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Abstract

Identifying and utilizing information is central to reproduc-
tive success. We study a scenario where a multicellular
colony has to trade-off betweenutility of strategies for in-
vestment in persistence or progeny and the (Shannon-type)
relevant informationnecessary to realize these strategies. We
develop a general approach to treat such problems that in-
volve iterated games where utility is determined by iterated
play of a strategy and where, in turn, informational process-
ing constraints limit the possible strategies.

Introduction
Organisms have limited information processing capabilities.
For instance, in the scenarios for the advent and evolution of
multicellularity it is unclear how much relevant information
a multicellular aggregate or its component cells would have
and be able to capture concerning the state of the whole.
This information is likely to be severely limited. In this pa-
per we study the trade-off between information and repro-
ductive success of early multicellular aggregates.

The concept of information as introduced by Shannon is
a central resource of communication, computation, physics
and life (Shannon, 1949; Bennett and Landauer, 1985;
Wheeler, 1990; Laughlin et al., 1998; Adami et al., 2000;
Schneider, 2000; Kim et al., 2003). It derives its power and
mathematical malleability from the strict rejection of seman-
tical elements in the formalism. Nevertheless, it has long
been felt that it would be desirable to treat semantics in a
framework similar to information theory (Bar-Hillel, 1964),
but for a long time it has been strongly doubted whether this
could be achieved at all (Gibson, 1979).

One of the possible reasons for this is that the conven-
tional view of Shannon information favours the picture that
information is something that is transported from one point
to another as a “bulk” quantity. However, increasingly it
has become clear that looking at the intrinsic dynamics of
information can provide insight into inner structure of in-
formation. Perhaps one of the clearest illustrations for this
is provided by theinformation bottleneck method(Tishby
et al., 1999) which is a framework for the extraction of a spe-
cific part of information out of an information “bulk”. This

picture of intrinsic structure of information is increasingly
being used to study complex systems (Ay and Wennekers,
2003; Klyubin et al., 2004).

For studies of Artificial Life, however, one particularly
important aspect of information isrelevance. The classic
view of information explicitly excludes semantics from the
discourse. On the other hand, it turns out that aforemen-
tioned picture of structure in information provides a con-
ceptually consistent avenue to introduce semantics into the
framework of information theory.

Relevant Information

The opportunity of including relevance into information the-
ory is provided by using an appropriate selection of sub-
structures. In the framework of the information bottleneck
method, to study the relevant information in a random vari-
ableX, a jointly distributed random variableY is considered
(for more details on notation of random variables, probabil-
ity and information theory, we refer the reader to the Ap-
pendix). Any information of relevance inX is being dis-
tinguished only with respect toY, the relevance indicator
variable. In their model (Tishby et al., 1999),Y is given
externally, like a label in supervised learning. They then de-
fine therelevant informationof X as the mutual information
I(X;Y).

To formulate a model of relevant information suitable for
Artificial Life studies, however, we would prefer a more in-
trinsically constructed indicatorY that determines which is
the relevant information that should be extracted for a given
system. Uexk̈ull’s theory of selective perception argues that
environmental stimuli act as triggers for certain behaviour
patterns (von Uexk̈ull, 1956a; von Uexk̈ull, 1956b). On
a more abstract level, world information is relevant for an
agent only if it can serve to guide its actions (Nehaniv, 1999).

Thus, if we model the world stateSas a random variable
from which relevant information is to be extracted and the
agent actionsA as the relevance indicator variable, then the
relevant information becomesI(S;A), as above; however, at
this point, we still need to specify the form ofA. For this
purpose, (Polani et al., 2001) use utility functions.



The important connection between utility and informa-
tion has been explored already by (Howard, 1966; Poh and
Horvitz, 1996) who quantify thevalue of information by
measuring the utility difference attained when some infor-
mation is available vs. when it is not. However, Howard’s
value of information is not a Shannon-type quantity; it is
given in the particular problem-specific units of the particu-
lar utility function of the individual scenario. Relevant infor-
mation, however, is interpreted here as its conjugate quan-
tity, namely theamountinstead of thevalueof information,
and it is universally measurable inbits. To be able to do this,
it is necessary to translate the given utility into an instanti-
ation of the random variableA (modeling the actions) in a
suitable way as to reflect the utility. How to achieve this will
form a major thread in the technical sections further below.

In the present paper, we do not consider any cost involved
with obtaining relevant information; our primary focus is
how much (relevant) information needs to be acquired (and
processed) to achieve a certain utility, ignoring the possible
cost for the acquisition process1. The inclusion of costs and
other constraints governing the information acquisition pro-
cess in the framework to be presented here is beyond the
scope of this paper and will have to be addressed in future
work.

Life as an Existential Game
Before turning to the process of translating utility into ac-
tions, though, we need to turn to the other important ingre-
dient in the framework of relevant information, namely the
origin of utility. In AI or economic scenarios, reward can
be explicitly given to achieve a certain goal or obtained by
a proper scaling of financial benefits. In Artificial Life sys-
tems, however, the formulation of utility is a more intricate
problem. Even the emergence of fitness in biology still re-
quires elucidation (Michod, 1999). An intrinsically defined
utility is introduced in (Klyubin et al., 2005).

A complementary approach is taken by some evolution-
ary biologists inspired by game-theory. They formulate life
as an “existential game”, in which there is no way of us-
ing pay-offs for any purpose other than continuing the game
for as long as possible, and have analyzed its optimal strat-
egy – minimizing the stakes played — in regard to adap-
tive responses to environmental perturbations (Slobodkin
and Rapoport, 1974).

Considering this strategy at the level of a single (generally
multicellular) individual faced with problem of how to allo-
cate resources, a problem arises if continued persistence is
attained at the price of not producing progeny. Due to simple
thermodynamic considerations, one can expect the individ-
ual eventually to die despite continued investment in its own
self-production (Varela et al., 1974). Investment of some re-
source into the production of progeny offers an alternative

1Thus, our scenario should not be confused with the “two-
armed bandit” problem (Dubins and Savage, 1965; Holland, 1975).

to mere persistence of the individual (becoming, effectively,
an existential game for its lineage). The balance between
progeny, which might first require growth of the individual,
and persistence presents a problem of crucial importance for
an organism maximizing the longevity of its lineage.

Persistence vs. Progeny in Multicellular
Organization

The trade-off concerning investment of resources into per-
sistence or into production of progeny is a fundamental issue
for living systems. Different organisms solve the problem
with different, possibly mixed, strategies (e.g. underr-/K-
selection, see (Roughgarden, 1979)). The evolutionary dy-
namics of differentiated multicellularity has been modelled
mathematically by R. E. Michod (Michod, 1999; Michod
et al., 2003) to analyse the evolutionary stability and the
heritability of fitness under different mutation rates and with
different modifier (policing) regimes, but leaves the question
of resource conversion into persistence vs. progeny open.
Such conversion can be taken as a defining property of liv-
ing systems (Nehaniv, 2005, Appendix). Here we take a first
step to unify consideration of this balance with Michod’s
and other work on multicellularity.

We consider a scenario of a growing multicellular entity
(colony) which has to solve the problem of allocating a num-
ber of cells for growth (towards producing progeny) and
maintaining the rest of the cells (persistence), based on a re-
source. We also assume that a threshold size is required for
the multicellular individual to be able to become an “adult”
and replicate itself (this model e.g. applies to sporulation or
dispersal scenarios such as in the cellular slime moldDic-
tyostelium discoideum, or minimal number of cells required
for reproduction in viable adultVolvoxalgae).

For simplicity, the number of cells present is identified
with the colony’s current amount ofresource; we do not
model cells of different types, and moreover (following Mi-
chod), we abstract completely away from the organizational
topology. Maintenance of existing cells incurs a loss of re-
source at a given rate (the cost of persistence), while pro-
duction of additional cells by division increases the number
of cells but with the risk that they may not be viable. If the
colony grows to a certain threshold size accumulating suffi-
cient resources, then it “succeeds” and is able to reproduce.
This success provides a natural measure of utility.

Constructing Strategy from Utility
In the previous sections we developed the general frame-
work of relevant information and its connection to utility,
and, on the other hand, introduced a particularly important
scenario. In the following, we will develop the details of the
techniques necessary to bring them together. The present
section will introduce a first motivational approach and for-
mulate two remaining problems; these problems will then be
addressed and resolved in the remaining sections.



Above, we viewed relevant information as given by the
mutual informationI(S;A) between world state variableS
and agent actionA. To compute it, it is necessary to specify
its joint distributionp(s,a). From now on, assume that the
probabilityp(s) for a states is given a priori. Givenp(s) the
joint probability p(s,a) = p(a|s)p(s) is fully determined by
thestrategyπ = p(a|s), the conditional probability distribu-
tion on actionsa given states.

To make sense in an agent context,p(a|s) must reflect the
needs or preferences of the agent. These preferences can be
formalized as the utilityU(s,a) of taking an actiona in a
states. The utility is a real value, and the agent prefers high
to low utility values. In (Polani et al., 2001), from the util-
ity U the authors derive a strategyp(a∗|s) by assuming for
each given states that p(a∗|s) is an equidistribution over the
optimal actionsa∗ with respect toU . This model for rele-
vant information has many desirable features. For instance,
if the same unique action is optimal in every state, then the
relevant information vanishes: one can select the same (op-
timal) action in each state, and there is no need to elicit any
information about the state. If, on the other hand, each state
s requires a different optimal action, all states have to be dis-
tinguished: the relevant information has the valueH(S), as
it must cover the full entropy (uncertainty) about the current
state to select the right action.

The above choice of the strategy has still two problems:
first, it only considers actions which are strictly optimal with
respect to the utility. This is not always sensible, as can
be seen by the following example: consider a quiz show
candidate that can select between two doors, one of which
contains a prize. Opening one door results in a payoff of
100,000 units, the other in a payoff of 0 units. Assuming the
prize is equally likely to be placed behind either of the two
doors, there is 1 bit of relevant information with respect to
the choice of the door. On the other hand, if one door re-
veals 100,000 units, the other door reveals 99,999 units, this
formalism will still see exactly 1 bit, because it selects the
strictly optimal action. Often, though, the small difference
of 1 unit will be deemed irrelevant and thus both doors are
almost equally desirable. In that case, relevant information
should be close to 0bit. Although not immediately evident
in this toy example, such a consideration plays a role when,
for example, information processing capacity is a scarcer re-
source than utility. As organisms often operate close to the
limits of information processing (de Ruyter van Steveninck
and Laughlin, 1996), such a trade-off may be necessary for
an appropriate biologically relevant model.

The second problem is the following: for different states
the choice of actions is not coordinated. For instance, con-
sider a system in two different states with two different ac-
tions to select in each. Assume that in state 1 one has optimal
action 1 (which is selected with probability 1.0). In state 2,
however, let both actions be optimal. According to above
strategy, each of them is selected with probability 0.5. If the

states are equiprobable, the relevant information required to
employ this strategy is nonzero since one has to distinguish
the states to identify the action distribution available. Since
both states share action 1 as optimal action, one could in-
stead use a strategy with 1 as optimal action forbothstates.
While this does not reduce utility, it is more parsimonious in
terms of relevant information, as it requires no information
to distinguish states at all. Both remaining problems will be
resolved in the following sections.

Trading Off Utility and Information
The second of above problems, namely the problem ofinfor-
mational parsimonycan be formulated as search for a strat-
egyp(a|s) minimizing required relevant informationI(S;A),
but under the condition that the actions realized byA still
have to be optimal for a given states, formally:

I(S;A∗) = min
p(a|s):p(a|s)p(s)>0⇒a optimal fors

I(S;A) . (1)

Consider without loss of generality only systems whose
statess satisfy p(s) > 0. Then a simple argument shows
that the strategiesπ∗ = p(a∗|s) that are restricted to opti-
mal actions are exactly those for which the expected util-
ity Eπ[U(S,A)] =

∑
s,a p(a|s)p(s) ·U(s,a) attains its maxi-

mal valueUmax. Equation (1) constitutes an informationally
parsimonious formulation of required relevant information.
Moreover, it forms the basis to relax the restriction of op-
timality addressing the first problem mentioned above. To
this end, in the original constraint considering only strate-

giesπ maximizing expected utility, i.e.Eπ[U(S,A)] != Umax,
we will replaceUmax by some smaller valuêU . This corre-
sponds to trading in utility for a reduction in required rele-
vant information, as in the second quiz show example.

The minimization task forI(S;A) under this constraint can
be elegantly transformed into an unconstrained minimiza-
tion problem via the use of Lagrange multipliers (similar to
the approach by (Tishby et al., 1999) for the information
bottleneck):

min
p(a|s)

(
I(S;A)−β ·E[U(S,A)]

)
. (2)

The “inverse temperature”β implicitly encodes the con-
straintUmax. For β → ∞, the optimization limits actions to
the optimal ones. A reduction ofβ, on the other hand, makes
the optimization less sensitive to differences in utility.

The expression in (2) is formally almost equivalent to the
rate-distortion functional known from classical information
theory (Cover and Thomas, 1991). Except for the sign,U
corresponds to the distortion function of rate-distortion the-
ory comparing a signal at the input of a noisy channel to the
distorted result at the output of the channel. We remark that
the classical Blahut-Arimoto algorithm (Cover and Thomas,
1991; Tishby et al., 1999) trivially generalizes to our case
with its convergence and uniqueness guarantees; we use it to



calculate the optimized strategiesp(a|s) and the relevant in-
formation required for their realizationI(S;A) in (2). With-
out being able to go into details, we mention that the algo-
rithm consists of an alternating self-consistent iteration that
incrementally improves the strategyπ = p(a|s) until conver-
gence.

Persistence vs. Progeny: Strategies

Return now to the original problem of studying strategies in
scenarios with a trade-off between persistence and progeny.
We use the following model (a generalization of the Gam-
bler’s problem (Dubins and Savage, 1965; Sutton and Barto,
1998)).

Consider a colony ofs identical cells which we will con-
sider as a superorganism. To sporulate and thus to repro-
duce, its size needs to reach or exceed a critical number ¯s.
As long ass< s̄, the colony is faced with a dilemma: it can
“invest” a of its cells towardsprogeny. This parta of the
colony has the probability ¯p < 0.5 of doubling its size suc-
cessfully in the next time unit, but with probability 1− p̄ it
will die off entirely. The rest of the colony,s− a, is per-
sistingand is guaranteed to lose a proportionδ of cells. If
δ is smaller than the risk of dying for the progeny cells, one
could be tempted to stick with persistence as strategy, in the
short run. However, in the long run, this will lead to death of
all cells. For largerδ investment into progeny will become
increasingly aggressive, in a “desperate” attempt to reach the
threshold ¯s. But even for vanishing decay ratesδ → 0 it is
not possible to reach ¯s without investment in progeny.

This scenario defines an iterated game. Beginning with an
initial colony size ofs0 at timet = 0, the colony selects an
actiona0 (i.e. invest an amount of colony cells for progeny).
With probability p̄, the investment will be doubled and the
colony will have sizest+1 = (1− δ)(st −at)+ 2 ·at at time
t + 1. With counterprobability 1− p̄, however, its new size
will be st+1 = (1− δ)(st − at). The game is iterated un-
til either the colony dies, i.e.s= 0, or the colony achieves
sporulation, i.e.s≥ s̄.

Identify colony sizeswith the statesof the system. Then,
a strategyπ = p(a|s) gives a probability distribution of ac-
tions to take if the colony is in that state. Consider now the
probability that a colony starting in states will succeed in
reaching sporulation, following a fixed strategyπ throughout
its lifetime. We defineVπ(s), thevalueof the states under
strategyπ, to be this probability. Then the utilityUπ(s,a) for
a state-action pair(s,a) is the expected value of the colony
state on selecting actiona and followingπ thereafter2. The
calculation ofV and thusU can be solved in the framework
of Markov Decision Problems. ForVπ, the Bellmann equa-
tion holds (Sutton and Barto, 1998):

2In the literature for Markov Decision Problems,U is instead
called theQ function. Here we use the notationU in agreement
with (Bertsekas, 1976) in emphasis of the utility function aspect.

Vπ(s) =
∑

a

p(a|s)
∑

s′
p(s′|s,a)[r(s,a,s′)+Vπ(s′)], (3)

where p(s′|s,a) is the probability of ending in a successor
states′ after applying actiona in states in the dynamics
of our model, and the rewardr(s,a,s′) is 0, unlesss′ is the
sporulation goal state, in which caser is given by the full
success value 1; the last case corresponds to the fact that in
that case the sporulation state is reached with probability 1.
Equation (3) is self-consistent, i.e. the sameV appears both
on the left and the right side of the equation. This can be
turned into the well-knownvalue iterationalgorithm, start-
ing with an arbitraryV, inserting it on the right side, and ob-
taining a newV on the left, and iterating. It is long known in
the theory of dynamic programming that this iteration con-
verges to a uniqueVπ for given π, providing a numerical
method for its computation. FromVπ, one can compute the
utility Uπ via

Uπ(s,a) =
∑

s′

p(s′|s,a)[r(s,a,s′)+Vπ(s′)] . (4)

Relevant Information in Iterated Games
In dynamic programming, one then proceeds to compute
the optimal strategy by improvingπ with respect toVπ and
recalculatingVπ under the improved strategy until conver-
gence. However, here we are not merely interested in an
unconstrained optimal strategies, but we have to trade off
some utility against the amount of information required to
implement a strategy. We wish to find the optimal strategy
π∗ = p(a∗|s) under the constraint that no more than a given
amountI(S;A∗) of state information can be used to select
actions. As we increasingly constrain this amount of infor-
mation we allowπ to utilize from states to select the actions
a, the strategy will increasingly lose utility. However, at the
same time, less relevant information will be needed.

As mentioned, for a given strategyπ one can computeVπ

through the iteration of (3), and, from this, utilityUπ. On the
other hand, given a utilityU , one computes the strategyπ′
minimizing the relevant information for a given utility level.
Thus, one has the following process:

π (3)−→Vπ (4)−→Uπ (2)−→ π′ (5)

As long as one only considers optimal strategies (β → ∞),
this is not a problem: the optimal utilityU∗ can be calcu-
lated separately and then used to optimize (2). In general,
however, one is interested also in less-than-optimal utilities.
Here the solution is more intricate: we calculate consistent
strategy-utility pairs for generalβ by iterating (5), i.e. inter-
lacing (3) and (2) to obtain a self-consistentπ-U pair. The
resulting double iteration appears to converge to a unique
solution in all examples considered, though at this point we
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(d) EVπ(S)≈ 0.27

(e) Optimal Strategy,
δ = 0,
I(S;A∗)≈ 3.70bit

(f) Optimal Strategy,
δ = 0.1,
I(S;A∗)≈ 5.36bit

(g) Optimal Strategy,
δ = 0.5,
I(S;A∗)≈ 4.84bit

(h) “Soft” Strategy,
β = 100, δ = 0.5,
I(S;A∗)≈ 1.73bit

Figure 1: Values and persistence vs. progeny strategies for different parameter settings. The top line shows the value functions
Vπ(s) and its expectation value for different scenarios and parameters, the bottom line shows the corresponding strategiesπ.
Vπ(s), the probability that the colony will achieve sporulation under the given strategy, is plotted vs. the states= 0, . . . ,99. The
strategyπ is visualized as a matrix of brightness values, where the horizontal axis denotes the states, the vertical denotes the
actionsa and the brightness indicates the probabilityp(a|s), where black is probability 0, and white is probability 1.

do not possess an analytical proof. The importance of this
approach is that it allows us to compute optimized strategies
and their required relevant information for general iterated
single-player games, while trading off utility and relevant
information.

Results
We now have the full formalism to treat the persistence vs.
progeny scenario with respect to relevant information. We
consider a number of scenarios, withs an integer, ¯s= 100,
p̄ = 0.4 and varying decay ratesδ for the persisting part of
the colony. For vanishing decay ratesδ = 0, the optimal
strategy (corresponding toβ → ∞) can be calculated ana-
lytically (Dubins and Savage, 1965). For nonvanishingδ,
optimal strategies can be calculated using the value iteration
procedure described above. Onceβ is small, the interlacing
algorithm introduced in last section has to be used. We will
also use it consistently to find (near-)optimal strategies by
settingβ → ∞ (in practice,β = 100,000) and over a wide

range of smallerβ, iterating until
∑

s|Vnew(s)−Vold(s)| <
10−5 for the value functions of two successive iterations.

Figure 1 shows some value functions and strategies for
the persistence vs. progeny scenario. In Figure 1(e), one
can see the hierarchical structure of the optimal strategy for
δ = 0. Forδ > 0, the optimal strategy needs to distinguish
more states (Fig. 1(f)- 1(g)), as reflected by the increase of
I(S;A∗). Trading off even only 0.01 of expected success
probability EVπ reduces the required information by more
than 60% (Fig. 1(g) and 1(h)).

Figure 2 shows the trade-off curve between achievable
utility for a given amount of utilized relevant information.
Analyzing this trade-off in the scenario withδ = 0.5, the
optimal strategy (as in Fig. 1(g)) requires a maximum of
4.84bit, achieving an expected utility of 0.28. It should be
noted that here, even on reduction of available relevant infor-
mation, the achievable expected utilities do not drop signifi-
cantly. In particular, it is possible to find policies that reduce
the required relevant information to almostI(S;A∗) = 0bit
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Figure 2: Trade-off between expected utility and relevant
information for the persistence vs. progeny game. The ex-
pected utilityEVπ on the vertical axis is plotted against the
relevant informationI(S;A∗) (in bits) on the horizontal axis;
it shows which expected utility can at most be achieved by
policies utilizing a given amount of relevant information.

while still achieving a utility of 0.20, i.e. losing less than
30% of the maximum utility. We emphasize again that in
this study we are not considering the cost of acquiring in-
formation; instead, we consider the highest utility that can
be achieved for a given amount of acquired (and processed)
relevant information.

Discussion and Conclusions
We presented a general constructive approach to treat
information-utility trade-off problems in iterated games.
This allows one to calculate optimized strategies in tempo-
rally extended problems such as the persistence vs. progeny
resource allocation problem, under different balances be-
tween informational resolution and utility. The aim is al-
ways to achieve an as parsimonious utilization of informa-
tion as possible for a given level of utility.

Note that, in the persistence vs. progeny scenario, actions
are modeled at the multicellular colony level rather than the
individual cell level, which isnot equivalent to strategies
played by individual cells independently. In particular, this
reflects coordinated information processing within the mul-
ticellular entity. Note that in general such processing might
be disrupted by adverse mutations in constituent cells.

The conclusion from (Michod, 1999) is that small propag-
ule sizes can mitigate such adverse effects on the heritability
of fitness at the higher level. The current model effectively
assumes an equidistribution over the possible statess. In
future work, we intend to take into account the propagule
size after reaching the threshold ¯s. In particular, propagules
consisting of a single cell will require a modification of the
a priori distributionp(s) compared to the present model.

Appendix: Notation
Random variables are denoted with capital lettersX,Y,Z,
assuming a finite set of valuesx,y,z. Instead of writing

Pr(X = x) we write, by abuse of notationp(x) for the prob-
ability that variableX assumes the valuex; alternatively,
p(x) may denote the entire probability distribution. No-
tation p(x,y) is used for jointly distributed variables. The
conditional probability thatY assumes valuey given thatX
assumes the valuex is written p(y|x).

Define entropy, a measure of uncertainty of a random
variableX, by H(X) := −

∑
x p(x) logp(x), log taken base

2, and thusH(X) is measured inbits. The mutual informa-
tion betweenX andY is given byI(X;Y) = H(X)+H(Y)−
H(X,Y) and measures how much uncertainty is lost (infor-
mation gained) aboutY if X is being observed.
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