lambda-
calculus to describe the typing of inheritance. In their model record types in-
dicate exactly what fields a record contains. This is in contrast to the Cardelli
subsumption model in which a record type represents all records that have at

10

least the specified fields. Classes are distinguished from types. Types are de-
fined as syntactic interfaces such that interface compatibility can be checked at
compile time. Classes are implementations of types and a given type may have
more than one corresponding class. A type relation (an F-bound) is defined
between type interfaces such that types in an F-bound relationship are poly-
morphic. The F-bound relation is used to characterise the extended types that
may be created by inheritors and is less restrictive than the subtype relation.

To illustrate, we take an example from Cook et al [9]. A type Point is de-
fined to specify the interface of movable planar points. Since the specification
is functional, when a point is moved a new point is returned at the new loca-
tion. Nevertheless, the definition assumes the existence of a point object which
~‘responds to the operations; without such an assumption, each of the operations
requires an extra argument of type Point.

interface Point
x : Real
y : Real
move(Real, Real) : Point
equal(Point) : Boolean

The interface is recursive since the interface defines move as returning a
Point type (positive recursion) and equal as having a Point type as argument
(negative recursion).

The interface can be generalised by defining a type function, F[t], so that
it can apply to any type t.

F[t] =
{x : Real,
y : Real,
move : Real, Real -> ¢,
equal : t -> Boolean}

The interface Point is obtained by binding t to Point in F[Point].

The recursive structure of the type Point can be extended incrementally
- to define a ColourPoint by using type inheritance. In type inheritance only
syntactic interfaces are inherited; semantics and implementation are ignored.

interface ColourPoint
inherits Point

colour : Colour

In type inheritance not only are new fields added to the type, here a field
has been added to hold a method to return the type Colour, but also the

11

type of inherited fields may be changed. If such a change happens, then the
new type will not necessarily be a subtype of the type from which it inherited.
It is therefore possible to inherit a type interface without having to maintain a
subtype relationship. This is analogous to implementation inheritance by classes
in which the subtype relationship may not be maintained.

The type inheritance defined by ColourPoint is regarded as an extension of
the type function F[t] and is expressed by the type function G[t].

G[t] = F[t] + {colour : Colour}

When we bind t to ColourPoint in G[ColourPoint], then all references to
t in F[t] are also bound to ColourPoint:

interface ColourPoint
X : Real
y : Real
move(Real, Real) : ColourPoint
equal(ColourPoint) : Boolean
colour : Colour

ColourPoint is not a subtype of Point since the equal method is contravari-
ant. If G[t] had been defined so that ColourPoint was a subtype of Point,
- then we would have in effect:

G’[t] = F[Point] + {colour : Colour}

G’ [ColourPoint] would then expand to

interface ColourPoint
x : Real
y : Real
move(Real, Real) : Point
equal(Point) : Boolean
colour : Colour

The move method could be applied to a ColourPoint, due to the subtype
relationship, but the type that would be returned would be a Point with the
result that the information concerning the colour of the ColourPoint instance
would have been lost. The ability to change the types in the inherited interface
via G[t] prevents the loss of such information. In addition, the equality method
can be redefined so that when applied to an instance of type ColourPoint, the
colour of points is compared as well as the location. (However, there is no need

12

to do this; an alternative would be to add another method, sameColour, to
ColourPoint to compare colours and a method, identical, which could invoke
equal and sameColour.)

Cook considers that even though ColourPoint is not a subtype of Point,
the fact that ColourPoint does have the same recursive structure as Point
(ColourPoint < F[ColourPoint]) and the fact that for all ¢, G[t] < F[t],
means that an inheritance relationship is indicated.

Classes, cart—point and colour-point, can be written to implement the
types Point and ColourPoint respectively:

class cart_point (x : Real, y : Real)
implements Point

method x : Real
return x

method y : Real
return y

method move (dx : Real, dy : Real) : Point
return new myclass(self.x + dx, self.y + dy)

method equal (p : Point) : Boolean
return (self.x = p.x) and (self.y = p.y)

It is clear that class and type are separate; instances of class cart_point
have type Point. Self and myclass are analogous to self and self class in
Smalltalk. When the move and equal methods are invoked, the pseudo variable
self is bound to the receiver of the message such that self.z returns the receiver
object’s x coordinate. The pseudo variable myclass is bound to the class of
the receiver object and is used to create an object of the same class as self.
Instances of cart_point are recursive because they send messages to self. The
class cart_point is also recursive because the move method uses myclass to
create a new point at a given distance from itself.

The class colour_point is defined by inheritance from the class cart_point.
The methods , y and move are inherited. An additional method, colour, is
defined using an additional instantiation parameter for the class. The equal
method is redefined to compare the colour of two points as well as their location.

13

class colour_point (x : Real, y : Real, c : Colour)
implements ColourPoint

inherit cart_point(x,y)
translating new myclass(x’,y’)
to new myclass(x’,y’,self.colour)

method colour : Colour
return c¢

method. equal(p : ColourPoint) : Boolean
return super.equal(p) and (self.colour = p.colour)

The inherit cart_point(x,y) statement indicates how to instantiate the
inherited cart_point class. The subclass parameters (x, y and c) are trans-
lated to the form required by the superclass; in this case the parameter ¢ is
ignored. The statement translating new myclass. .. indicates how recursive
calls within cart_point are to be translated to construct colour_point ob-
jects. Thus when new myclass is called from the move method but with a
colour_point object, a ColourPoint type object will be created by the move
method and the colour_point object will retain its colour. The modified equal
method uses super to invoke the original method defined in cart_point and to
add a new constraint for colour equality.

The move and the equal methods defined in class cart_point take a Point
type as argument but can be invoked with a ColourPoint as argument because
of the F-bound relationship. The methods in the class cart_point can be
invoked by any type such that t < F[t]. The colour_point class methods can
be invoked by any type such that t < G[t]. Since G[t] < F[t] we have that t
< G[t] < FIt] and hence that t < F[t]. In general, any type satisfying t <
G[t] also satisfies t < F[t]. Hence we have that since ColourPoint satisfies
t < F[t] as required for the cart_point class, methods defined for the type
Point in the cart_point class can be invoked by objects of type ColourPoint.

The type constraint G[t] < F[t] must be maintained by inheritance and it
is this constraint which ensures that inherited objects can be used as arguments
to F-bounded polymorphic functions just as values of subtypes can be used as
arguments to subtype bounded polymorphic functions.

Even though there is no subtype relation between Point and ColourPoint,
if inheritance maintains the F-bound relationship, then functions defined for
objects of type Point can be applied to objects of type ColourPoint. How-
ever, the F-bound concept does not permit the assignment of instances of class
colour_point to instances of class cart_point; such assignments are only pos-

14

sible if the subtype relation holds. Consider the following program fragment:

p: cart_point
cpl, cp2: colour_point

new cp1(2.0, 3.0, red)
new cp2(2.0, 3.0, blue)

Since there is no subtype relation, it is not acceptable to make the assignment
p := cpl

This in turn prevents the legality of type (unsafe) statements such as
p.equal(cp2)

in which the equal method invoked would be that for cart_point (since p is of
class cart_point), resulting in p and cp2 being declared equal. The fact that
their colours are different would be ignored by the cart_point equal method.

In the F-bound model of typed inheritance there is a clear separation of
concerns; inheritance is separated from subtyping and types are separated from
classes.

The ideas of Cook et al are based on the interpretation of interfaces as
signatures and as such express an elegant approach to inheritance. However,
since the behaviour of methods is not expressed by semantics, it is necessary to
have an intuitive feel about the intended behaviour of methods so that one is
aware, for example, that equal compares colour in interface ColourPoint but
not in interface Point. In the absence of such intuition, it becomes necessary
to look at the implementation of equal in the colour-point class.

The F-bound concept of type inheritance gives rise to the possibility of three
types of inheritance hierarchies in object-oriented systems:

e type hierarchies related by subtypes

e type interface hierarchies related by F-bounds and possibly but probably
not by subtypes

o class hierarchies related by implementation and maybe by subtypes and
maybe by F-bounds.

15

8.3 Ad hoc polymorphism quantified

Another way of quantifying types without relying on a subtype relation has been
developed by Wadler and Blott [11]. In order to provide a unified approach to
the typing of overloaded arithmetic operators and functions defined in terms of
these operators, Wadler and Blott have defined type classes. A type class is a
class to which many types can belong and the concept is integrated into the
type system of the functional programming language Haskell [12]. A type class
declares the names and signatures of functions which are expressed in terms
of a type variable which ranges over every type. To belong to a class, a type
must have functions of the same names defined on it and the functions must be
appropriately typed. Hence a type class contains an interface which is purely
syntactic, whereas an instance of the class is a type which is an implementation
of the interface.

An example from Wadler and Blott is used to illustrate the concept. A type
class, Num, is defined with operators (+), (*) and negate:

class Num a where
(#), (%) :: a->a->a
negate iva=>a

The class declaration states that a type belongs to class Num if there are
functions named (+), (*) and negate, which are bound to the appropriate type,
defined on it. The type variable a can range over any type.

An instance, the type Num Int, of the class can be defined as:

instance Num Int where
(+) = addInt
(*¥) = multInt
negate = neglnt

It is assumed that addInt, muliInt and neglnt have been previously defined
on integers, if this is not the case then the definitions would occur in the type
instance declaration. The type system used is based on that of Hindley/Milner
[11] and as such type declarations can be inferred. . For Num Int, the type
inference algorithm must verify that the bindings of the operation names to
the operation definitions do have the appropriate type. For example, addInt
should have type Int -> Int -> Int. In the instance declaration, Int is a
type constructor.

Another instance, the type Num Float, of the class can be defined similarly
as:

16

instance Num Float where
(+) = addFloat
(%) = multFloat
negate = negFloat

If (+) is applied to integers, the addInt code will be invoked and if it is applied
to reals, the addFloat code will be invoked. This is analogous to conventional
overloading in languages such as Standard ML. It is when functions defined in
terms of the overloaded operators are considered that the benefits of type classes
over conventional overloading become apparent.

Functions can be defined for the class Num such that the functions can be
applied to any type which is a member of the class. Consider the function square
defined as:

square = x (*) x
The type of square can be inferred as:
square :: Num a => a -> a

In other words, square has type a —> a for every a such that a belongs to
class Num.

It is now possible to apply square in ways such as:

square 4
square 4.25

In Standard ML it is not possible to define functions in terms of over-
loaded operators. In other approaches to overloading, a function such as square
could be written but would not have a parametric polymorphic type; instead
it would stand for two overloaded versions of square with types Int => Int
and Float -> Float. This may not seem much of a problem but exponen-
tial growth of the translations involved can soon occur. Consider the function
squares defined as:

squares (x, y, z) = (square x, square y, square z)

The parameters x, y and z may each be typed as an Int or a Float which gives
rise to eight possible types for squares. The elegance and simplicity of the type
class approach is apparent.

A program containing class types and instance declarations can be translated
at compile-time to an equivalent program that does not have class types but

17

which still has a valid Hindley/Milner type. To accomplish this, a new type is
defined for each type class such that the type corresponds to a dictionary which
contains the operations for the class. For the class Num the dictionary type,
NumD, is defined as:

data NumD a = NumDict (a -> a -> a) (a -> a => a) (a -> a)

Functions are defined to access the dictionary. For example,

add (NumDict am n) = a
mul (NumDict amn) =m
neg (NumDict amn) = n

For each instance of the class, a value of the dictionary type is declared
which binds the operations in the class dictionary to the implementations of the
operations which are appropriate for the type:

numDInt :: NumD Int

numDInt z NumDict addInt multInt neglnt
numDFloat :: NumD Float

numDFloat = NumDict addFloat multFloat negFloat

A term such as x + y is then replaced by a corresponding term as:
x +y -->add NumD x y

If x and y are Ints, then add accesses the dictionary defined for Num Int
whereas if x and y are Floats, then add accesses the dictionary defined for

Num Float. Thus add will access NumDInt to retrieve addlnt or NumDFloat to
retrieve addFloat. Hence we have translations such as:

2 + 3 ——> add NumDInt 2 3 —=> addInt 2 3

If the type of a function contains a class, then this is translated into a
dictionary which is passed at run-time rather than compile-time.

8.3.1 Subclasses of type classes
A type class can be defined such that it is a subclass of another type class. To

be a member of a subclass, a type must also be a member of the superclass.
Suppose a type class Eq is defined to express equality as in [11]:

18

class Eq a where
(==) :: a -> a => Bool

with instances:

instance Eq Int where
(==) = eqlnt

instance Eq Char where
(==) = eqChar

If we want every type that is an instance of Num to have the equality operator
(==) defined on it as well, then we can do this by making Num a subclass of Eq:

class Eq a => Num a where

(+) it a->a->a
(%) 1t a->a->a
negate :: a -> a

This type class declaration asserts that a may belong to class Num only if it
also belongs to class Eq. Now the instance declaration Num Int is only valid if
there is also an instance declaration Eq Int active within the same scope.

If a function is defined over the type Num a, then the qualifier Eq a is implied
and the equality operation can be used in the function definition.

A type class may have multiple superclasses and subclasses and the transla-
tions ensure that the appropriate dictionaries are passed at run-time.

8.4 The type class PlanarPoints

We shall apply the type class approach to the planar points example used for
discussing F-bounds. We declare a type class PlanarPoints such that the types
CartPoint, PolarPoint and ColourPoint could be used to create instances of
the class.

class PlanarPoints a where

X, ¥y :: a => Real
move :: a => Real -> Real -> a
equal :: a -> a -> Boolean

19

instance PlanarPoints CartPoint where
X xCartPt
y = yCartPt
move = moveCartPt
equal = equalCartPt

instance PlanarPoints PolarPoint where
X xPolPt
y = yPolPt
move = movePolPt
equal = equalPolPt

1]

instance PlanarPoints ColourPoint
x = xColPt
y = yColPt
move = moveColPt
equal = equalColPt

These definitions assume that the types CartPoint, PolarPoint and
ColourPoint have been previously defined such that the definitions include im-
plementations of the types. Thus zCartPt is the implementation of the function
defined to return the x co-ordinate of a variable of type CartPoint.

A function, movePoints, could be defined to move each point in a list of
points by the same amount regardless of whether the list of points contains
CartPoints and, or PolarPoints and, or ColourPoints. Different code would
be dynamically invoked to move points of a different type.

movePoints :: PlanarPoints a => [a] Real Real -> [al]

movePoints [mn = []
movePoints (x cons xs) mn =
(move x m n)cons(movePoints xs m n)

The function that is-invoked by move for a point x will depend on the type
of x; for example, if x:CartPoint then move will invoke moveCartPt. The
function works for lists which contain any type which is an instance of the type
class PlanarPoints; the types do not have to be in a subtype relationship.

However, it would not be possible to compare points of different types for
equality. Consider variables defined as:

20

c¢p : CartPoint

cp2 : CartPoint
pPp : PolarPoint
colP : ColourPoint

The comparison equal(cp, cp2) is legal but equal(cp, colP) would be a type
error since equal is only defined for arguments of the same type. This is desir-
able in this situation because a CartPoint does not have a colour and equality
between CartPoints and ColourPoints is not meaningful. However it also
means that equal(cp, pp) is also not legal which is perhaps not so desirable.
This disadvantage could perhaps be overcome by type coercion.

Subclasses can be used to extend the behaviour of classes. It would, for
example, be possible to declare a new type class, NewPlanarPoints, which
extended PlanarPoints by adding an operation to compare the x coordinates
of two points:

class PlanarPoints a => NewPlanarPoints a where
samex :: a => a -> Boolean

instance NewPlanarPoints CartPoint where
samex (pl, p2) = xCartPt(pl) == xCartPt(p2)
(assuming the equality operation == is defined for Reals)

A type instance can only be created for class NewPlanarPoints if the type
constructor to which a is bound in NewPlanarPoints is also bound to the
same type constructor in PlanarPoints, for example CartPoint bound to a
in both. A new type has not been created, CartPoint for example stays the
same, but the creation of a new type class has enabled code defined in the
class PlanarPoints to be reused. The PlanarPoints class declaration and the
class instances, which define class implementations, have been (strictly) inher-
ited by NewPlanarPoints. (This concept of subclasses is somewhat analogous
to enrichment in OBJ1 [13].)

9 Relating F-bounds and type classes

Class types are a form of bounded quantifier in that they limit the types that
a type may be instantiated to in a polymorphic function. An F-bound is also a
bounded quantifier. Neither type classes nor F-bounds require the existence of
subtype relationships between types, although neither exclude the possibility of
subtype relations.

Type class declarations are similar to Cook interfaces except that Cook in-
terfaces are part object-oriented and part functional;

21

move: Real -> Real -> ¢t

There is an assumption that an object of type t exists but the object is not
mutable and when it is moved a new object is returned.

Type class definitions are only functional;
move: a -> Real —> Real -> a

Instance declarations (implementations) for type classes in Wadler and Blott
are similar to class implementations of types in Cook et al. In both cases, the
implementations can be changed while the type interfaces remain unaltered.

Wadler and Blott polymorphic functions are bound to type classes such that
they apply to any type in the type class and for each type in the class, different
code will be invoked. F-bounded polymorphic functions apply to all types such
that t < F[t] and the same code can be invoked for different types although
different code can also be invoked.

The Wadler and Blott concept of subclasses enables the operations defined
for a type class to be inherited by a subclass. Extra operations for the type
can be defined in the subclass. However, the types declared in the superclasses
are not specialised in the subclasses; the types remain the same. In F-bound
inheritance, not only can new operations be defined in subclasses, but also the
types themselves can be specialised.

It is interesting to note that in an alternative approach to modelling inher-
itance with a static type system, Ghelli [14] models message passing by using
overloaded functions which are not based on a record model. Inheritance is
modelled by the incremental definition of overloaded functions and message
passing by the application of these functions. When an overloaded function is
applied to an object, the code invoked depends on the class which created the
object. Significantly, the approach provides for both covariant and contravari-
ant redefinition of methods. As a result, the covariant redefinition of the equal
method as defined for Point is permitted for ColourPoint. It is accepted that
if a Point object is compared with a ColourPoint object then both will be
treated as Points and hence colour will be ignored. If this is not the desired
behaviour, then it is also possible to program explicitly how the objects are to
be compared; for example, Point and ColourPoint objects could always be re-
garded as unequal. Whereas with Wadler and Blott type classes, different code
is invoked for compatible types within a type class, in the Ghelli approach the
code invoked for compatible types can be the same or different.

Both type classes and F-bounds are concerned only with the syntactic rep-
resentation of types. Consideration of semantics is obviously more complicated.

22

10 Conclusion

It seems desirable to have separate inheritance hierarchies for types and classes.
If the type inheritance hierarchy was based on the subtype relation, it could
reflect a semantic interpretation of is-a relationships. However, depending on
the subtype model used, the semantic interpretations might be restricted by
subtype requirements such as contravariance. The subtype hierarchy could be
used to determine whether an object of a subclass could be used in any context
(parametric or assignment) where an object of a superclass was expected. The
class inheritance hierarchy could be used to reuse code where appropriate.

It would also be possible to have type interface hierarchies related by F-
bounds; such hierarchies could reveal relationships between classes which while
being conceptually meaningful (a ColourPoint is a specialised Point) are not
subtype relationships. F-bound relationships show how implementations can be
inherited and show when types created by inheritance can be used in parametric
contexts requiring supertypes. The F-bounded types cannot replace one another
in assignment contexts.

In the Point and ColourPoint example, the ColourPoint type would not
be a subtype of the Point type so that it would not be possible to use a
ColourPoint where a Point was expected. Thus undesirable behaviour such as
comparing the equality of a Point object (without colour) with a ColourPoint
object (with colour) would be prevented. On the other hand an implementation
of class ColourPoint could inherit code from an implementation of class Point
such that, for example, the move method from Point was inherited by the class
ColourPoint and the equal method was inherited and extended to include the
comparison of colour. Again, the equal method might be completely redefined
in ColourPoint and perhaps only the methods for accessing the coordinates
and for moving a point would be inherited from Point.

The significant advantage of the F-bound relationship over the subtype re-
lationship is that the type of methods can be specialised in the subclasses since
contravariance is not mandatory under the F-bound relationship. The necessity
to obey the contravariant rule in the subtype relationship places severe limita-
tions on the degree of specialisation that can be achieved in subclasses which
are also required to be subtypes.

Wadler and Blott type class hierarchies show how implementations can be
inherited and define which types belong to a class and hence which types are
polymorphic. For types to belong to subclasses, the types must belong to su-
perclasses so it appears that subclass instances can be used where superclass
instances are expected.

Although the interfaces used in the F-bounded view of inheritance and in the
Wadler and Blott type classes consist only of operation names and types and are

23

therefore weaker than complete behavioural specifications with semantics, they
have the advantage that interface checking reduces to type checking for which
there is an existing technology. The use of F-bounds and type classes would
enable polymorphic functions to be statically type checked without requiring a
subtype relation between inherited classes.

The existence of separate type and class inheritance hierarchies would seem
to have implications throughout the development of a system. We will not
discuss such issues here but we hope to address them at another time.

References

(1] Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstrac-
tion, and Polymorphism. Computing Surveys, 17(4), December 1985.

[2] Ben Potter, Jane Sinclair, and David Till. An Introduction to Formal
Specification and Z. Prentice Hall International (UK) Ltd, 66 Wood Lane
End, Hemel Hempstead, Hertfordshire HP2 4RG, 1991.

[3] R.Burstall and B.Lampson. A Kernel Language for Modules and Abstract
Data Types. Technical report, Digital Systems Research Center, 130 Lytton
Avenue, Palo Alto, California 94301, September 1984.

[4] Peter S. Canning, William R. Cook, Walter L. Hill, and Walter G. Olthoff.
Interfaces for strongly-typed object-oriented programming. OOPSLA 89
Proceedings, 1(6), October 1989.

[6] Colin Atkinson. Object-Oriented Reuse, Concurrency and Distribution.
Addison-Wesley, Wokingham, England, 1991. ‘ :

[6] Scott Danforth and Chris Tomlinson. Type Theories and Object-Oriented
Programming. ACM Computing Surveys, 20(1), March 1988.

[7) Gordon Blair, John Gallagher, David Hutchinson, and Doug Sheperd.
Object-Oriented Languages, Systems and Applications. Pitman Publishing,
128 Long Acre, London WC2E 9AN, 1991.

[8] W.R.Cook. A Proposal for Making Eiffel Type-safe. The Computer Jour-
nal, 32(4), 1989.

[9] William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is
Not Subtyping. Proceedings of the 17th ACM Symposium on Principles of
Programming Languages, January 1990.

24

[10] Peter Canning, William Cook, Walter Hill, and Walter Olthoff. F-Bounded
Polymorphism for Object-Oriented Programming. Proceedings of the Con-

ference on Functional Programming Languages and Computer Architecture,
1989.

[11] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less
ad hoc. In Proceedings 16th ACM Symposium on Principles of Programming
Languages, pages 60-76. ACM, January 1989.

[12] Paul Hudak and Joseph H. Fasel. A Gentle Introduction to Haskell. ACM
SIGPLAN Notices, 27(5), May 1992.

[13] C.D.Walter, R.M.Gallimore, D.Coleman, and V.Stavridou. OBJ1 Man-
ual Version 1.0. Technical report, UMIST, Department of Computation,
UMIST, Manchester M60 1QD, 1986.

[14] Giorgi Ghelli. A Static Type System for Message Passing. In Conference
Proceedings on Object-Oriented Programming Systems, Languages and Ap-
plications, pages 129-145. ACM, November 1991.

25

