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Abstract— Understanding the evolvability of simple differ-
entiating multicellular systems is a fundamental problem in
the biology of genetic regulatory networks and in computa-
tional applications inspired by the metaphor of growing and
developing networks of cells. We compare the evolvability of
a static network model to a more realistic regulatory model
with dynamic structure. In the former model, each regulatory
protein-binding site is always influenced by exactly one gene
product. In the latter model, binding is only more likely to
occur the better the match between site and gene product is
(smooth binding) and, in addition, affinity dynamically changes
under the action of specificity factors during a cell’s lifetime.
On evolutionary timescales, this means that often the strength
of influences between nodes is perturbed instead of direct
changes being made to network connectivity. A main result is
that for evolutionary search spaces of increasing sizes evolved
performance drops much more strongly in the classical network
model as compared to the smooth binding model. This effect
was even greater in the case of using smooth binding together
with specificity factors.

I. INTRODUCTION

In biological Genetic Regulatory Networks (GRNs), genes
encode proteins and proteins in turn regulate the activation
level of genes. The dynamics of these interactions not only
play a key role in development [1] but also in the ongoing
metabolism of all cells during their lifetime [2]. Furthermore,
cells do not exist in isolation but are embodied in an environ-
ment, which influences the cell, while the cell can via internal
regulatory dynamics in turn influence its environment.
GRNs are often thought of as networks where nodes rep-
resent genes and arcs the influence of a gene product on
a gene with a binding site which the product matches.
These arcs are usually pictured as having a (static) weight
representing the strength of the gene product’s influence.
But this is not the full story for biological GRNs, where
proteins might also attach to areas they do not perfectly fit
– however, the less site and protein match the smaller is
the probability of binding in general. Additionally, nature
has yet another level of regulation, as proteins exist that
can alter the affinity of transcription factors to bind to non-
perfect-match binding sites [3], [4]. Therefore these proteins
are called specificity factors (SFs). Beside activators and
repressors they are another mechanism for the regulation
of gene expression that is active in biological organisms.
These mechanisms have not been modeled fully in any work
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known to the authors. In the following we describe a model
which uses smooth matching and specificity factors and their
impact on evolutionary search is investigated. The target of
the evolutionary algorithm (EA) is a simple two-celled model
of differentiation in the sense of Jacob and Monod [5], who
defined that “two cells are differentiated with respect from
one another if, while they harbor the same genome, the
pattern of proteins which they synthesize is different”.
The other motivation for this work was the question of how
to weight innovation against inheritance in successive gen-
erations in EAs. As we are concerned with networks, some
small genetic changes might have profound consequences
on a GRN’s dynamics, leaving little resemblance to the
predecessor’s phenotype. In the worst case this makes an
EA no better than random search, while on the other hand
too much smoothness might restrict exploration and lead to
premature convergence of the EA.

Related Work: Gerhart and Kirschner noted that “Eu-
karyotic transcription factors often have limited affinity and
sequence specificity on their own and require the presence
of other factors to confer stability and specificity in DNA
binding” (they name Calmodulin as an example) and discuss
some theoretical implications for evolution [4], [6].
Although most biologically inspired GRN models use regu-
latory dynamics with template matching, i.e. a perfect match
of binding site and the corresponding protein is required,
some approaches exist where looser matchings are possible.
Banzhaf et.al. [7] proposed a bit-string model where the
influence of a protein on an enhancer/inhibitor site is expo-
nential in the number of matching bits ui, exp(ui − umax),
with scaling via umax, the maximum match achievable, to
have a full match for the best matching protein. The possible
benefit of such a mechanism for evolutionary processes,
namely that small changes to the genotype are more likely
to have small effects on the phenotype, is pointed out.
Regulation is restricted to one enhancer site and one inhibitor
site per gene, if several regulating proteins are present at a
site they are combined in an OR like fashion. Bentley [8]
invented fractal proteins, gene products that are comprised of
subsets of the Mandelbrot Set. In that model, multiple fractal
protein 2D shapes are merged in an AND like fashion.
Both models allow a smooth matching between binding
sites and regulatory gene products, but the affinities of gene
products to sites do not change dynamically and only one
kind of grouping, i.e. either logical OR or AND interaction
between regulators, is possible. Furthermore no analysis
of the evolutionary effects of smooth matching, e.g. by
comparison to another model, is conducted in these papers.
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Fig. 1. Schematic drawing of the differentiating genetic regulatory
network model. The two cells of the simple multicellular individual have
the same genome and thus the same regulatory network but can produce very
different behavior, induced by a very simple signal which is here shown as
external, but it could also be an internal gene that is always active, e.g. due
to cell division disparity resulting in an unequal distribution of proteins or
other factors after cell cleavage.

II. METHODOLOGY AND MODEL

In [9], where the proposed GRN model was first described
in its basic form, we used it to evolve single-celled biological
clocks with the circadian rhythm abstracted to a sinusoidal
wave or other periodic function. GRNs producing such
cyclic behavior in response to various periodic environmental
stimuli could easily be evolved. Reproducing the phase of
their input as well as the production of the inverse or
shifted phase was possible1, however in that investigation
every evolutionary run had only one of these objectives.
So in the context of differentiation it was quite natural to
ask whether it would be possible to integrate two different
functionalities in one GRN instantiated in different contexts
in a multicellular entitiy. Cell cleavage and development are
subject to abstraction; from the start there are two identical
cells receiving the same periodic external stimuli, see fig. 1.
The expected difference in behavior is only signaled by a
type inducer (a raised protein level), which can be thought
of as being the result of either an internal gene turned on in
one cell only during cell division or an externally generated
developmental signal.
Every cell consists of proteins and a genome with the number
of genes fixed to nine. Gene activation is controlled by
regulatory sites (cis-sites or cis-modules), each composed of
– possibly – several protein binding sites. Depending on the
attachment of proteins to the binding sites the corresponding
cis-modules positively or negatively influence the production
of (not necessarily different) proteins. In molecular biology,
proteins acting in such a way are called Transcription Factors
(TFs). In our model all proteins are potentially regulatory. A
main difference from the Biosys model [10] is that there
can be any number of cis-modules per gene and every cis-
module can have any number of protein binding sites. This
is to allow for a second level of protein regulation (absent

1For results from those experiments see also
http://panmental.de/GRNclocks/.

from previous models), as molecular biologists have found
TFs that not only show additive behavior but might also
interact with each other and thereby change their influence
synergistically, see e.g. [11], [12], [13]. In logical terms (but
note that values are actually continuous) one can think of this
grouping of inputs as an OR of ANDs. The AND level certainly
constitutes a canalizing function in the sense of Kauffman
[14] as one zero value there causes the whole term to be
zero no matter what the other stimuli are. Such selectors can
be thought of as choosing a particular pathway for the cell
(and sometimes for its descendants too) and are thought to
be involved in cell differentiation as well as developmental
modularity. The importance of developmental modularity for
evolution is pointed out by many of the articles in [15].
In summary the model, as compared to previous models,
is designed to facilitate the evolution of complex dynamics,
coming a little closer to nature than previous models in terms
of regulatory logic, where “5-10 regulatory sites are the rule
that might even be occupied by complexes of proteins” [7]
and non-linear synergetic effects are possible [13].

A. Genetic Representation

The genome is represented as a string of base four digits,
encoding several genes and some global parameters of the
network. Digits 0 and 1 are coding digits that may be
involved in regulation or protein coding. To differentiate
between a sequence of coding bits, a cis-module boundary
and a gene boundary the genetic alphabet was increased to
four values, with digit 2 delimiting the end of a cis-module
and digit 3 delimiting the end of a gene. In the version of the
model used here there is a predefined number 2n of different
protein types, so that for example to have eight (23) types
three bits encode a protein.
In the experiments described here we used a fixed number
of genes, namely nine, as this had proven more than enough
for coping with a simple single task [9], [16]. After parsing
the genome into genes, the last four coding digits of every
gene determine its output behavior, a number of bits for the
protein type produced and the last bit for the gene’s activation
type, which can be “default on” – active unless repressed or
“default off” – silent until activated by regulatory sites, see
fig. 2.

For cis-modules the first coding bit determines its influence
on the gene’s activation level (inhibitory/activatory)
and every following n coding digits are considered
a protein binding site. As an example with
n = 3 (23 = 8 protein types possible), the gene
010111021101020011113 will produce protein 7
(...20011113) and is “off by default” (...20011113). It
has two cis-modules, the first inhibitory (01011102...)
binding a combination of proteins 5 (01011102...) and 6
(01011102...), and an activatory cis-module (...2110102...)
to which protein 5 (...2110102...) will bind. Note that the
last zero of 2110102 is ignored; such coding digits which
are neither translated nor regulatory are referred to as junk.
The genome also encodes several evolvable variables global
to the cell. These are the protein-specific decay rates (four
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Fig. 2. Activation Types. Every gene produces proteins according to the
cumulative activation level of its cis-modules and its activation type: either
even when no activation is present (“default on” - left) or only with positive
activation (“default off” - right).

bit for every protein, indexing into a fixed look-up table
of values), the global binding proportion (also four bits
indexing into a look-up table, but identical for all proteins),
and finally the global saturation value (three bits indexing
to a look-up table, again identical for all proteins). These
latter variables especially facilitate changes in the strength
and timing of gene expression without affecting the general
dynamics important in the evolution of phenomena such as
heterochrony (cf. [17], for a more detailed analysis in our
model see [9], [16]).

B. Regulatory Logics

The model is run over a series of discrete time steps,
its lifetime. In each time step initially a fraction of the
free proteins, determined by the global binding proportion
parameter, are bound to matching sites. The next two sub-
sections describe the two different matching mechanisms
compared.

1) Template or Perfect Matching: Here the fraction of
proteins available for binding is assigned to the binding site
that has the same binary code as the protein. If there is more
than one binding site competing for the same protein the
fraction is equally distributed between all matching sites.
In this process all protein binding sites are treated equally,
regardless of the cis-module to which they belong. Let bi

be the number of all binding sites matching protein i (there
can be several for the same protein within and between cis-
modules) and ct

i denote the number of instances of protein
i being available for binding at time t. Then the amount
pt

ijm of protein i bound at time t to a given binding site in
cis-module j of gene m and matching protein i is:

pt
ijm =

ct
i

bi

+ pt−1

ijm,

where pt−1

ijm is the amount of protein i at the binding site
in the previous time-step after saturation and protein-specific
decay have been taken into account, with the initial condition
p0

ijm = 0.
2) Smooth Matching and Specifictiy Factors (SFs): Above

it was assumed that the binding sites on the cis-modules
need to have exactly the same structure (bit pattern) as

−4 −3 −2 −1 0 1 2 3 4

b(x,0.5)
b(x,0.75)

b(x,1)
b(x,1.25)
b(x,1.5)

Fig. 3. Distribution of available protein to binding sites. The width of
the curve is regulated by specificity factors and the dotted horizontal lines
indicate the possible Hamming distances of the protein’s bit representation
to a perfect match. There are only four curves shown for clarity, but all
intermediates are possible as well. See text for details.

the protein that binds to them. In this variant proteins
might also attach to areas they do not perfectly fit. As a
protein’s affinity for a binding site should depend on how
well they match, a measure of closeness is needed. This
is achieved by calculating the Hamming distance between
their bit representations. The Hamming distance is simply
the number of bits that are different between two strings,
so for eight different protein types (n = 3, 2n = 8) the
maximum Hamming distance is 3. The distance values are
then used as input to a bell shaped function, see fig. 3.
The width of the curve, i.e. the protein’s affinity for binding
sites that it does not match perfectly, depends on SFs. SFs
were incorporated as additional proteins, one for every of the
original 2n proteins, being produced by genes just as the old
ones. So the number of proteins in the cell doubles to 2n+1;
however, SF proteins do not bind to binding sites themselves
but are only used as modifiers when the other proteins are
binding. Every SF influences the binding behavior of its
corresponding protein (where the correspondence is given by
SFnumber minus 2n, i.e. the highest bit of a protein indicates
normal protein or SF protein). The bell shaped curve (fig. 3)
is given by:

b(x, σ) =
1

σ
√

2π
e−

x2

2σ2

The value for x is the distance of protein i (the one to
be distributed) to a binding site and the value for σ is
0.5 + cS

i , where cS,t
i is the concentration of SF for protein

i, i ∈ {0..2n}, cS,t
i ∈ [0, 1]. Let Hih denote the Hamming

distance between bit representations i and h. We can now
formalize the number of protein types with a distance d as
N(d) = |{x|H0x = d}|, x ∈ {0..2n}.
So for the example with 2n = 8 protein types we have
d ∈ {0, 1, 2, 3}, and for every protein there is one binding
site type matching perfectly (N(d = 0) = 1), three binding
site types with N(1) = 3, three with N(2) = 3, and only
one where all bits are different (N(3) = 1).
Combined, with the denominations as above, we have:
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pt
ijm = pt−1

ijm +
2

n∑
h=1

ct
h(

b(Hih, 0.5 + cS,t
h )∑n

z=0
b(z, 0.5 + cS,t

h )
)/bhN(Hih)

Note that a) the division by
∑n

z=0
b(z, 0.5 + cS,t

h )) only
occurs to normalize the sum of shares to 1, b) proteins
decay with the decay–rate specific to the protein that
perfectly matches the binding site they attach to, so one
might speak of a binding-site-type specific decay rate now,
and c) unlike concentrations of normal proteins ct

i, SFs cS,t
i

currently decay completely every time step (i.e. after the
above calculations are done). Because of c) no decay rates
for SFs need to be evolved and no saturation value applies,
but cS,t

i ∈ [0, 1]. When calculating the protein output of
genes that produce SFs we simply do not multiply by r
(limiting its output to values in [0, 1]) and if two genes are
producing the same SF and their combined output is above
1 the value is just set back to 1.

Activation Levels: For both matching mechanisms the ac-
tivation level am of gene m with k cis-modules is calculated
as

am =

k∑
j=1

±j min
i: protein i binds to cis-module j

pt
ijm,

where ±j =

{
+1 if cis-module j is activatory

−1 if cis-module j is inhibitory.
Note that this use of min is similar to a logical AND and
results in non-additive effects (“synergy”) in gene regulation.
So the calculation of every gene’s activation level is done by
adding (activatory) or subtracting (inhibitory) the values per
cis-module but only the lowest value of bound protein per
cis-module is used (min). The increase in protein concentra-
tion due to gene m is then fm(am), 2 where

fm(x) =

{
r
2

(tanh(x−15

s
) + 1) if gene m is “default off”

r
2

(tanh(x+5

s
) + 1) if gene m is “default on”.

The parameter s = 5 determines the steepness of the
slope, with the function becoming more switch-like as s
gets smaller, and r = 150 determines the range of the
function. The output of the gene’s activation function is
added to the unbound concentration of that gene’s output
protein type. After this calculation the concentrations of all
unbound proteins are, if necessary, reduced to the global
saturation value and then all proteins, free or bound, are
decayed by the protein-specific rate. Finally environmental
input occurs by increasing the unbound concentration of
certain proteins by some value and output by reading some
protein concentration values. Simple scaling by r is used to
map stimulus input levels from the signal range to a protein
concentration, and vice versa for output protein levels.

2For example, for the gene 010111021101020011113 from above this
would mean that due to the first (inhibitory) cis-module, assuming a share
of 20 type 5 proteins (101) and 1 type 6 protein (110) per binding site,
the value −1 would go into the sum. The second (activatory) cis-module
however would contribute +20 resulting in an overall activation of 19, which
gives a protein output of about 125 type 7 proteins.
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Fig. 4. Gaussian offset crossover. Genomes of (1) parent 1, (2) parent 2,
(3) offspring 1, (4) offspring 2. Only the compartment chosen for crossover
and two neighboring genes are shown. Both children get digits up to the
crossover point (solid bar) from their respective parent, but then continue
in the other parent’s genome with opposite gaussian-distributed offsets (−3

and +3, respectively, here).

C. Evolution

A standard Genetic Algorithm with elitism, tournament
selection and replacement is used. Every evolutionary condi-
tion was studied with ten runs, each lasting 500 generations
containing 250 individuals, where one individual consisted
of two cells with the same genome and thus the same
regulatory network. The initial population started with one
cis-module per gene and one protein binding site per cis-
module, all coding bit values being randomly assigned; in
network terms the nodes are randomly connected, with at
most one incoming arc.

Selection: Later generations are formed by carrying over
the best-performing individual (the performance measure is
described below) of the last generation automatically and,
keeping population size constant, the other individuals are
replaced by offspring. To generate each pair of offspring, 15
(not necessarily different) individuals of the prior generation
are chosen randomly and of these the best two selected to
be “parents”.

Variability: A (single-point) crossover between the parent
genomes occurred 90 percent of the times and every coding
bit is flipped with a mutation probability of one percent. As
there can be a variable number of cis- and of protein binding
sites per gene their lengths will vary, so a standard bit-string
crossover could change the number of genes drastically.
To conserve all but (at most) one of the genes as basic
building units, the genomes of the parents are divided into
compartments: one compartment for every gene and one
compartment for the global variables. Then (with a prob-
ability of 0.9) a single compartment is chosen for crossover
and in this compartment a point allocated for crossover.3

This process is inspired by the biological mechanism known
as synapsis, the pairing of homologous chromosomes where
mostly “similar” sectors pool together. To achieve variable
length genes, the unequal crossing-over observed in biology
is mimicked: When crossing over from parent 1’s genome
to the second parent’s genome copying does not necessarily
continue at the same position of parent 2’s genome but is
shifted by an offset (see fig. 4).

This offset is randomly drawn from a gaussian distributed
random variable with mean 0 and standard deviation 4. The
relatively large number four was chosen to increase the

3This is why ‘at most’ one gene is changed: The crossover point could
be zero or equal to the gene’s coding length.
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Fig. 5. Periodic functions used: 1) sine (dashed the inverse or shifted
wave), 2) positive part of sine, 3) step (dashed the shifted wave), 4) pulse.

chance of duplicating genetic information, the importance
of which was already pointed out by [18] for the evolution
of biological complexity. Ohno put emphasis on whole-
genome duplications while it is now, with better techniques,
becoming ever clearer that “both small- and large-scale
duplication events have played major roles” [19].
Note that the offset point is limited to stay within the
boundaries of the compartment, hence if crossover point
+ offset is smaller/larger than the left/right boundary it is
set to the corresponding boundary value. So the number of
2s (cis-modules) might increase by crossover – mutation
was only applied to coding digits (0s and 1s) – but not
the number of 3s as these are the compartment boundaries.
When crossover occurs in the part encoding for global
parameters the offset is always set to 0 as offsets would be
meaningless here.
These processes allow both neutral crossover and mutational
changes, as degenerate cis-modules (i.e. less than n bits –
one protein – long) are ignored. Additionally this means
that genes could become dysfunctional, in a similar manner
to the so called pseudo-genes found in nature, e.g. if there
were not a single cis-module and the gene had an activation
type of “off by default”.

D. Environmental Coupling

Evolutionary conditions are systematically varied by
changing the pattern of external signal received at the cellular
level as well as the periodic output behavior expected.

Input stimuli: The basic idea was to have periodic en-
vironmental stimuli based on a sine curve (shifted to the
interval [0, 1]). The wavelength w was set to 20 time steps,
while the lifetime L for every GRN was 400 steps. Variations
included having only the positive part of sine, a periodic
step function, and a brief pulse. The four functions used are
depicted in fig. 5. The impact of Gaussian noise and black-
out periods in the input during evolution was investigated in
earlier experiments published elsewhere [16].
As mentioned above, both cells of an individual always
received the same periodic stimuli, however one cell addi-
tionally received an inducing signal with a value of 1.

Output behavior: Two periodic target functions were used
to measure the performance of an individual and assign

fitness: sine (fig. 5.1) and step (fig. 5.3), with the first
requiring more smooth changes of protein levels and the
latter a boolean like pattern. While the induced cell’s desired
output would be in the the same phase as the input, we
ultimately want the other cell to produce the inverse of the
input, which is equivalent to shifting the input’s phase by
one half. Fitness was measured using the deviation from the
corresponding desired output, i.e. the smaller the deviation,
the better adapted the GRN.
Letting ct

i0
denote the (unbound) concentration of the induced

GRN’s output protein i0 and dt
p the desired output in phase

p relative to that of the input at time t the deviation is simply
calculated as:

∑L

t=1
|ct

i0
− dt

0.0| and again for the other cell,
only with dt

0.5 – afterwards both values were added up and
divided by 2.
However we did not immediately, i.e. from the first gen-
eration, expect individuals to fully differentiate and rate
performance accordingly. Instead, the environment became
gradually harder by increasing the relative shift in wave-
length little by little from 0 to w/2 every 25 generations
(writing g for the current generation we wanted dt

p∗ with
p∗ = min( g

�25� ,
w
2
)/w) – so full differentiation was only re-

quired after 250 generations. Earlier experiments, published
elsewhere [20], have shown that this gradual differentiation
leads to better performance.
The lifetime L of every individual was set to 400 time steps.
A randomly-generated initial GRN could typically achieve a
deviation of approximately 200 over this time. Finally, we
use this value to transform the deviation to a standard 0 to
100 performance scale: (200−D)/2, so zero deviation would
result in a perfect performance value of 100.

III. EXPERIMENTAL SET-UP AND RESULTS

Overall, 8 evolutionary scenarios were tested (two de-
sired output types times four environmental stimulus input
functions) and each scenario was run ten times. The whole
experiment was repeated with the two different regulatory
mechanisms: Perfect matching and smooth matching plus
specificity factors4.

Using smooth matching and specificity factors did not
immediately lead to an increase in performance in the setting
with n = 3 bits coding for a protein. The reason was
probably that the small number of proteins created too
many interferences for fine grained regulation, as the picture
changed when n, the number 2n of proteins and thereby
the search space was increased. While results for the perfect
matching condition became worse quickly as n increased,
smooth matching had only slight losses, cf. table I 5. In
almost all evolved GRNs we found the use of SFs during
lifetime, although there was not a clear trend towards less or
more use over evolutionary time.

4Results for experiments with smooth matching but without specificity
factors can be found online at http://panmental.de/CECdynAff. Generally
these results were in-between the perfect matching condition and smooth
matching plus specificity factors.

5Note that equal numbers of protein bits are not directly comparable as
for the smooth matching condition one protein bit is used as a “specificity
factor” flag.
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perfect, 4 bits/prot.

perfect, 5 bits/prot.

perfect, 6 bits/prot.

smooth, 4 bits/prot.

smooth, 5 bits/prot.

smooth, 6 bits/prot.

best performance

TABLE I

PERFECT VS. SMOOTH (PLUS SPECIFICITY FACTORS) PROTEIN MATCHING EXPERIMENT OUTCOMES, WITH THE LEFTMOST COLUMN DEPICTING

THE ENVIRONMENTAL STIMULI USED AND THE TOPMOST ROW THE DESIRED OUTPUT BEHAVIOR FOR EVERY RUN. THE NUMBER OF GENES WAS FIXED

TO 9 AND GRADUAL DIFFERENTIATION PRESSURE WAS USED. DATA CELLS SHOW THE BEST FINAL DEVIATION FOR RUNS VARYING THE NUMBER OF

BITS USED TO ENCODE A PROTEIN. ALL VALUES ARE AVERAGED OVER 10 RUNS WITH 500 GENERATIONS TIMES 250 INDIVIDUALS EACH, ± THE

RESPECTIVE STANDARD DEVIATION.

IV. DISCUSSION

The introduced genetic regulatory network (GRN) model
with two layers of regulation is clearly able to evolve
functional differentiation. Two such protein matching
mechanisms were studied: Simple template matching (also
referred to as perfect matching) and smooth matching
complemented with specificity factors. For smooth matching
a regulatory protein is only more likely to bind binding
sites it exactly matches but with some probability it can
also bind to sites of a different type, thus making the
mutation operator less destructive. The more different
site and protein type the less affinity for binding there
is. The probabilty distribution that determines how strong

the affinity towards perfect matches is can be changed
by specificity factors during a GRN’s “lifetime” thereby
adding a level of regulation. Our experiments show that the
use of smooth matching and specificity factors, compared
to a static binding mechanism, can increase performance
of evolutionary algorithms – especially for larger search
spaces.
However, the use of smooth matching alone will also
increase pleiotropy (one gene influences multiple phenotypic
traits). A pleiotropic gene might cause problems when
genetic changes to it improve one trait while doing the
opposite to another trait. Here specificity factors might be
advantageous: They can modify the level of the smoothness
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Fig. 6. Schematic drawing of the change of the network structure
after one single bit mutation occurs, for 1) the perfect matching and 2)
the smooth matching condition. Bolder lines represent stronger regulating
influences. Note however that specificity factors can complicate this picture
by dynamically changing affinities.

of the distribution of transcription factor proteins binding to
potential sites but their activity also influences how genetic
variability will change network dynamics. Depending on
lifetime specificity factor levels, a mutation could have any
effect between the “perfect matching” condition and almost
no effect at all for very smooth distributions. This difference
is schematically depicted in fig. 6.
As Altenberg [21] noted: “Genes are selected on for
their organismal fitness effects but modify the variational
properties of the genome as a systematic side effect”.
These effects and whether there is much interference
between functionalities depends on the possible forms the
distribution curve (see fig. 3) can take, which might be an
interesting subject for further research. Also it would be
interesting to see if the presented positive results still hold
for more complex differentiation scenarios or other network
formalism variants.

The source code and additional results are available at
http://panmental.de/CECdynAff.
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