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Abstract

Within the context of Artificial Life the question about the
role of modularity has turned out to be crucial, especially
with regard to the problem of evolvability. In order to be
able to observe the development of modular structure, appro-
priate modularity measures are important. We introduce a
continuous measure based on information theory which can
characterize the coupling among subsystems in a search prob-
lem. In order to illustrate the concepts developed, they are
applied to a very simple and intuitive set of combinatorial
problems similar to scenarios used in the seminal work by Si-
mon (1969). It is shown that this measure is closely related
to the classification of search problems in terms ofSeparabil-
ity, Non-Decomposabilityand Modular Interdependencyas
introduced in (Watson and Pollack, 2005).

Introduction
Central to the studies of Artificial Life is the understanding
of how complex systems arise from simpler ones.

One of the particular challenges facing the field is that
there are no canonical restrictions or a priori limitationsof
the models used; this is unlike fields, such as, e.g., physics
or chemistry, where there are universal laws of conservation
of energy, mass and other quantities.

In Artificial Life research, the lack of such natural con-
straints gives rise to a vast spectrum of computational mod-
els and simulated physical worlds which are not restrained
by natural limitations. While, on the one hand, this is an
advantage as it allows to study ”worlds as they could be”
as opposed to ”world as they are”, on the other hand its ar-
bitrariness also creates problems. The different models do
not need to share any constraints, and thus statements that
can be generalized from one model to another are difficult
to make. In addition, this situation tends to favour research
approaches where the development and study of models is
driven by phenomenological considerations. In view of this
situation, it has been felt for some time that a better princi-
pled understanding of such systems is necessary: this would
provide a systematic approach to analyse, predict and con-
struct complex Alife systems.

To achieve this, a consistent mathematical language and
formalism describing these systems is necessary. It becomes

increasingly clear that information theory, via its wide array
of ramifications into different fields and its powerful mathe-
matical arsenal is one of the most promising candidates. The
last years have seen a surge in highly successful applications
of information theory to complex and Artificial Life systems
(Adami, 1997; Tishby et al., 1999; Shalizi and Crutchfield,
2002; Klyubin et al., 2005). Information theory both pro-
vides tools for the analysis and for the construction of com-
plex systems.

In order to answer important Artificial Life related ques-
tions using information theory, however, we have to translate
the respective model as well as the question itself into the
right language. The present paper does that with the most
relevant question of modularity of a search function. We
will find that even in the simple case discussed here, this
is a non-obvious task. This is also the reason that, rather
than to design an elaborate simulation model, here we con-
centrate on the ”essence” of aforementioned translation pro-
cess. Instead of justifying the result of this translation on the
phenomenological level of an intricate simulation, we will
prefer to concentrate on a very minimalistic but well known
scenario that, so we hope, will provide the relevant insights
into the translation process in a more transparent way.

We also expect that explaining the concepts using intuitive
examples without distracting additional complexity will pro-
vide the readers a reliable basis for the decision whether to
use this measure for their special purposes or not.

Modularity

In the studies of complex systems and Artificial Life, a cen-
tral question is how it is possible that, over time, systems can
emerge with ever increasing complexity. This question is
particularly prominent if one considers the Darwinian evolu-
tion which, from a naive point of view, appears to be mainly
a Random Heuristic Search(Vose, 1999) with a large test
population which is performed over very large timescales.
However, one may doubt whether the massive parallelism
and the large timescales alone can explain the enormous
complexity of living organisms that we observe.

The hierarchical structures in living systems, reaching



from the molecular level up to whole organisms and – even
further – to complex societies, might remind one to meth-
ods, that intelligent designers use, especially in the design
of large software systems. In the latter, with the advent of
the software crisis in the 1970s (Zuser et al., 2001), it be-
came clear that large monolithic software systems in which
each part depends on many others (a form of nonlocality)
are practically unmanageable. Even if they should work rea-
sonably reliably at a certain point in time, they cannot easily
be adapted to new tasks. This is being solved by introducing
moduleswhich solve subproblems independently from the
rest of the system and organizing larger systems by building
them up from these smaller, manageable modules.

Adaptability, in turn, is one of the central motifs of natural
evolution. Therefore, the question arises whether evolution
manages complexity in a similar way as human software en-
gineers, via modularity. It turns out that there are several
phenomena in nature that can be construed as exhibiting el-
ements of modularity. The most prominent examples are the
recombination of distinct chromosomes in sexual reproduc-
tion and the crossover operator (which is construed by re-
searchers of artificial evolution as to be preservingbuilding
blockswhich encode for separable, i.e. modular, properties
of the phenotype).

Therefore, modularity has become a central issue in the
study of evolved biological functionality (Snel and Huynen,
2004) and it appears quite natural that there have been many
approaches to characterize or to measure modularity or to in-
vestigate how more and more modular structures emerge in
the course of evolution processes (Wagner, 1995; Calabretta
et al., 1998; Dauscher and Uthmann, 2002; Dauscher and
Uthmann, 2005).

Information theory is being used as a nonlinear corre-
lation measure to discover suspected modules in genomes
(Steuer et al., 2002). Recent approaches have also shown
that information theory can be used to define a measure
for the modularity of networks (Ziv et al., 2005; Kashtan
and Alon, 2005; Hallinan, 2004), neural structures (Hüsken
et al., 2001) or of simple dynamical systems (Polani et al.,
2005). Also the modularity of evolutionary search has al-
ready been tackled using information theoretic concepts
(Mühlenbein and Ḧons, 2005). It is to be noted, however,
that this approach requires a quite intricate mathematicalfor-
malism.

In the paper, we will develop a different, comparatively
simple and intuitive approach to characterize modularity of
search problems.

Three Simple Scenarios
In the pioneering work “The Sciences of the Artificial” (Si-
mon, 1969), one of the most prominent precursors of the
Artificial Life research field, several types of imaginary safe
locks are used to illustrate the concept of subsystems that
are “nearly decomposable”. Note that these examples are

not as arbitrarily chosen as it might appear at first sight. On
the contrary, they can be conceived as a striking analogue
to difficult search problems, where the goal is to find so-
lutions better than all solutions found, yet. These problems
are closely related to the concept of Evolvability (Altenberg,
1994), which, in turn, tackles one of the most important
questions of Artificial Life: “How can structures of extreme
complexity emerge from evolutionary processes?”.

In order to illustrate the concepts developed in this paper
we introduce three very simple scenarios each dealing with a
safe-lock consisting of 10 binary switches. This corresponds
to 210 = 1024 possible combinations; we assume that only
one of these combinations really opens the safe. We consider
a safe cracker having no a priori information about the right
combination.

The difference in the three scenarios lies in the way the
locks reveal useful information about the opening combina-
tion: we distinguish theSilent Lock, theRevealing Lockand
theAmbiguously Revealing Lock.

TheSilent Lockis a safe-lock as it is intended: it does not
reveal anything about the right combination until it has been
found. In the worst case a safe cracker will have to try out
1023 combinations before knowing the correct combination.

In the Revealing Lockthe safe-lock makes a clicking
sound in the case of the first 5 bits correctly set and a (differ-
ent) clicking sound if the other 5 bits are set correctly. This
makes things quite easier for a safe-cracker, since he can
start by determining the first 5 bits and the last 5 bits sepa-
rately. In the worst case, this procedure will take 31+31=62
trials. Note that these considerations assume that the safe
cracker knows the facts described above, which also in-
cludes the knowledge about which 5 bits are the “first” 5
bits. Without this knowledge, the clicking sounds produced
might be a help but on a quite smaller scale.

The Ambiguously Revealing Lockalso makes clicking
sounds, however not only for the right combination of the
respective 5-bit part but also for a different combination
which, however, is not at all useful to open the lock. We
assume it to be impossible to distinguish the sounds of the
right from the wrong combinations.

One can imagine that the ambiguity makes it more com-
plicated again to open the safe. A possible way to find out
the opening combination is to determine the two clicking
partial solutions for each part. Then, there are four possible
combinations of these partial solutions. In the worst case,
this procedure will take 31+31+3=65 trials.

Non-Decomposability, Separability and
Modular Interdependency

(Watson and Pollack, 2005), following Simon (1969), dis-
cusses a number of hypothetical locks like those above to
illustrate a combinatorial search problem that can be di-
vided into sub-problems. However, the intent in that work
was not just to illustrate modules that are entirely indepen-



dent (as in the revealing lock) but also a case where use-
ful modules are available to reduce the combinatorics of the
search involved without assuming that the modules are en-
tirely separable - this is the purpose of the ambiguously re-
vealing lock example. This form of incomplete modularity
draws from Simon’s intuition of ’nearly decomposable’ sys-
tems (1969) but, although Simon focused on this concept
extensively, his lock example and other examples (including
the watchmaker’s parable) did not provide a combinatorial
search problem that was nearly decomposable in a wholly
satisfying way (Watson 2005).

Although the idea of nearly decomposable systems is in-
tuitive, this kind of ’modular but not completely modular’
notion becomes problematic, and does not capture all of
what we might hope to capture when applied to combina-
torial search. The issue is as follows: if we are able to de-
termine the correct setting for a subset of the variables in a
combinatorial search problem without regard to the setting
of other variables then the modules are completely indepen-
dent. If the correct setting for a subset of variables is a little
bit different depending on the setting of other variables inthe
system then this seems like a reasonable approximation to
partial modularity. But, in this kind of near-decomposability,
it is difficult to make strongly significant interdependencies
between modules without removing the utility of the mod-
ules altogether. However the assumption that inter-module
dependencies must be weak is not necessary and limits the
utility of hierarchical modularity (Watson 2005).

In contrast to this simplistic notion, note that in the am-
biguously revealing lock we can see that the two clicking
settings might have no bits in common - one could be 00000
and the other could be 11111 - but this is not important to
the combinatorial reduction the clicks provide. We also see
that if the safe is set to the ’deceptive’ clicking position,this
results in complete lock-out - the ability to open the safe is
utterly dependent on having the correct setting in both mod-
ules, so the inter-module dependency in this problem could
not be stronger. Nonetheless, the fact that the clicking posi-
tions can be identified means that the modules are highly ef-
fective in revealing the correct setting to open the safe. Thus
the modules in this problem are very clear and significant in
the way they reduce the combinatorics of the problem, but
this is not opposed to the fact that resolving the dependen-
cies between the modules is critical.

(Watson and Pollack, 2005) suggests a coarse grained
classification of the interaction in an optimization problem
like this. In this paper the term ’decomposable’ is defined
by comparing the number of settings that a module can take,
C, with the number of different settings,C′, of that module
that are optimalfor some context. That is, in the lock ex-
ample, if the clicks correspond to a suboptimal solution, we
can identify these as configurations that can be saved and re-
tried with combinations of the other module. If this is true
for both modules then we can greatly reduce the number of

total configurations that need to be tested. Even though we
cannot uniquely identify which settings are globally optimal
(actually open the safe) independently of the other module,
i.e. C′ > 1, we can reduce the number of settings we need
to consider fromC = 32 down toC′ = 2. Watson defines
a ’decomposable’ system as one whereC′ < C, a ’separa-
ble’ system as one whereC′ = 1, and suggests that cases of
particular interest are decomposable but not separable sys-
tems, i.e., 1< C′ < C, which he calls ”Modular Interdepen-
dency”. By these definitions, the silent lock example is non-
decomposable, the revealing lock example is separable, and
the ambiguously revealing lock example exhibits Modular
Interdependency.

These terms are conceptually useful and feed into the
measure of modularity we define in this paper. However
they also have some conflicts with our basic intuitions about
modularity in disconnected systems and other cases (Polani
et al., 2005). In this paper we convert this classification into
a more rigorous information theoretic measure.

Formalization within the Framework of
Information Theory

Let our systemS (the safe lock) be subdivided into two sub-
systemsS1 andS2 (the first 5 bits and the other 5 bits). The
fact that we do not know anything about the right combina-
tion before having made experiments is now expressed by
the corresponding random variablesS, S1 and S2, each of
which is equally distributed.

The first question we ask is: What is the difference be-
tween the three scenarios from the information-theoretic
point of view? Therefore, we consider first the uncertainty
about the right combination which is described by the en-
tropy H(S). It is easy to see thatH(S) = 10 in all three of
the scenarios. Obviously, this naive measure does not ade-
quately represent the effort of the safe-cracker or the cou-
pling of the subsystems.

This is due to the fact that the Shannon entropy (uncer-
tainty) implicitly assumes that the system can be asked an
optimally selected set of questions: for instance, in our sce-
nario, the 10 bit of uncertainty could correspond to the abil-
ity to ask for each bit separately whether it is set to “1” or
to “0” in the right combination. In this case, ten of these
optimal binary questions would be sufficient in order to de-
termine the complete right combination.

In constructing safe-locks, of course, engineers aim at
quite the opposite: they limit the set of askable questions
as to make it as difficult as possible to determine the right
combination just by trial and error. What makes theSilent
Lockparticularly hard to crack is that in order to determine
the right state of any subsystem you have to know the state
of the whole rest: It is impossible to do ask useful questions
considering, e.g., only 5 bits. The only kind of askable ques-
tions is“Does combination ... open the safe-lock?”. There-
fore, you have to check (in the worst case) 210−1 = 1023



combinations before definitely knowing the opening combi-
nation.

In the Revealing Lock, the set of usefully askable ques-
tions is larger: Again, one can ask whether a given combina-
tion opens the lock; in addition, one may also ask whether a
partial solution of 5 bits produces a clicking sound (and thus
is the right partial solution for these 5 bits). That means that
one can determine the right partial solution without having
to learn anything about the rest (and thus avoiding the effort
of asking many questions).

In theAmbiguously Revealing Lockwe find an intermedi-
ate case: The set of askable questions is the same, however
the answer “click” to the question whether a partial solution
of the first 5 bits is correct may be useful but is only partially
informative.

We will now formalize the notions introduced above.
Knowledge about the right combination can only be ob-
tained by suitable experiments. We will therefore introduce
the concept of“measurements”where a measurementM is
a tuple(M(1), . . . ,M(k)) of random variablesM(i) each con-
taining the outcome of a given experiment. An experiment
may be the testing a combination of the first or last 5 bits
(completely neglecting the respective rest) whether it pro-
duces a clicking sound. Another experiment could be to test
a 10-bit combination whether or not it opens the safe-lock.

In the information-theoretic context, we treat the mea-
surements like ordinary random variables by setting:

H(M) = H
(

M(1)
,M(2)

, . . . ,M(k)
)

H(X|M) = H
(

X|M(1)
,M(2)

, . . . ,M(k)
)

I(X;M) = I
(

X;M(1)
,M(2)

, . . . ,M(k)
)

A Measure Based on the Coupling of Modules
Let us ignore for the moment the possibility that there might
be any correlation between the random variablesS1 andS2,
i.e. I(S1;S2) = 0. We will discuss a more general version
including I(S1;S2) ≥ 0 in the next section. We now define a
(preliminary) measure for coupling:

K = min
{

(M1,M2)
∣

∣H(S|M1,M2)=0
}

[

I(M1;S2)+ I(M2;S1)
]

(1)

That means: we consider two measurementsM1,M2 that
are together sufficient to identify the necessary information
for the whole system. In one extreme case the measurements
M1 and M2 can be applied to the corresponding subsys-
temsS1 andS2 without the necessity to obtain information
from the respectively other ones. Vice versa, any informa-
tion which has necessarily to be obtained from the respec-
tively other one is a measure for the coupling of the subsys-
tems. It is easy to see thatK has an upper bound, namely
min

[

H(S1),H(S2)
]

, corresponding to the opposite extreme

case. The boundedness can be shown as follows: let us as-
sumeH(S1) ≥ H(S2) without loss of generality. Then we
consider a measureM1 obtaining all information about the
whole system alone andM2 an “empty” measurement (con-
taining no experiments at all). ThenK cannot be larger than
H(S2), the smallest of the two valuesH(S1) andH(S2).

The both extreme cases and the range between them can
now be characterized in a quite natural way by three cate-
gories introduced above:

Separability K = 0
Non-
Decomposability

K = min
[

H(S1),H(S2)
]

Modular Inter-
dependency

0 < K < min
[

H(S1),H(S2)
]

In order to depict these concept graphically, we introduce
diagrams rather similar to the typical Venn-Diagrams that
are frequently used to describe information-theoretic con-
cepts, as, e.g., in (Adami, 1995); one needs to exert some
care using them for inequality proofs, (Yeung et al., 2002).
In the diagrams shown in Fig. 1, the measurementsM1,
M2 (more exactly: their entropy) are represented as boxes
stacked upon each other. The entropies of the subsystemsS1

andS2, in contrast, are represented as boxes positioned side
by side.

Application to the Example Scenarios

Let us review now our three locks before the theoretical
background developed so far.

In theRevealing Lock, we can perform two measurements
separately - as described above: one (without loss of gen-
erality M1) that only yields information aboutS1 (by using
only the clicking sound information) and one that only yields
information aboutS2, using the slightly different clicking
sound. Thus,I(M1;S2) = 0 andI(M2;S1) = 0 and this im-
mediately leads toK = 0: theRevealing Lockis separable.

The Silent Lock, in contrast, is non-decomposable. This
can be seen by noting that none of the single experiments
that can be performed reveals more about one of the sub-
systems than about the other one. Hence, independently of
how one distributes the necessary experiments onto the two
measurementsM1 andM2,

I(M1;S2) = I(M1;S1) (2)

I(M2;S1) = I(M2;S2)

It is easy to see that the requirementH(S|M1,M2) = 0 is
equivalent toI(S;M1,M2) = H(S). SinceS1 and S2 have
no mutual information, we findH(S) = H(S1)+H(S2) and
I(S;M1,M2) = I(S1;M1,M2) + I(S2;M1,M2). We there-
fore can compute



H(S1) H(S2)

H(M1)

H(M2)

Separability

H(S1) H(S2)

H(M1)

H(M2)

I(M1,S2)

I(M2,S1)

Non-Decomposability

H(S1) H(S2)

H(M1)

H(M2)

I(M1,S2)

I(M2,S1)

Modular Interdependency

Figure 1: Graphical representation three categoriesSepara-
bility, Non-DecomposabilityandModular Interdependency.
The area colored in dark gray correspond to the measureK
as introduced in this section

H(S) = I(S;M1,M2) (3)

≤ I(S1;M1)+ I(S1;M2) (4)

+I(S2;M1)+ I(S2;M2)

(2)
= 2

(

I(S1;M2)+ I(S2;M1)
)

(5)

where “≤” is “ =” in the case of vanishing mutual informa-
tion between the two measurements. Hence, we can say that

K =
1
2

H(S) = 5 = min
(

H(S1),H(S2)
)

(6)

indicating that theSilent Lockis non-decomposable.
In theAmbiguously Revealing Lock, measurements about

the clicking sounds alone will not reveal the unique right
combination. Further experimentsM(i), have to be per-
formed to find the really opening one of the 4 remaining
combinations (yielding 2 bits of information). Each of these
experiments, however, reveals exactly as much aboutS1 as
aboutS2. Therefore, we can apply exactly the same argu-
ment as that that of the silent lock above to the 4 remaining
combinations. It follows that half of the two bits of infor-
mation contributes to the term

[

I(M1;S2)+ I(M2;S1)
]

: we

find K = 1 corresponding to the case of Modular Interdepen-
dency.

Considering possible mutual information
So far, we have neglected the possibility that two subsystems
S1 andS2 might not be independent of each other but that
there is some mutual information between the corresponding
random variables:I(S1,S2) > 0.

For our measure, this possibility has an important conse-
quence: Let us consider aRevealing Locksimilar to the one
before with one additional property: We know that in the
right overall combination the first two bits of the first 5-bit
subsystem must have the same values as the first two bits
of the other 5-bit subsystem. EachM(i) considering these
first two bits necessarily reveals something about both sub-
systems (K = 2) Hence, this safe-lock cannot be separable
any more. However, somebody who does not know this ad-
ditional constraint will not see the difference to the normal
Revealing Lock. Furthermore, this kind of coupling does
not increase the necessary effort (as in theSilent Lock) but
will – in contrast – even decrease it: Having found the right
combination of, e.g.S1, only three bits fromS2 have to be
determined.

So it is intuitive to require that for this lock again a reason-
able measureK should have the valueK = 0. We propose

K = min
{

(M1,M2)
∣

∣H(S|M1,M2)=0
}

[

I(M1;S2)+I(M2;S1)
]

−I(S1;S2)

(7)
as an appropriate measure. The only difference between this
measure and the one introduced before is the termI(S1,S2)



subtracted. It seems plausible that the newly introduced
measureK cannot become negative; however, at this mo-
ment, we do not yet possess a formal proof.

Furthermore, also the criteria for a system to be separa-
ble, non-decomposable or modular interdependent, have to
be adjusted.

Separability K = 0
Non-
Decomposability

K = min
[

H(S2|S1),H(S2|S1)
]

Modular Inter-
dependency

0 < K < min
[

H(S2|S1),H(S2|S1)
]

The most complex case of decomposable but not separa-
ble systems is represented graphically in Fig. 2.

H(S1) H(S2)

H(M1)

H(M2)

I(M1,S2)

I(M2,S1)

(a)

H(S1) H(S2)

H(M1)

H(M2)

I(M1,S2)

I(M2,S1)

(b)

Figure 2: a) Graphical representation of the case of
“Modular Interdependency” including mutual information
(I(S1;S2) > 0). The mutual information is framed with a
thick line in the above figure. b) In the measure, the mutual
informationI(S1;S2) is subtracted (black box): the measure
corresponds to the gray areas.

Note that in the case ofI(S1;S2) = 0 the formula forK as
well as the conditions equal exactly the measure introduced
before.

Conclusion and Outlook
Starting from the concepts ofSeparability, Non-
DecomposabilityandModular Interdependencyin (Watson
and Pollack, 2005) we have developed a measure based
on information theory which characterizes the coupling
of modules in a more general and more fine-grained and
thus, we believe, useful way. Because of the importance of
search problems in general and especially modularity and
evolvability, it appears more than likely that the measure
introduced here can serve as a useful research tool, espe-
cially in the Complex Systems and Artificial Life context.

The generality of information theoretic appraoches can be
considered as one of the major advantages of our concepts.

After having investigated the properties of the measures
in the simple scenarios considered here, it is, of course, ap-
propriate to apply it to more typical Artificial Life scenarios.
A first step we think of is to consider Simple Genetic Algo-
rithms having a well defined fitness landscape (as, e.g. Royal
Road Fitness Landscapes or Terraced Labyrinth Landscapes
(Crutchfield and van Nimwegen, 2001) or Hierarchical If-
and-only-if (HIFF) models (Watson and Pollack, 2005) ).
It could also be interesting to know whether there is a re-
lation between the measure introduced here and, e.g. the
ability to find a good solution in a given amount of time
or generations. Furthermore, it seems promising to look
for correlations with measures of evolvability as defined in
(Altenberg, 1994)) in concrete simulation scenarios, which
would underpin the assumption that modularity and evolv-
ability are closely related, indeed. A next, quite more ambi-
tious step would be to look for a connection of the modular-
ity of a search space (as introduced here) and the modularity
of the emerging individuals using measures as introduced in
(Polani et al., 2005) or (Dauscher and Uthmann, 2005).
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