A Comparison of Eiffel, C++ and Oberon-2

Audrey Mayes and Mary Buchanan

March 25, 1994

)
(

Contents

1

2

3

Introduction

Terminology

Encapsulation and information hiding
Inheritance

Polymorphism and dynamic binding
Object identity

Units of modularity

Types provided

Redefinition, redeclaration and the implementation of abstract
classes

10 Type checking and type conformance

11 Accessing the dynamic type of an object

12 System execution

13 Conclusions

11
13
14
16

17

1 Introduction

The languages Oberon-2 [1], Eiffel [2, 3] and C++ [4, 5, 6] allow an object-
oriented style of program to be implemented. Oberon-2 and C++ also support
other styles of programming.

All the languages are available on the SPARC workstations. Information for
accessing Oberon-2 and Eiffel can be found in [7] and [8].

This report presents a comparison of the object-oriented features of the three
languages. A knowledge of object-oriented concepts is assumed.

The three languages use different terms to define the same constructs. For
this reason the comparison begins by discussing the terminology used. The
comparison continues by considering the essential features of an object-oriented
language. These features arve:

o encapsulation and information hiding,

e type extension or specialisation which is usually known as inheritance,
e polymorphism and dynamic binding,

e object identity.

Inheritance is the only feature unique to object-oriented software.
Other language features are then compared. The chosen areas of comparison
are:

e units of modularity,

e types provided,

e redeclaration of features or procedures,

o type checking and type conformance rules,
e accessing the dynamic type of objects,

e system execution,

2 Terminology

The three languages use different terminology. C++ and Eiffel both refer to
classes and objects. The term class is used, in these languages, to mean the
language construct used to define abstract data types. The Oberon-2 term for a
class is either a record type with procedure variables or type-bound procedures
or a pointer to such a record type. The rationale for using the term ‘record’ is
that programmers can readily understand the concept [9]. All three languages
use the term object to mean instances of a ‘class’. Oberon also uses the term

‘variable of the type’ with the same meaning. The terms class and object are
used in the subsequent discussion.

Methods are the means provided for accessing the state of an object or
asking the object to perform a computation. Eiffel and C++ both provide one
mechanism for implementing methods. These are the routines that are part of
the class. Oberon-2 provides three different mechanisms. The mechanisms [7]
are type-bound procedures, procedure types and message records. Type-bound
procedures are very similar to the Eiffel and C++ implementation of methods.
Procedure types provide similar functionality to type-bound procedures but are
more complex to implement. The third mechanism, the use of message records,
is not documented in either C++ or Eiffel. Message records provide greater
flexibility than type-bound procedures but are not type checked.

Another difference in terminology relates to the formation of new classes
from existing ones by extension. Oberon-2 uses the term ‘type extension’. The
other two languages use the more usual term ‘inheritance’.

The final difference in terminology which is of importance to this report, is
in the way the parts of an object are named. Oberon-2 refers to the fields and
procedures of an object. C+4++ uses the term member to cover all parts of the
object. Eiffel refers to all parts as features. The features can be either attributes
or routines. The Eiffel terminology is used for the following discussion.

3 Encapsulation and information hiding

Encapsulation, or abstract data typing, is the grouping of data with the opera-
tions that can be applied to it. Classes can be considered to be implementations
of abstract data types [2, 10]. Access to the data and operations encapsulated
in a class can be controlled by the programmer which gives information hiding.
The parts of a class which are exported, not hidden, form the interface to that
class.

The C++ pre-processor allows a programmer to declare the interface in a
separate file to the implementation of the class. The interface can be declared in
a header file which must contain details of the data structure. It is also possible
to declare the interface and implementation in one file.

Eiffel and Oberon-2 classes must be declared with the interface and imple-
mentation in one file. The use of one file is said to be quicker for the programmer
and easier for the compiler which does not have to check consistency between
the interface definition and the implementation modules. Another effect of us-
ing one file for both interface and implementation is that the interface can be
altered simply by changing the export status of features. This does not en-
courage the completion of the design of a system before implementation begins.
The interface of a module is bound to the implementation which makes it more
difficult to change the data structures used to store the objects.

Oberon, C++ and Eiffel v2.3 apply the same general rule to govern informa-

tion hiding. They declare that all parts of the class will be hidden unless declared
specifically as exported. This rule adds to the security of code. However, Eiffel
v3.0 has changed this rule. The default, in this version of Eiffel, is that features
are available to all classes unless access is explicitly restricted {3].

The detail of export rules vary. In Oberon-2, two grades of export can
be specified by the programmer. These are read-only export and read/write
export. Eiffel automatically ensures that exported attributes are read only and
exported routines are executable. C++ provides read/write export only but
provides public export, giving all classes access to the feature, and protected
export which allows only derived classes to access the feature.

A class in Oberon-2 has only one interface. All clients of a class are treated
equally. There is no special arrangement for a class inheriting from another class.
This means that it is impossible for a derived class to break the encapsulation
of its parent class.

Both C++ and Eiffel allow classes to have several interfaces. These interfaces
are created by using a number of facilities.

e (General access by any class

Client classes are allowed access to any features labelled as public in C++,
or listed as exported in Eiffel v2.3, or exported to class ANY in Eiffel v3.0.
All Eiffel classes are descended from class ANY so gain access to those
features exported to class ANY.

e Access by some classes only

In C++, classes or functions can be declared as friends of the class being
defined. These friend classes or functions can access any feature of the
C++ class whether public, protected or private (hidden). Eiffel allows
a programmer to export individual features of a class to another class
or group of classes. Any feature from the named class can access the
individual feature. This is known as selective export.

e Descendant access

In Eiffel descendant classes gain access to all features of the parent class.
Class invariants are inherited to help prevent the misuse of inheritance by
breaking the encapsulation. C++ provides greater control over descendant

" classes access. Descendant classes can access the public or protected fields
of a class but not the private fields.

Eiffel and C4-+ provide encapsulation and information hiding via the class
construct but also allow means of breaking the information hiding. C++ also
provides the struct construct which can be used to implement classes. All fea-
tures of a class declared as a struct are public so this method of implementing
a class does not provide the information hiding required by an object-oriented
language. All future references to C++ classes refer to those implemented using
the class construct.

4 Inheritance

Inheritance provides the means to build new classes based on existing ones.
Oberon-2 has a strict interpretation of inheritance. Type-bound procedures can
be redefined but the formal parameter list remains the same. A derived class
must export all the features exported by the base class. The restrictions on
the redefinition of procedures and export list enable the subtype relationship to
hold for all derived classes. Some authors [11, 12] suggest that subtyping should
be the only interpretation of inheritance, at least during the analysis and design
phases of development.

Both Eiffel and C++ allow multiple inheritance. This means that classes can
have more than one parent class. Eiffel permits the same class to be inherited
repeatedly but C++ insists that a class can only be named once in its list of
inherited classes. The languages both have mechanisms for resolving any name
clashes that occur due to multiple inheritance.

It 1s possible in both C++ and Eiffel to change the export status of in-
herited features. C++ classes can be inherited using the keyword public. The
export status of the inherited members remains the same as in the superclass. If
the keyword, public, is not specified, another keyword private is assumed which
results in all the features being private in the derived class. Eiffel allows the ex-
port status of inherited features to be changed from secret to public or public to
secret. The ability to change the export status of inherited features is provided
to increase reusability but means that a subtype relationship may not hold for
derived classes in C++ and Eiffel. This has consequences for the type checking
systems which are discussed in section 10.

The ability to change the implementation of inherited features is discussed
in section 9.

5 Polymorphism and dynamic binding

Polymorphism in this context is defined as the ability to use the same proced-
ure name to call different code depending on the class of the receiving object.
Many classes can then respond to the same message, print for example. When
polymorphism is combined with dynamic binding the correct code is chosen at
run time.

All three languages have features which permit polymorphism. The binding
of operations to classes permits any number of classes to define a print procedure
which is uniquely identifiable. Redefinition of these class bound procedures
allows subclasses to declare their own version of the code which is suitable for
their instances.

The three languages approach the binding of code to procedure calls in differ-
ent ways. In Eiffel, all procedure calls are bound dynamically. C++ and Oberon
allow the programmer to chose dynamic or static binding because static binding

(@33

results in greater run-time efficiency. Static binding is the normal situation in
C++. In order for C++ procedures to be bound dynamically, they must be de-
clared as virtual. In Oberon-2, type-bound procedures and procedure variables
are bound dynamically but procedures which do not form part of an object are
bound statically.

6 Object identity

Object identity ensures that it is possible to have several instances of classes
which are identical apart from a system generated identifier. All the languages
under comparison provide this feature. It is worth pointing out that many other
languages also permit several variables to hold the same value. It is mainly in
database environments that it is not possible to have many copies of identical
variables. The user of relational databases must provide identifiers by which
the copies can be distinguished.

Object identity means that all objects are unique. In this discussion, objects
are considered to be declared as references to structures. The fields of two
objects can contain identical information. These two facts give rise to three
different interpretations of the term equality [2, 10]. Figure 1 uses instances
of the class Person to demonstrate these three definitions of equality. The
first interpretation is that two objects have the same unique identifier and are
therefore the same object. This is known as the identity predicate. This situation
would arise after the assignment p1 := p2.

The second possibility is that the fields of the objects, which may be point-
ers, contain the same values. This is known as shallow equal. This situation
would arise after assignment statements such as

pl.name := ni;
p3.name := ni;
pl.address := ai;
p3.address := ail;
pl.telNo := 4763;
p3.telNo := 4763;

The third and final definition of equality is that, after following the pointers
until a value is reached, the values of the fields of the objects are identical. This
is known as deep equal. This situation would arise after a series of assignment
statements such as

ni := ‘¢ Mary’’;
n2 := ‘¢ Mary’’;
pl.name := ni;

p3.name := n2;

and so on for the other fields.

The languages differ in their support for these three concepts of equality.
In all three languages being compared it is possible to compare for the identity
predicate using the languages usual equality test. For example, in Oberon-2:

pl = p2

tests the pointer values and returns a boolean value.

Eiffel is the only one of the three languages documented as supporting the
other forms of equal. The predefined routines equal and deep_equal test for shal-
low equality and deep equality respectively. The programmer must implement
routines to test for these other forms of equality in C++4 and Oberon.

Similar possibilities arise when considering the copy operation. Copies can
be either shallow or deep. Shallow copies result in field by field copies being
produced. Any fields in the original object which contain references contain the
same reference in the copy. This can be seen by referring to figure 1, a shallow
copy of object pl would produce p3. Deep copies result in new copies of every
sub-object also being produced. The new copy does not share any fields with
the original. In figure 1, object p4 is a deep copy of pl.

Again the languages differ in their support for copying. Oberon-2 leaves it
up to the programmer to write copy procedures for objects. Eiffel provides a
predefined routine Clone which provides shallow copy and deep copy routines.
C++ expects the programmer to implement full copy semantics to ensure that
a deep copy is made and that there is no shared data when an assignment is
made. This is necessary because of the way C++ deals with formal parameters.
Formal parameters are considered to be local variables and so are created on
entry to a function and destroyed on exit from the function. Actual variables
are assigned to the formal parameters at runtime so any shared fields would be
destroyed on exiting the procedure.

7 Units of modularity

Units of modularity are the parts from which a system is assembled. Each
part has a well defined interface. Classes are the basic unit of construction in
object-oriented software production. In Eiffel the class construct is also the
unit of modularity. This means that there must be one class per file and one
file per class. Both Oberon-2 and C++ allow more than one class per file. This
allows closely related classes to be declared in the same file. Oberon-2 allows
the classes to be hidden so that they can only be used within the module. The
files are the unit of modularity.

\ p3 TN
- —A V v
p2 nl _ -~
name F= =~ A V Y - name
Mary
address M~ - . address
N -7
N oal o V , ’
4763 \ 14 4763
B220
p4 —
\\l n2
V -0 ~ ~
name BN
Mary
address ~o a2 - QA
AN
B220
4763

pl and p2 point at the same object. This is the identity predicate.

p3 and pl have fields with the same value. They are shallow equal because the
non pointer fields contain the same value,

the name fields point to the same object, nl,

and the address fields point to the same object,al.

p4 and pl have fields which point to different objects whose fields contain the same values,
and non pointer fields which contain the same value.
They are deep equal but not shallow equal.

Figure 1: Three Interpretations of Equality

In C++ [6], it is possible to declare one class within another class to produce
a nested class. This nested class is in the scope of the enclosing class and must
be accessed via the enclosing class. The declaration of a nested class does not
mean that the enclosing class contains an instance of the class.

8 Types provided

Oberon-2, Eiffel and C++ all provide simple types, such as integer, real and
char, and ways of implementing structured types. The support for generic types,
enumerated types and subranges varies.

e Simple types

Oberon-2, Eiffel and C++ all implement simple types as instances of the
type not as pointers to instances of the type. All provide simple types
for character, integer and real variables. Oberon-2 and C++ provide two
sizes of real numbers and three sizes of integers. C++ is the only one of
the languages not to provide a type boolean but use the integers 1 and 0
to represent true and false in boolean expressions.

e Structured types

Classes provide implementations of structured types. Objects are in-
stances of Class types. It is possible in all three languages to provide
objects as either pointers or actual instances of the class. The mechan-
isms for providing the different types of objects vary.

In Eiffel, either the class definition or the client module controls which
type of object is produced. The default behaviour is that the declaration
of an instance results in the allocation of a pointer. In order to make the
pointer reference an actual instance, a Create procedure must be invoked
on the pointer or the pointer can be assigned to another instance. If an
actual instance of a class is required when the declaration is made, the
client module can declare the instance as expanded. For example, an
actual instance of type person could be declared as

p : expanded Person;

Alternatively the class declaration could begin with the keyword expan-
ded, in which case all instances of the class will automatically be actual
objects and not pointers.

In the C++ language it is the client module which controls the production
of objects. The programmer can declare either an instance or a pointer to
an instance of a class.

In Oberon-2, a class can be declared as a record with attached procedures
and/or as a pointer to a record structure with attached procedures. The
programmer declares instances as appropriate.

In all the languages it is recommended that objects are pointers not actual
instances of the class.

Arrays are also structured types. C++ and Oberon-2 provide arrays as
basic language elements whereas Eiffel uses the generic type mechanism.

Generic types

Generic types are used to define data structures such as lists and trees. The
abstract structure of lists etc. is common to all instances of the type. Many
operations on these types, for example add and delete, do not depend on
the types of the actual elements contained. It is these operations that
are specified in the generic type. A restricted form of structural type
equivalence is needed to provide type checking on generic types. Generic
types are implemented as parameterized classes. The parameters for these
classes represent types. Actual types, such as lists of integers, are produced
by providing actual parameters for the formal parameters.

Eiffel supports genericity. It is possible to implement both unconstrained
genericity, where any type of class can be used as an actual parameter for
the type, and constrained genericity where only specified types or their
descendants may be used.

Ansi standard implementations of C++ [6] provide templates as a means
of implementing generic types. Other implementations provide a package,
generic.h, which enables generic types to be declared [4].

Oberon provides the type SET but this type can only be used with integers.
It is claimed that Oberon-2 can be used to implement other generic types
[1]. The suggested implementation of a FIFO queue relies on the “generic”
elements being subtypes of the declared type. In the example, the declared
type of element is an empty record, of type Node. All possible elements to
be included in the list must be descended from this type, Node. The type
conformance rules ensure that all these nodes will be compatible with the
FIFO queue. Any instance of this type could be completely heterogeneous.
In systems where it is desirable to declare more than one queue, each of
which must contain specific types only, the programmer must use type
guards. The type guards could be used in one of several ways. Two
methods are:

— use a type guard every time an element is added to the queue or
removed from it.

— implement the FIFO using type-bound procedures and redefine each
procedure to include a type guard.

10

e Enumerated types

Neither Oberon-2 nor Eiffel provide the facilities required to declare enu-
merated types. They were omitted from Oberon-2 because “they defy
extenstbility over module boundaries” and had been observed to have
“led to a type explosion that coniribuied ...1o program verbosily” [13].
It is possible to implement enumerated types in Oberon-2 by using nu-
meric constants or arrays. Meyer [2] declares that enumerated types are
rarely needed and uses integer constants to implement them in Eiffel.
C++ provides the enum construction tool to implement enumerated types.
However, the underlying implementation uses integers which makes it pos-
sible to perform meaningless operations such as adding two members of
the enumeration. Enumerated types are a useful abstraction but are not
satisfactorily provided by any of the languages under consideration.

e Subranges

Subranges are not provided but can be implemented by declaring classes
to represent the required range of values. The programmer must supply
the code to check that values fall within the desired range.

All three languages provide support for simple types and structured types.
True generic types are only supported by FEiffel and a few implementations
of C++. Enumerated types and subranges are not supported by any of the
languages.

9 Redefinition, redeclaration and the implement-
ation of abstract classes

Before discussing redefinition, redeclaration and the implementation of abstract
classes, it is necessary to define clearly the meaning of the terms. Several defin-
itions of the terms are possible. Meyer [3] defines redefinition as changing the
implementation, signature (the formal parameters and result type) or specifica-
tion of an inherited feature. He defines redeclaration as a more general concept
including both redefinition and the implementation of a deferred feature inher-
ited from an abstract class. Boszormenyi [14] uses the following definitions.
Redefinition is defined as changing the implementation of a function but keep-
ing the signature and the specification the same. Redeclaration is defined as
changing the implementation, signature and specification. Boszormenyi’s defin-
itions are used here because they allow the different aspects of the languages
to be discussed more easily. The implementation of an abstract class involves
writing code to implement a feature which is named, but not implemented, by
the parent class.

11

e Redefinition—changing the implementation only.

Oberon-2, Eiffel and C++ all permit redefinition of inherited features.
In Oberon-2, any type-bound procedure may be redefined. Eiffel requires
that the feature to be redefined is listed in the Redefine section of the class
declaration. In C++, only functions declared as virtual in the base class
are dynamically bound. These are therefore the only features which can
be redefined to ensure that the correct version for any object is chosen at
run-time.

Oberon-2 and C++ allow access to the ancestor’s version of the function.
In Eiffel, repeated inheritance must be used to obtain two copies. One of
the copies is renamed and redefined, the other copy is used to access the
ancestor’s version.

Eiffel also permits functions to be redefined as attributes in descendant
classes. Attributes cannot be redefined as functions.

Redeclaration—changing the implementation and the signature.

Eiffel and C++ permit the redeclaration of functions but Oberon-2 does
not. The effects of redeclaration are different in the two languages.

— In Eiffel, any features being redeclared must be listed in the Re-
define section of the class declaration. There are strict rules govern-
ing changes to the signatures and specification of functions.

Any change of type in a signature must be to a type which conforms
with the original type.

Changes to the specification of a routine involve changes to the pre-
and post-conditions. Pre- and post-conditions are implemented by
using the assertion mechanisms provided by the language. The rules
governing changes to pre- and post-conditions state that precondi-
tions can be weakened but not strengthened and post conditions may
be strengthened not weakened.

Attributes can also be redeclared in Eiffel. The same rule applies
that the new type must conform to the old type.

The Eiffel rules governing redeclaration are designed to enable the
redeclared feature to be used wherever the original form is declared.

— C++ provides redeclaration by permitting a limited form of function
overloading. Overloading means that a single name can be used
for several different functions within the same scope. Overloaded
functions must differ in the parameters required and may differ in
the return type.

The new function masks the function of the same name declared by
the base class. The masked function cannot be accessed directly by
objects of the the derived class but can be accessed either by using

12

the scope resolution operator or by assigning the object to an object
of its base class. Both of these mechanisms tell the compiler to ‘look’
in the superclass part of the object to find the required function.
Both versions of the function are therefore available so the function
name is “overloaded” by redeclaration.

However, redeclaration does not involve the virtual mechanism so
dynamic binding does not occur. The code is chosen statically ac-
cording to the static type of the object. A redeclared function is
effectively a new function so if it is to be redefined in subclasses, it
must be declared as virtual.

The implementation of abstract classes

All three languages allow the definition of abstract classes where the de-
sired behaviour is specified but not implemented. Each language has its
own mechanism for providing this facility. In Oberon-2, abstract beha-
viour can be specified by declaring empty type-bound procedures. In
C++, pure virtual functions are used. In Eiffel the keyword deferred is
used to replace the body of the feature. The derived class is responsible
for supplying the code to implement the behaviour.

It is impossible in Eiffel and C++ to create instances of deferred classes.
Oberon-2 has no such safeguards so it is recommended that the program-
mer declares a call to the predefined procedure HALT in an empty type-
bound procedure.

Eiffe]l allows the developer to make a wider range of changes to inherited
classes. Thereby improving the possibility of code reuse by using inheritance to
implement an is-like relationship such as a Queue is-like a List with limited add
and remove functions. However, this type of code reuse leads to problems with
type conformance which are discussed in section 10. '

10

Type checking and type conformance

There are several similarities between the type checking and conformance sys-
tems of Oberon-2, Eiffel and C++. These include:

static type checking,

conformance is based on the inheritance hierarchy. In simple terms this
means that a derived class conforms to its base class.

assignment compatibility is governed by type conformance.

type checking is a syntactic mechanism. It is possible to redefine a pro-
cedure to perform a totally different function using the same parameter
types. There is no semantic checking.

13

Oberon-2 allows only single inheritance and has strict redefinition rules which
ensure that subclasses are subtypes. This makes type checking and type con-
formance a simple concept for the compiler to enforce. In situations where each
subtype must be distinguished, for example when retrieving elements from a
heterogeneous list, the programmer must use type guards or type checks to
provide dynamic type checking.

Eiffel allows the types of attributes, parameters and return types to be re-
declared providing the new parameters conform to the original ones.

Eiffel also allows a derived class to prevent access to features which were
exported in its base class. This hiding of features together with the redefinition
of the signature of features destroys the subtype relationship between the classes.
Eiffel version 3 intended to introduce system validity checks in order to prevent
invalid access to features.

C++ has two modes of inheriting, public and private. The compiler enforces
the rule that a class derived by public inheritance cannot prevent access to any of
the public fields of its ancestors. This helps to maintain the subtype relationship
between the classes. The use of private inheritance allows features to be hidden.
There is no longer a subtype relationship between the two classes. The C4++
type checking system ensures that the two types no longer conform.

From the above it can be seen that Oberon-2 has adopted a simplistic ap-
proach to typing resulting in a greater burden of type checking being placed on
the developer. Eiffel allows flexibility for the developer of new classes but has
not yet developed a type system to deal with the problems that have arisen.
C+-+ also provides flexibility but has mechanisms to allow the developer to
control the type hierarchy. The result is a conceptually simpler static typing
checking mechanism in C++ than in Eiffel.

Eiffel also allows some semantic checking., The keyword ensure can be used
to implement postconditions. The use of postconditions prevents an add feature
being redefined to multiply for instance.

11 Accessing the dynamic type of an object

For the purposes of this section, a variable is assumed to be an object implemen-
ted as a pointer variable. General assignment rules allow a variable of a subclass
to be assigned to a variable of its superclass. The superclass variable then con-
tains more information than is available to the programmer. For instance, a
variable of Class customer may be assigned to a variable of class Person. The
overdraft ceiling is then inaccessible except via a polymorphic procedure.

A polymorphic procedure redefines a base class routine to provide class de-
pendent behaviour. The redefined routines are then called as required because
of the dynamic binding of code. Dynamic binding works well for a routine such
as print which can be defined in a base class. However, dynamic binding cannot
be used to access behaviour known to be present in the actual object but not

14

provided when the base class was implemented.

There are circumstances under which it might be necessary to access subclass
fields. For example a system may declare a list of elements of class Person. The
list could also be used to store elements of subclasses of Person such as Customer.
It might then be necessary to retrieve an instance of class Customer from the list
of Person instances. This involves assigning a superclass variable to a subclass
variable. Mechanisms to perform this type of assignment are provided by all
three languages under discussion.

In order to permit access to the dynamic type of an object, the Eiffel lan-
guage provides the reverse assignment attempt. This is most commonly used
when accessing persistent data. The syntax of the call is

customer ?= people_list.get(i);

where customer is of class Customer, people_list is a list containing
variables conforming to class Person, get(i) is the feature which retrieves the
i-th element from the list.

If the i-th element was the required class it is assigned to the variable cus-
tomer. If not, the value of the variable is void.

Eiffel provides two other methods of accessing the dynamic type for use
where a large number of types may be found.

1. The library class INTERNAL provides a feature dynamic_type which re-
turns an INTEGER. The class INTERNAL is designed to be used as an
ancestor class for classes which interface with other languages or database
management systems. The use of these features is discouraged because
they permit access to the internal representation of an object which breaks
the encapsulation.

2. FEiffel classes are descendants of the class ANY. This base class provides
generally useful facilities. One of the features is conforms_to which makes
it possible to ascertain information about the dynamic type of an entity
at run-time. However, a call such as p.conforms_to(c) returning true
does not permit access to any extra features present in ¢ through variable

p.

The C++ language does not provide a mechanism to correspond to the Eif-
fel reverse assignment attempt. Similar functionality can be obtained by using
pointer casting. This uses the type cast mechanism available in C. Assuming
the declarations:

person *p;
customer *c;

|
;1
|
|

the call ¢ = (customer *)p converts a person variable to a customer
variable. This mechanism allows unconstrained changes between types which
can lead to many problems.

In some circumstances, such as retrieving elements from a heterogeneous list,
it might be desirable to apply some constraint to the conversions available by
determining the dynamic type of the elements. For example to retrieve objects
of type Customer from a list of people. C++ does not provide a procedure to
allow the actual type of the object to be ascertained. A programmer must add
a tag field to objects which can then be checked to ensure the correct type is
chosen.

Oberon-2 provides type tests and type guards to permit access to fields of
a subclass variable through a supertype object. Type tests can be used in
conjunction with an IF .. . THEN ...ELSE statement to provide the equivalent
of the Eiffel reverse assignment attempt.

From the above, it can be seen that it is possible to access the dynamic type
of objects in all three languages. All the mechanisms apply to objects but not to
fields of an object. For example, a class Person might declare an address field of
class string. A person object could have an instance of a subclass of class string
assigned to its address field. This subclass might provide extra string handling
facilities. These extra features cannot be accessed through the person variable.

12 System execution

Both Eiffel and C++ require a driver to set the program running. In Eiffel,
this is called the root class. The system is started by entering the class name,
in lower case, to the unix prompt. This executes the create procedure of the
class. Any class can be used as a root class providing it is named as such in the
system description document. The C++ driver is a main function. This can
require parameters which are read from the command line when the program is
executed. In both Eiffel and C++ it is necessary to designate a starting point
for the system.

The position in Oberon-2 is rather different. The program can be initiated
by a call to any parameterless procedure. A system can therefore have many
starting points. For example, the Persons module could have contained several
test procedures. Any one of these could be called to start the system.

In Eiffel, all procedures are part of a class. In order to access a procedure it
is necessary to declare an instance of the class !. This instance is a pointer with
a void reference. The create function for the class must be invoked before it is
possible to access the required procedure using the dot notation. In Oberon-2,
procedures can be either bound to a class or a module. Procedures which are

1The class IO which contains input and output functions is an exception. Functions from
this class can be used in any other class by using the dot notation, For example io.putstring.

bound to a module can be invoked simply by naming the module in the import
list and then using the dot notation to identify the procedure.

In C+4+ functions can be static (available within the source file only), global
or be part of a class. Functions which are part of a class in Oberon-2 or C++
are accessed in the same way as Eiffel features.

13 Conclusions

The languages provide all the features required to be considered object-oriented.
These features are encapsulation, polymorphism, inheritance and object iden-
tity. They also provide the ability to define classes as structured types.

The type compatibility rules of Oberon-2 are simpler than those of C4++
and Eiffel because of the rules applied to record extensions. An extended record
type is always a subtype of its base record type because programmers cannot
change the parameters required by a procedure and cannot change the export
status of features. Programmers must use type guards to enforce finer control
over type compatibility to ensure that a redefined procedure is not called on a
base type object.

In C++ and Oberon-2, it is possible to declare many types in a single module
which allows more flexibility to programmers. It is also possible to declare two
types in one module but only export one of them for use outside that module.
This allows a type to be composed of instances of hidden types. However, the
hidden type is not available for reuse which is one of the benefits of object-
orientation.

Oberon-2 permits only one interface to a module which means that a type
can also only have one public interface. There is no mechanism to allow derived
types to access hidden fields of the base type. This restriction can also reduce
reusability. Both Eiffel and C++ allow greater access to base class fields to
derived classes than to client classes.

Generic types are not a necessary feature of object-oriented languages but
they do provide commonly used abstractions. The absence of generic types from
Oberon-2 results in the need for repetitive coding.

In all three languages it is possible to retrieve an object of a derived type
from an object of its base type. Eiffel and Oberon-2 provide features to do
this but C++ programmers must add fields to objects and provide the tests
themselves if safe conversions are to be ensured.

- Oberon-2 does provide one object-oriented feature which is not available in
some other languages. It is possible to have many different starting points in a
single system because a main program is not needed.

17

References

[1] Martin Reiser and Nicholas Wirth. Programming in Oberon. Addison-
Wesley Publishing Company, New York, 1992.

[2] B. Meyer. Object-oriented Software Construction. Prentice Hall, Hemel
Hempstead, 1988.

[3] B. Meyer. Eiffel: The Language. Prentice Hall, Hemel Hempstead, 1992.

[4] Russel Winder. Developing C++ Software. John Wiley and Sons Ltd.,
Chichester, West, Sussex., 1991.

[6] Stanley B. Lippman. C++ Primer. Addison-Wesley Publishing Company,
Reading, Massachusetts, second edition, 1991.

[6] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference

Manual. Addison-Wesley Publishing Company, Reading,Massachusetts,
1990.

[7] Audrey Mayes and Mary Buchanan. The Oberon-2 Language and Envir-
onment. Technical Report 190, University of Hertfordshire, College Lane,
Hatfield, Herts AL10 9AB, 1994.

[8] J. A. Mayes and R. Barrett. Eiffel, the universe and everything. TR 138,
Hatfield Polytechnic, College Lane, Hatfield, Herts AL10 9AB, 1992.

[9] H. Mossenbock and N. Wirth. Differences between Oberon and Oberon-2.
Structured Programming, 4 1991.

[10] Setrag Khoshafian and Razmik Abnous. Object Orientation: Concepts,
Languages, Databases, User Interfaces. Wiley, New York, 1990."

[11] P. Coad and E. Yourdon. Object-Oriented Analysis. Prentice Hall, Inc,
Englewood Cliffs, New Jersey, second edition, 1991.

[12] J. Rumbaugh, M. Blaha, W. Premetrlani, F. Eddy, and W. Lorensen. Object-
oriented Modelling and Design. Prentice-Hall International Editions, Engle-
wood Cliffs, New Jersey, 1991,

[13] N. Wirth. From Modula to Oberon. Software - Practice and experience, T
1988.

[14] Laszlo Boszormenyi. A Comparison of Modula-3 and Oberon-2. Structured
Programming, 14, 1993.

18

