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Coherent manipulation of two dipole-dipole interacting ions
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We investigate to what extent two trapped ions can be manipulated coherently when their
coupling is mediated by a dipole-dipole interaction. We will show how the resulting level shift
induced by this interaction can be used to create entanglement, while the decay of the states remains
nearly negligible. This will allow us to implement conditional dynamics (a CNOT gate) and single
qubit operations. We propose two different experimental realisations where a large level shift can
be achieved and discuss both the strengths and weaknesses of this scheme from the point of view of
a practical realization.

I. INTRODUCTION

The practical implementation of quantum communication and quantum computation protocols [1,2] is a challenging
task for experimental physics. Initial steps have already been accomplished. Conditional quantum dynamics have been
demonstrated using ultra cold trapped ions [3,4] and cavity QED schemes [5], while NMR techniques have allowed the
implementation of quantum algorithms involving a few qubits [6]. However, the experimental demonstration of large
scale protocols will, most likely, require a different technology. In general, a successful candidate for implementing
quantum logic must exhibit strong, coherent interaction between qubits and between each qubit and an external
driving field [7]. At the same time, any other coupling to the external environment should be as weak as possible, in
order to make the effect of decoherence and dissipation negligible.

A possible physical realization of quantum logic consists of making use of qubits whose coupling is mediated via
dipole-dipole interaction, as in the proposal by A. Barenco et al. [8] and the more recent proposals by G.K. Brennen et
al. [9] and D. Jaksch et al. [10] using a dilute gas of neutral atoms. The aim of the present paper is to investigate how
efficient the dipole-dipole interaction can be for quantum computing using an experimental setup which is realizable
with presently available technology. We will analyse to what extent two interacting two-level trapped ions can be
used to perform conditional logic operations. Each single qubit is stored in an internal electronic state, the ground
state |0〉i (i = 1, 2) corresponds to the logic value 0 and the excited state |1〉i to the value 1. We assume the distance
of the ions r to be small compared with the wavelength λ0 of the 0-1 transition, e.g. 2πr = 0.2 λ0 or even smaller.
To achieve this regime with conventional oscillation trap frequencies (≤ 60 MHz) [11], the wavelength λ0 should be
of the order of a few µm. This fact makes it very difficult to use a conventional ground state, but states with higher
quantum numbers n can provide an appropriate two-level system. The limitations of this configuration as far as the
efficiency of the gate operation is concerned will be analysed in detail.

From the point of view of current experimental realisation, the necessity of cooling the ions to the motional ground
state is one of the most limiting factors of the scheme proposed by Cirac and Zoller [10]. In the scheme proposed
here it is unnecessary to cool the ions to the motional ground state. Therefore no assumption which excludes heating
during the gate operations has to be made. The present proposal allows us to prepare entangled states of the two
ions by applying a single laser pulse either in a running or in a standing wave configuration. We will also show how
to implement a controlled-not (CNOT) and single bit operations.

In the following it will be convenient for us to use the basis B = {| g〉 , | e〉 , | s〉 , | a〉}, where

|g〉 ≡ |00〉, |e〉 ≡ |11〉,
|s〉 ≡ (|01〉 + |10〉)/

√
2

and |a〉 ≡ (|01〉 − |10〉)/
√

2. (1)

In this basis, the dipole-dipole interaction has two effects on the system. On the one hand, one has the well known
fact that the ions can now decay faster or slower than two independent ions [12–14], the decay rates being always
smaller than 2A, where A is the Einstein coefficient of a single ion. On the other hand, the levels | s〉 and | a〉 are
shifted with respect to their unperturbed energies as shown in Figure 1. This level shift is dependent on the distance
between the ions [15]. The central idea is to choose the distance between the ions such that the resulting level shift
is large enough to address all possible transitions shown in the scheme of Figure 1 separately. This will allow us to
create controlled entanglement between the ions. The use of the level shift to reduce stepwise excitations in an ion
pair in favour of cooperative “two-photon” transitions was discussed some time ago [16].
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FIG. 1. A four level system describing two dipole-dipole interacting two level ions with energy separation h̄ω0. The interaction
leads to a shift of level | s〉 and level | a〉 which is proportional to the imaginary part of the separation dependent coupling
constant C. Laser fields can be used to excite transitions between the four basis states | g〉, |s〉, |a〉 and | e〉, as indicated by the
thin lines.

The paper is organised as follows. In Section II a short description of two dipole-dipole interacting ions is pre-
sented using the quantum jump approach [17–22]. This method has been applied recently to the case of two ions in
Refs. [23,24]. The necessary results will be summarised and the interesting parameter range for quantum computing is
described. In Section III-V we present a simple algorithm to prepare the maximally entangled states of the two-qubit
system, |s〉 and |a〉, and show how a controlled NOT operation (CNOT) and single qubit operations can be performed.

II. DESCRIPTION OF THE PHYSICAL SYSTEM.

We consider two ions fixed at positions ri and each with two levels, |0〉i and |1〉i with energy difference h̄ω0. Both
ions are assumed to have the same dipole moment D01 = i〈0|X|1〉i forming an angle ϑ with the line connecting the
ions. The time evolution of the system is governed by the Hamiltonian

H =
∑

i=1,2

h̄ω0 |1〉ii〈1| +
∑

kλ

h̄ωk a†
kλakλ + ih̄

∑

i=1,2

∑

kλ

(

gkλ akλeik·ri σ+
i − h.c.

)

(2)

where σ±
i are the lowering and the raising operators acting on ion i, |0〉ii〈1| and |1〉ii〈0|, respectively. The operators

akλ and a†
kλ denote the free radiation field annihilation and creation operators of a photon in the mode (k, λ). The

last term includes the coupling constant gkλ,

gkλ = e

(

ωk

2ǫ0h̄L3

)1/2

(D01, ǫkλ) , (3)

and describes the coupling strength between each ion and the quantised radiation field. L3 corresponds to the
quantisation volume. Going over to the interaction picture with respect to the free field and the atomic Hamiltonian,
the interaction Hamiltonian becomes

HI = ih̄

2
∑

i=1

∑

kλ

(

gkλ akλ ei(ω0−ωk)t eik·ri σ+
i − h.c.

)

. (4)

The operator HI already contains the dipole-dipole interaction of the two ions as seen from the master equations [25],
from the quantum jump approach [23,24] or from much earlier work [15]. In the formulation used here this interaction
is due to an exchange of virtual photons between the ions [15,25]. The Coulomb interaction between the electric
charges of the ions is not included in the Hamiltonian because this interaction is compensated by the trap potential
in order to keep the ions at a fixed distance.
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A. The conditional no-photon time evolution for two two level atoms with dipole-dipole interaction.

The quantum jump approach allows us to derive from the interaction Hamiltonian in Eq. (4) the dynamics of a
single two-ion system [17–19]. We now briefly summarise the main results. The time evolution of the system under
the condition that no photon is emitted is described by the conditional non-Hermitian Hamiltonian Hcond, which is
obtained from the relation

II − i

h̄
Hcond ∆t ∼= 〈0ph|UI(∆t, 0)|0ph〉 (5)

where ∆t has to satisfy 1/A ≥ ∆t ≥ 1/ω0. The right hand side of Eq. (5) can be evaluated in second order
perturbation theory. For the two two-level ions one obtains [23]

Hcond =
h̄

2i

[

A
(

σ+
1 σ−

1 + σ+
2 σ−

2

)

+ C
(

σ+
1 σ−

2 + σ+
2 σ−

1

) ]

(6)

with the r dependent coupling constant for electric dipole transitions

C =
3A

2
eik0r

[

1

ik0r

(

1 − cos2 ϑ
)

+

(

1

(k0r)2
− 1

i(k0r)3

)

(

1 − 3 cos2 ϑ
)

]

(7)

which describes the dipole-dipole interaction between the ions and where k0 = 2πr/λ0. Here ϑ is defined through

cos2 ϑ = |(D01, r)|2 /r2D2
01 with r = r2 − r1. The dependence of C on r is maximal for ϑ = π/2 and we will assume

this value in our analysis in the following.
Using the basis B of Eq. (1) the Hamiltonian becomes

Hcond =
h̄

2i

[

(A + C) |s〉〈s| + (A − C) |a〉〈a| + 2A |e〉〈e|
]

(8)

which is diagonal. As shown in [23–25], A±Re C and 2A are the decay rates of the levels |s〉, |a〉, and |e〉, respectively.
From Eq. (7) one can check that Re C ≤ A. Therefore the decay rates are always smaller than 2A. The imaginary
part of C is related to the level shift of the states |s〉 and |a〉, respectively, which is due to the dipole-dipole interaction
between the ions. For small distances Im C becomes much larger than the decay rate A because, according to Eq. (7)
and using the value ϑ = π/2, one has

Im C = −3A

[

sin k0r

(k0r)2
+

cos k0r

(k0r)3

]

. (9)

The dependence of the imaginary part of the coupling constant C on the distance between the ions r is shown in
Figure 2.
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0 0.1 0.2 0.3 0.4 0.5

log10(Im C/A)

k0r

ϑ = π/2

FIG. 2. Dependence of the cooperative shift ImC on r. For k0r < 0.2 the imaginary part of C becomes much larger than A.
Note that Im C is given in units of the Einstein coefficient A.
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B. Suitable parameter range for coherent manipulation.

The crucial parameter for the coherent manipulation of two dipole interacting ions is the cooperative level shift
Im C. It will be used in the following to create entanglement between the ions and to perform conditional logical
operations. In this section we will discuss how to achieve a level shift large enough to allow the dipole-dipole interaction
between ions to be the basic mechanism for creating entanglement. Let us suppose that k0r = 0.2, r being the ion
spacing. This yields a level shift ImC = 375 A (See Figure 2). For a wavelength λ0 = 10 µm, the resulting separation
between the ions is r = 0.318 µm. Considering small deviations from equilibrium under the Coulomb force, the ion
center-of-mass mode oscillation frequency can be estimated to be

ω

2π
=

1

2π

√

e2

2πǫ0Mmu r3
≈ 46 MHz (10)

for a system with atomic number M = 100. In Eq. (10) mu corresponds to the atomic mass unit. However, we have
not been able to find dipole transitions of the required wavelength and involving the atomic ground state. To achieve
the required line shift forces us to use higher excited levels, as illustrated in Figure 3, where we explore the use of
a Rydberg atom as an extreme case (this may be hard to realize in practice due to their sensitivity to electric stray
fields). The qubit is stored in two Rydberg levels with n ∼ 20 and the resulting gate operation time is limited to be
much smaller than the characteristic decay rates of the system (typically of the order of 1 ms).

initial
preparation

0

1

Qubit

mµ100

1 ms

1 ms

A=10/s

ground
state

laser
cooling

FIG. 3. A large level shift can be achieved by using two excited levels with a transition wavelength of more than
10 µm. The initial preparation should then involve pumping from the ground state to a higher quantum number n.

A different scheme that we have considered consists of making use of shorter wavelengths. Figure 4 illustrates the
relevant energy levels for Yb+. The qubit is now stored in two levels and the time scale for coherent manipulation is
of the order of a few ms. As can be seen from Eq. (10), the required oscillation frequency would have to be at least
127 MHz (k0r = 0.25 and λ0 = 3.43 µm) or 178 MHz (k0r = 0.2), which exceeds the values that can be achieved in a
conventional trap at the moment [11]. Nevertheless, no fundamental reason exists which precludes a large line shift,
as described in the two previous schemes, although it would certainly be experimentally demanding.
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FIG. 4. A different scheme for achieving a large level shift consists of using two levels with a separation of the
order of a few µm. We have depicted here the relevant energy levels for Yb+. Experimentally this requires very large
oscillation frequencies.

In a time scale t ≪ 1/A, dissipation effects are negligible and the Hamiltonian Hcond, which gives the time evolution
of the ions, becomes in the Schrödinger picture

Hcond = h̄ω0

(

|s〉〈s| + |a〉〈a| + 2 |e〉〈e|
)

+
h̄

2
Im C

(

|s〉〈s| − |a〉〈a|
)

≡ H0. (11)

Given that we neglected the decay of the ions, the Hamiltonian Hcond becomes Hermitian and we can omit the index
cond from now on. In the following we will analyse the dynamics of the two ions system within the interaction picture
where H0 is the free Hamiltonian. This has the advantage that in the absence of driving laser fields, the state of the
ions remains unchanged.

III. GENERATION OF MAXIMALLY ENTANGLED STATES.

In this Section we will describe how the maximally entangled states |s〉 and |a〉, one of the requisites for quantum
computing, can be prepared just by applying a single laser pulse in a running wave or in a standing wave configuration,
respectively. We assume both ions to be initially in the ground state.

Let us first consider a single laser field with frequency ωL. The corresponding Hamiltonian describing the interaction
with the laser, in the Schrödinger picture and in the usual rotating wave approximation, is given by

HL = e

2
∑

i=1

(

D01 · E0 σ−
i e−i(kLri−ωLt) + h.c.

)

≡ h̄

2

2
∑

i=1

(

Ωi σ−
i eiωLt + h.c.

)

(12)

with the Rabi frequencies

Ωi =
e

h̄
D01 ·E0 e−ikL·ri . (13)

Each ion sees a different Rabi frequency as a result of the small phase shift of the laser field due to the different
positions of the ions. Here E0 and kL denote the electric field amplitude and the wave vector of the laser field,
respectively. Going to the interaction picture with respect to the Hamiltonian H0 of Eq. (11), the Hamiltonian of the
whole system using the basis B of Eq. (1) becomes

HI =
h̄

2
√

2

[

(Ω1 + Ω2)
(

e−iIm Ct/2 |g〉〈s| + eiIm Ct/2 |s〉〈e|
)

−(Ω1 − Ω2)
(

eiIm Ct/2 |g〉〈a| − e−iIm Ct/2 |a〉〈e|
)]

ei(ωL−ω0)t + h.c. (14)

as one has

σ−
1 = | 0〉1 1〈 1| ⊗ II2 =

(

|g〉〈s| − |g〉〈a| + |s〉〈e| + |a〉〈e|
)

/
√

2,

σ−
2 = II1 ⊗ | 0〉2 2〈 1| =

(

|g〉〈s| + |g〉〈a| + |s〉〈e| − |a〉〈e|
)

/
√

2. (15)

5



As can be seen from Eq. (14), the laser can excite all four possible transitions in the two-ion system shown in Figure
1 separately. For instance, if both Rabi frequencies Ω1 and Ω2 are the same, only transitions between states of the
same symmetry with respect to the exchange of the ions are excited. In addition, the energy of the states |s〉 and
|a〉 is shifted with respect to their unperturbed values. These two features will be used in the following to generate
entangled states and to perform conditional quantum logic.

A. Generation of the symmetric state |s〉.

To selectively excite the transition to level s, the driving laser should be in phase for both ions, e.g. Ω1 = Ω2. This
can be achieved by choosing kL orthogonal to the line joining the ions, and one obtains

Ω1 =
e

h̄
D01 ·E0, (16)

which we assume to be real, and where E0 is the amplitude of the laser at ion 1. In addition, the laser detuning
ωL − ω0 has to be equal to ImC/2. Then the Hamiltonian HI of Eq. (14) becomes

HI =
h̄Ω1√

2

(

|g〉〈s| + eiIm Ct |s〉〈e|
)

+ h.c. (17)

If the detuning of the s-e transition is sufficiently large, e.g. ImC ≥ 4 Ω1 as in Figure 3, the second term in HI gives
only a minor contribution. Therefore, in analogy with the case of the excitation of a single two-level system with a
resonant laser field, the population Ps of the state |s〉 at time t is, to a good approximation, given by

Ps(t) = sin2
(

Ω1t/
√

2
)

. (18)

As a result, the maximally entangled state |s〉 can be prepared by simply applying a laser pulse with the duration

Tπ = π/(
√

2Ω1), (19)

i.e. a standard π pulse.
The effect of the laser pulse taking into account the full Hamiltonian (17) is shown in Figure 3, where the population

of levels g, s and e has been determined numerically. Note that level | a〉 is not affected by the laser. Simulations
show that the laser pulse prepares to a very good approximation the entangled state |s〉 if the Rabi frequency is small
compared with ImC. The closeness of the prepared state to the ideal one is measured by the fidelity F . Here F
is equal to the obtained maximum population of level s. For Ω1 = 0.25 ImC one has F = 96%. For higher Rabi
frequencies the term proportional eiIm Ct cannot be considered as a negligible fast oscillating term and Ω1 has an
upper bound. Therefore, the speed of this operation cannot be made arbitrarily high. When Ω1 = 0.25 ImC, it is
Tπ = 0.024/A ≪ 1/A if one has k0r = 0.2. For the configuration of Figure 3 Tπ is only much smaller than the
corresponding decay rate of the system if k0r ≤ 0.1.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
t [1/ImC]

Pg

Ps

Pe

FIG. 5. Time dependence of the population of the levels s, e and g when a single laser in phase with both atoms and in
resonance with the g-s transition is applied. The Rabi frequency is Ω1 = Ω2 = 0.25 Im C. The entangled state |s〉 can be
prepared by a single laser pulse of duration Tπ, while state |a〉 remains unaffected.
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In a real experiment, the Rabi frequency of the driving laser may vary during the pulse duration or may simply
not be known perfectly. We now assume that it is indeed equal to some value Ω instead of Ω1. In Figure 6 we have
analysed the quality of the state preparation. This shows the population of state |s〉 after a time Tπ = π/(

√
2Ω1)

with Ω1 = 0.25 ImC as a function of the ratio Ω/Ω1. The fidelity F is still high even for deviations of Ω from the
assumed value Ω1 close to 20%.

0.88

0.9

0.92

0.94

0.96

0.98

1

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

F

Ω/Ω1

FIG. 6. The fidelity F of the state prepared by a laser pulse with Rabi frequency Ω and length π/(
√

2Ω1) with Ω1 = 0.25 Im C.
Also, if the length of the laser pulse differs from its ideal value π/(

√
2Ω) we find that the fidelity is still above 88%.

One the other hand, one could expect the state preparation to be more sensitive to variations in the laser detuning,
given that the level shift strongly depends from the distance r of the ions, as shown in Figure 2. But we see that if
the detuning of the laser differs from h̄Im C/2, the state |s〉 is still prepared to a good approximation, as illustrated
in Figure 7.

0.4

0.5

0.6

0.7

0.8

0.9

1

0.6 0.8 1 1.2 1.4

F

(ωL − ω0)/(Im C/2)

FIG. 7. Population of level | s〉 after a laser pulse of duration Tπ (Ω1 = 0.25 Im C), for different values of the laser detuning
ωL − ω0. The fidelity of the prepared state F is maximal, if the laser frequency is somewhat above the resonance frequency of
the g-s transition and is still high if the detuning varies from its ideal value by up to 20%.

The fidelity of the prepared state cannot become equal to 1, because there is always also a slightly (even though
detuned) pumping to state |e〉. Therefore it is not surprising that the fidelity of the prepared state is maximal for
laser detuning slightly above ImC/2. In this case one has less excitation of level e and this advantage is not totally
compensated by the worse coupling of the laser on the g-s transition.
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B. Generation of the antisymmetric state | a〉.

In a similar way, if one sets Ω1 = −Ω2 and tunes the laser frequency to ω0 − Im C/2, the maximally entangled state
|a〉 is generated by the laser pulse, since the Hamiltonian HI becomes

HI = − h̄Ω1√
2

(

|g〉〈a| − e−iIm Ct |a〉〈e|
)

+ h.c. (20)

In this case, only the transition to level a is excited, to a good approximation, as long as the Rabi frequency Ω1 is
not too large and e−iIm Ct can be considered as a fast oscillating term.

The only problem which arises now is that a phase difference of π between the Rabi frequencies Ω1 and Ω2 cannot
be achieved by applying only a single laser field, because the distance between the ions is much smaller than the
wavelength λ0. One possibility is to use a standing wave configuration, where both ions are placed symmetrically
around a node of the laser field [26]. Then the Rabi frequency at ion 1 becomes, analogous to Eq. (13), but summing
now over two laser fields,

Ω1 =
e

h̄
D01 ·E0

(

eikLr/2 − e−ikLr/2
)

=
e

h̄
D01 ·E0 2i sinkLr/2, (21)

where E0 is the amplitude of the laser coming in from the side of ion 1 at the centre between the two ions. For
k0r ≈ kLr ≈ 0.2 this Rabi frequency is still about one fifth of the Rabi frequency Ω1 of the running wave used in the
previous subsection to prepare the entangled state |s〉.

IV. REALISATION OF A CNOT QUANTUM GATE.

A CNOT is an operation where the value of the second qubit is changed depending on the value of the first qubit.
Using the basis B of Eq. (1), this operation is equal to an unitary operation which does not affect the states |g〉 and

(|s〉 + |a〉)/
√

2, while one has

(|s〉 − |a〉)/
√

2 −→ |e〉,
|e〉 −→ (|s〉 − |a〉)/

√
2. (22)

In the following we will discuss how this operation can be realised to a very good approximation in the present scheme.
Let us first assume that the interaction Hamiltonian of the system is given by

HI =
h̄Ω

2

(

|e〉(〈s| + 〈a|)/
√

2 + h.c.
)

. (23)

Then one has

UI(t, 0) (|s〉 − |a〉)/
√

2 = cos(Ωt/2) (|s〉 − |a〉)/
√

2 − i sin(Ωt/2) |e〉,
UI(t, 0) |e〉 = −i sin(Ωt/2) (|s〉 − |a〉)/

√
2 + cos(Ωt/2) |e〉 (24)

and the population of the states |e〉 and (|s〉 − |a〉)/
√

2 are exchanged after a pulse of the length Tπ = π/Ω. On the

other hand the states |g〉 and (|s〉 + |a〉)/
√

2 are eigenstates of the Hamiltonian with a zero eigenvalue and are not
affected. Therefore a CNOT operation can be performed by the given interaction.

8



with the 
laser in resonance

a-e transition

s-ewith the 
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transition

. .

FIG. 8. Experimental set-up for the realisation of a CNOT operation. The two ions are placed symmetrically
around the node of a standing laser wave which is in resonance with the a-e transition. Another laser with a wave
vector perpendicular to the line connecting both ions is employed to excite the s-e transition. The Rabi frequencies
have to be chosen such that they differ only in sign.

The Hamiltonian in Eq. (23) can be realised to a good approximation by the configuration shown in Figure 8,
where the laser fields couple to the s-e and the a-e transition only. The first transition is driven by a laser with the
detuning ωL−ω0 = −Im C/2 and a wave vector kL perpendicular to the line connecting both ions. Its Rabi frequency
at ion 1 is analogous to Eq. (16) given by

Ω1r =
e

h̄
D01 ·E0r. (25)

The a-e transition can be excited by a standing laser wave with the frequency ω0 + Im C/2. Analogous to Eq. (21)
its Rabi frequency Ω1s is

Ω1s =
e

h̄
D01 · E0s 2i sinkLr/2. (26)

E0r and E0s, respectively, denote the amplitude of the corresponding laser (in the second case coming in from the
side of ion 1) at the centre between the two ions. Then the Hamiltonian of the system with respect to H0 of Eq. (11)
is according to Eq. (14) given by

HI =
h̄√
2

(

Ω1r |s〉〈e| + Ω1s |a〉〈e| + e−iIm Ct|g〉〈s| − eiIm Ct|g〉〈a|
)

+ h.c. (27)

This Hamiltonian differs from the one in Eq. (23) only by some oscillating terms if the condition

Ω1s = −Ω1r (28)

is fulfilled. This can be achieved by varying the phase between the amplitudes E0s and E0r and one gets Eq. (23)
with

Ω ≡ 2Ω1r. (29)

Figure 9 shows how the population of various states varies in time, if the system is initially prepared in the excited
state |e〉. The results have been obtained numerically taking the full Hamiltonian of Eq. (27) into account. As seen
in the previous section the oscillating terms do not contribute if the detuning of the lasers is strong enough, e.g. for
instance one can take Ω1s = Im C/4 as in Figure 9. Then duration of a CNOT operation is given by

Tπ = π/(2Ω1r) = 0.017/A . (30)
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FIG. 9. The time dependence of the population of the states |g〉, |e〉, |01〉 = (|s〉 − |a〉)/
√

2 and |10〉 = (|s〉 + |a〉)/
√

2, if the
ions are initially prepared in |e〉. The Rabi frequency of the running laser Ω1r is equal to 0.25 ImC, while at the same time a
standing wave with the Rabi frequency −Ω1r is applied to drive the a-e transition. After the time Tπ = π/(2Ω1r) the ions are
to a good approximation in the state expected for a CNOT operation.

V. REALISATION OF A SINGLE ION GATE OPERATION.

One would expect that for a single ion operation it is necessary to focus a laser on one of the ions. However, because
the ions are well localised within a wavelength, this is here experimentally impossible. Therefore we propose another
way to realise single ion operations. Considering the interaction of only one ion with a laser field, its basis vectors |0〉
and |1〉 are changed in the following way

|0〉 −→ cos(Ωt/2) |0〉 − i sin(Ωt/2) |1〉,
|1〉 −→ −i sin(Ωt/2) |0〉 + cos(Ωt/2) |1〉. (31)

The state of the other ion is not changed by the transformation. Using the basis B of Eq. (1) this operation corresponds
for instance to the following two-step process. The first step is equal to an unitary transformation, where the states
|e〉 and (|s〉 + |a〉)/

√
2 are unchanged, while

|g〉 −→ cos(Ωt/2) |g〉 − i sin(Ωt/2) (|s〉 − |a〉)/
√

2,

(|s〉 − |a〉)/
√

2 −→ −i sin(Ωt/2) |g〉 + cos(Ωt/2) (|s〉 − |a〉)/
√

2. (32)

In the second step one has to ensure that

|e〉 −→ cos(Ωt/2) |e〉 − i sin(Ωt/2) (|s〉 + |a〉)/
√

2,

(|s〉 + |a〉)/
√

2 −→ −i sin(Ωt/2) |e〉 + cos(Ωt/2) (|s〉 + |a〉)/
√

2, (33)

while |g〉 and (|s〉 − |a〉)/
√

2 are not affected. These steps generate the CNOT operation described in Section IV and
can be realised in a similar way. Laser fields have to be applied which couple only to the g-s and the g-a transitions.
As in Section IV the corresponding Rabi frequencies can be chosen in such a way that the state (|s〉+ |a〉)/

√
2 is not

affected. The necessary condition is

Ω1r = −Ω1s ≡ Ω/2, (34)

where Ω1r and Ω1s are the Rabi frequencies of the laser field in resonance with the g-s and the g-a transition,
respectively. The population of |e〉 is not changed during this process, because no laser couples to this state. In the
second step, to perform transformation (33), only the s-e and the a-e transition are driven. This can be achieved by
choosing appropriate detunings of the applied fields. The corresponding Rabi frequencies have to fulfill the condition

Ω1r = Ω1s ≡ Ω/2. (35)

10



Then the state (|s〉 − |a〉)/
√

2 is an eigenstate with zero eigenvalue of the interaction Hamiltonian.
In an analogous way single ion operation on ion 2 can be performed. Again, to realise this operation is more

complicated than in the case of well separated ions, but single ion operations are possible in the system considered
here, as the level shifts of states |s〉 and |a〉 allow us to excite all possible transitions separately.

VI. CONCLUSIONS.

In this paper the idea of quantum gate operation with two dipole-interacting ions in a linear ion trap has been
examined in detail. We showed that it is possible to create a maximally entangled state simply by applying a single
laser pulse in a standing or running wave configuration. In addition we discussed how to implement conditional
dynamics (a CNOT gate) and single qubit operations.

To do this the level shift induced by the dipole-dipole interaction between the ions in the trap has been used, which
allows us to address every single transition in the system separately. The level shift has to be much larger than the
decay rate of the levels and the applied Rabi frequencies. Therefore the two-level ions have to be very close, e.g. much
closer than the wavelength of their emitted light. This requires ions with very long wavelengths (Rydberg ions), or
one has to use ion traps with very strong confining trap potentials. The strength and weakness from the point of view
of practical realization have been discussed.
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