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Abstract

Despite the widely held belief that the most limiting factor in processor performance is the
memory hierarchy, much of the recent research into multiple instruction issue techniques
assumes a perfect cache structure with a 100% hit rate. This paper attempts to rectify this
imbalance by quantifying the performance impact of incorporating a realistic cache

structure into a high-performance superscalar architecture.

A highly parameterised cache simulator is integrated into a minimal superscalar
architecture, the Hatfield Superscalar Architecture (HSA), that uses static instruction
scheduling and in-order instruction issue. Two main studies are presented. First, the
impact of a cache on unscheduled code is compared to the impact of a cache on scheduled
code. Second, the speedup achieved through static instruction scheduling with a perfect

cache is compared to the speedup achieved with a series of cache sizes.
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1. Introduction

It is widely believed that the most limiting factor in current architectures is the memory
sub-system [Patt97]. Despite this, much of the research into Multiple Instruction Issue

(MII) processor design assumes a perfect cache and memory system. There are two

diverse schools of thought on MII research; dynamic instruction scheduling relies on

complex hardware to uncover instruction parallelism at run-time, while static instruction

scheduling relies on a specialised compiler to uncover the instruction parallelism at
compile-time. In this paper we use the Hatfield Superscalar Architecture (HSA), a
statically scheduled architecture developed at the University of Hertfordshire, to examine
the impact of caches on MII architectures. The main reason for this selection is that the
code expansion inherent in static instruction scheduling will place increased pressure on
the cache structure. Furthermore, it will not be possible for the variable load latencies
caused by cache misses to be masked by dynamic out-of-order instruction issue. Cache

performance is therefore particularly crucial in a statically scheduled architecture.

Our purpose is to quantify the impact of a realistic cache on MII processor performance.
All too easily, stalls due to cache misses and memory port unavailability can partially
offset any speed-up gained through instruction scheduling. The performance of scheduled
and unscheduled code will therefore be compared, both with realistic sized caches and

with a perfect cache model. A range of cache implementations will be tested on two high-

performance superscalar machine models; a Maximal Model will represent an idealised

cache memory model, while a Standard Model will provide a more realistic number of

cache ports.

Two areas are of particular interest to the HSA project. Firstly, we wished to quantify the
effect of a realistic cache structure on both scheduled and unscheduled code. Secondly,

we expected a cache miss to have a disproportionate impact on scheduled code and wished

to quantify the extent of this effect.
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This study uses a highly parameterised cache simulator [Tate98] that has been developed
to model a wide variety of cache structures. This cache simulator has been integrated into

the processor simulator for the Hatfield Superscalar Architecture.

2. The Hatfield Superscalar Architecture (HSA) Project

The two main schools of thought on instruction scheduling led to two types of

architecture, VLIW and superscalar. Because empty VLIW instruction slots must be filled
with NOPs, VLIW architectures suffer from excessive code expansion. Furthermore
different implementations of a VLIW architecture tend to be incompatible because of the
need to fill empty instruction slots. Superscalar processors can only extract parallelism
from within a limited window of instructions and tend to suffer from hardware

complexity.

The HSA [StevG96] was developed as a progression from HARP [StevG91], a VLIW
processor that was developed and fabricated at the University of Hertfordshire. As with
all VLIW architectures, HARP suffered from a pre-determined constant instruction issue
rate, and from code expansion. The HSA project attempts to combine the best features of
VLIW and superscalar architectures. The problems of incompatibilities within a processor

family and fixed VLIW instruction widths are averted by dynamically issuing variable

sized instruction groups. The problems of superscalar complexity and a fixed-sized

instruction window are avoided by using extensive instruction scheduling at compile-time,
combined with in-order instruction issue at run-time. The HSA has therefore been

described as a minimal superscalar architecture [StevG96].

The HSA includes speculative and guarded execution and a generalised branch delay
mechanism. To ease the pressure on the instruction issue rate, any instruction whose

Boolean guard fails prior to instruction issue can be ‘squashed’ in the instruction buffer.

However, this will not ease the pressure on the instruction cache.
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The HSA uses a simple four-stage pipeline:

IF Instruction Fetch

ID/RF Instruction Decode / Register Fetch
EX Execute

WB Write Back

At the first pipeline stage, instructions are fetched from the instruction cache into the
Instruction Buffer. At the second stage, instructions in the Instruction Buffer are decoded
and register operands are fetched from either the integer, floating point or Boolean register
files. Alternatively, the operands can be forwarded from other functional units. At the
third and fourth pipeline stages, instructions are processed and results written to the

destination registers and made available to other functional units through forwarding.

The HSA instruction set contains a simplified addressing mechanism [StevF93], which
does not need to pass through the ALU to generate an effective address. Memory
references can therefore be dispatched to the data cache at the end of the ID/RF pipeline
stage. As a result, with one-cycle instruction fetch and data cache accesses, a LOAD

instruction can be executed in four cycles, with no load delay.

To generate code that is executable by the HSA, a Gee compiler was generated for the
HSA instruction model. The HSA instruction set was originally developed as part of the
HARP project. Extensions to the instruction set were implemented to facilitate the new
superscalar nature of the processor. The HSA code is executed by a highly parameterised
simulator [Coll93] that allows an immense variety of processor models to be configured
and simulated. An equally flexible cache simulator has now been integrated into the

original processor simulator.
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3. The Cache Simulator

Like most high-end computer architecture research, the HSA initially assumed a 100%
cache hit rate for all memory references. This study removes this simplification, and

quantifies the effect of a realistic cache on the speedups achieved by the HSA static

instruction scheduler.

The cache simulator is completely configurable at run-time with the facility for the
number and configuration of each data, instruction and unified cache to be set interactively
before each simulation run. A facility to load and save entire cache models from a file is
also included for convenience. At run-time, each cache level, excluding main memory,
can have the following parameters configured: Cache size, Block size, Sub-block size,
Associativity, Number of sets, Block replacement policy, Pipelining, Read / Write / Data
Write Buffer latencies, Number of read / write / Data Write Buffer ports, Data Write
Buffer size, Outstanding References Buffer size and Number of return (cache bypass)

paths. At each level the cache is accompanied by three other structures of note: a Data

Write Buffer, an Outstanding References Buffer and a data return (bypass) line (Figure 1).

The Data Write Buffer has a basic record queue structure. It is positioned above each data
cache, including the first-level data cache, and also above main memory. This position

facilitates the staging of writes to the cache. Each record contains the data, destination

address and a status flag. The status flag is used in conjunction with an ‘allocate on write
miss’ policy, to indicate a record which has missed in the cache and is stalled waiting for a
block to be fetched from a lower level. The size, number of ports and write latency of the
Data Write Buffer can all be configured at run-time.  The Data Write Buffer has
numerous benefits to the cache structure. It is a small fast block of memory, therefore a
write latency of zero is feasible with a minimum sized structure. However, in this study a

latency of one is assumed to allow numerous checks and self-configuration logic to

function. This buffer also has the ability to combine writes to the same address or sub-

block, although this facility is not activated in this study.
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The Data Write Buffer ahead of the first-level data cache is used to provide multiple
virtual write ports for the processor and to minimise the number of processor write stalls.
The Data Write Buffer’s small size allows these write ports to be provided without
excessive costs in terms of either time or silicon area. To provide a similar number of
write ports in the cache itself would be far more costly. To avoid write stalls and thus gain
maximum write throughput, the Data Write Buffer is usually provided with sufficient
write ports to match the peak processor demand. In contrast, the cache itself only provides
sufficient write ports to meet the average demand for writes, typically no more than one

per cycle.

Another significant benefit of the Data Write Buffer is that data written to the cache is
always kept in a ‘visible’ structure. If a write is stalled because of insufficient write ports,
or the write is in the process of accessing the cache, then a following read from the same
address is in danger of being stalled until the completion of the write. Using the Data
Write Buffer, the data is visible at all times; therefore a read will register a Data Write

Buffer hit and complete in its normal latency.

The Outstanding References Buffer is a fully associative structure. Each record contains
the address referenced and internal configuration information. The size of the structure is
configurable at run-time. One of the major problems uncovered by cache research is that a
major cause of stalls at the top level is the overuse of memory bandwidth at the lower
levels. The function of the Outstanding References Buffer is to keep track of all
references to the next cache level in the hierarchy. If a request occurs for a block that is
already being accessed, the Outstanding References Buffer stores the request as usual, but
does not issue a block request to the next cache level. When the block is returned, all
outstanding references to that block are activated. This facility significantly reduces the

amount of lower level memory traffic, and thus the time it takes to fetch important blocks.

The data return line, which bypasses the cache, facilitates improved performance by
returning requested data or instructions directly to the previous level. This facility is used
to remove the latency involved in updating a block in the cache and then re-issuing a read.

With the return (bypass) line, the block is written to the cache as usual, but in parallel the
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part of the block that is the subject of the read is forwarded directly to the processor or the

previous cache level.

Although it includes some novel ideas, the cache structure implemented is not intended to
be a ‘state-of-the-art’ cache design. The cache simulator was implemented to be a highly
parameterised cache template that would allow almost any basic cache structure to be
specified. The cache simulator has been successfully designed and implemented as an
extension to the HSA processor simulator, and is used in this paper to simulate the effects

of a cache structure on a statically scheduled superscalar architecture.

4. Results

For all tests, the well-established Stanford integer benchmarks were used. The successful
examination of the performance of a cache relies on the careful selection of the cache
sizes. With too large a cache, a benchmark’s working set will completely reside in the
cache; with too small a cache, the large number of block replacements will completely
dominate the results. Four cache models between 256 bytes (64 words) and 2K (512
words) were chosen to reflect both the instruction and data working sets of the
benchmarks. The tests consisted of all permutations from three delay slot models, five

cache models and three processor models.

The first two branch delay slot models simulate cache access times of one and two cycles.
An instruction cache access time of one cycle results in one branch delay slot, while a two
cycle instruction cache access time gives two branch delay slots. The final branch delay
slot model specifies zero delay slots; this simulates a perfect branch prediction model.
The data cache latencies used mirror the instruction cache read latencies. Multi-cycle

cache models have pipelined cache reads and writes.

The five cache models simulated differ in the sizes of their instruction and data caches.
The data and instruction cache sizes in the first four models range from 256 bytes (4 sets)
through 512 bytes (8 sets) and 1K bytes (16 sets) up to 2K bytes (32 sets). The final cache

model provides a 100% hit rate. The number of cache ports depends on the processor
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model, but all have a single cache return (bypass) line. The main memory contains one,
non-pipelined, read/write port which can satisfy a single read or write in ten processor
cycles. Blocks are 64 byte (16 word), and no use is made of sub-blocks. The cache
structure is direct mapped, while write policies are ‘write back’ and ‘allocate on write
miss’. The number of Data Write Buffer ports and cache write ports is always equal, and
the Data Write Buffer and Outstanding References Buffer both hold 40 records. These
figures were chosen to ensure that the size and configuration of these buffers did not limit
performance. The instruction cache has a fetch width of 16 instructions. In this study
instruction fetches are allowed to cross cache block boundaries. A later study will

quantify the performance impact of confining instruction fetches to a single block.

The three processor models we simulate consist of a Baseline, a Standard Superscalar and
a Maximal Superscalar model. All instructions have unit latencies, except for multiply
which has a latency of three and divide which has a latency of sixteen. The Baseline
Model simulates a standard RISC processor that fetches and issues one instruction per
cycle and contains one functional unit of each type (arithmetic, load, store, etc.), and
executes the code that is produced directly by our gcc compiler. The Standard Model
simulates a high-performance superscalar architecture and contains 16 functional units of
each type. The cache structure, however, only contains two data read and two data write
ports. The Maximal Model simulates an ideal processor; it contains 16 functional units of
each type and also 16 data read and 16 data write ports. Both of these superscalar models

execute code that has passed through the HSA scheduler [StevF95].

The same unscheduled code is executed on each of the three delay slot models. However,
scheduled code is optimised by the scheduler for a specific number of delay slots. There
are therefore, six scheduled benchmarks for every benchmark, three for each delay slot
model on the processor’s Standard Model, and another three optimised for the processor’s
Maximal Model.

Most of the results are presented as averages of the performance of the individual Stanford

benchmark programs (Figure 2 to Figure 4, and Figure 6 to Figure 7). Figure 5 and Figure
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8 are included to illustrate the spread of figures achieved by the individual benchmarks.

This allows examination of the effect of a cache on different types of programs.

Our first set of results compares the impact of a cache on scheduled code to the impact on
unscheduled code. Figure 2 to Figure 4 show the performance impact of the cache for
zero, one and two delay slots respectively, with Figure 5 showing how the cache impacts
each benchmark individually when using the Maximal Model with one branch delay slot.
Using the zero delay slot chart in Figure 2 as an example, the unscheduled code is
executed using the perfect and finite cache models for the zero delay slot model on the
processor’s Baseline Model. The results show that using a cache size of 256 bytes, the
code runs at 91% of the speed achieved with a perfect cache. If a cache size of 2K is used,
then the performance rises to just over 98%. The suite of benchmarks scheduled for zero
delay slots and the Standard Model are also executed with perfect and finite cache models.
In this case using a cache size of 256 bytes gives 73% of the speed of a perfect cache,
while a cache size of 2K gives almost 96% of the speed. For the Maximal Model, the
execution speed using a cache size of 256 bytes results in 65.5% of the perfect cache’s

speed, while a cache size of 2K gives almost 94% of the speed.

The performance of individual benchmarks is shown in Figure 5. These figures are a
break down of the average figure shown for the Maximal Model in the graph using zero
branch delay slots. It can be seen that there is a vast differencé in the impact of the cache
on the performance of individual programs. Bubble is hardly affected by a finite cache,
achieving 99.99% of a perfect cache’s performance with 1K direct-mapped caches and
over 94% with 256 byte caches. In contrast, Tree achieves only 80% with 2K caches,
dropping to 53% with 256 byte caches. Perm is affected drastically by the size of the
cache, with performance falling from over 99% with 2K caches, to less than 38% with 256

byte caches.

Our second results set compares the speedup achieved with a perfect cache model to the
speedups achieved with finite cache sizes. The speedups are calculated by dividing the
execution time into the execution time of the Baseline Model. The Baseline Model is

always a single instruction fetch and issue RISC processor. Figure 6 and Figure 7 use
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values averaged over the suite of benchmarks to show the speedup for the Standard Model
and the Maximal Model respectively. Figure 8 details how the figures shown in the graph
for the Maximal Model with one branch delay slot are made up from the results for

individual benchmarks.

Using the Maximal Model, Figure 7, as an example, it can be clearly seen that there is a
steady gain in performance as the cache size increases. The speedup obtained using zero
branch delay slots with data and instruction caches of 256 bytes is only 2.53 (equivalent to
a 60% decrease in cycle count), while using a cache size of 2K raises the average speedup
to 3.62 (A 72% decrease in cycle count). The average speedup obtained by using a perfect
cache is 3.76.

To examine how the average figures are made up, we must select one block of figures.
Figure 8 contains the individual benchmark breakdown of the average figures given for
the Maximal Model with one branch delay slot. This figure shows two distinct sets of
values. Bubble and Perm’s speedups are both very high. Bubble ranges from a speedup
of 4.8 for 256 byte caches to 5.2 for 2K caches, while Perm, although more affected by
cache size, ranges from 3.65 for 256 byte caches to 5.65 for 2K caches. In contrast, the
speedup for the remaining benchmarks is less spectacular. Finally, Queens displays some
interesting performance characteristics. With 256 and 512 byte caches the speedups are
1.34 and 1.36 respectively, while for 1K, 2K and perfect cachés the speedups jump to 2.7,
2.9 and 3.1 respectively.
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5. Discussion and Conclusions

When initial results were first obtained, two anomalies were uncovered. Firstly, zero

branch delay slot models should always run much faster than one branch delay slot

models, which should in turn always run faster than two branch delay slots models.
Secondly, it should not be possible for the Standard Model to run faster than the Maximal

Model. However, both of these perfectly logical premises were found to be incorrect.

On closer inspection, both of these problems have a common cause; the size of the code
directly effects the cache usage for smaller cache sizes. An example of this is Perm when
it is scheduled for zero branch delay slots and run with caches of 256 bytes. With the
Maximal Model Perm executes in 118,000 cycles, while on the Standard Model this figure
falls to 98,000 cycles. The cache utilisation statistics show that while the data cache usage
for the two runs is almost identical, the instruction cache usage is very different. With the
Maximal Model there are twice as many instruction cache misses (40,000 versus 20,000).
This increase is a direct result of the size of the scheduled code, which contains almost
40% more instructions for the Maximal Model. Confirmation that the extra code size is
the cause of the disparity between logical and actual run-times can be found by

interrogating the sets occupied by the extra instructions. On the Minimal Model, sets O

and 1 are updated 10,000 times, with sets 2 and 3 updated just 3 times. In contrast, the

Maximal Model has set 0 updated just 4 times, but the other three sets are updated over
10,000 times. This demonstrates the importance of instruction fetching to the
performance of a processor. It has been said that instruction delivery is the most
important problem [Patt97] when talking about high-performance superscalar processors,

and these figures support that hypothesis.

The overall results produced charts that looked much as expected. As the size of the cache
decreases, the performance also decreases. In Figure 2 to Figure 4, the performance of the
Maximal Model looks worse than the Standard Model. However, it must be remembered
that these figures are related to the performance with a perfect cache. The benchmarks
actually run faster using the Maximal Model, but the caches have more of an impact

because of the increased code size.
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When the individual benchmarks are examined, five of the seven perform as expected, but
Tree performs disproportionately badly; conversely, Bubble performs disproportionately
well. The reason for Tree’s inability to cope with a cache is not due to the static
instruction size of 338, which fits straight into a 2K cache with no contention. The
problem is the size of the data working set. The rest of the benchmarks use arrays to hold
their data, thus providing localised data. However, Tree uses nodes and pointers to sort its
data. This creates loosely coupled data, and proves impossible for even a 2K data cache to
cope with. Using the example given in Figure 5, zero branch delay slots on the Maximal
Model, Tree suffers from data cache miss rates of 40% for reads and 57% for writes when
using a cache size of 2K. No particular cache set is affected more than another; figures

range from 28 (set 25) to 2621 (set 8).

Bubble performs almost as well with a cache size of 1K as with a perfect cache (99.99%)
for the same reason that Tree performs so badly. Both the instruction and data working
sets are fully located in their respective caches. Only one block was even updated, data
cache set 16, and then only ten times. As the cache size reduces, the performance impact
increases, but due to Bubble’s small instruction and data sets, the impact is less than for

the rest of the benchmarks.

Introducing a cache into the Baseline Model and superscalar models (Figure 6 to Figure
8), produces the expected results. Implementing a superscalér processor with a realistic
cache will incur a significant penalty. A Baseline Model incorporating a 2K cache and
zero delay slots achieves 98% of the performance achieved with a perfect cache, a
Maximal Model using instruction scheduling and superscalar execution only achieves a
speedup of 3.62. This figure is significantly slower than the speedup of 3.76 achieved
with a perfect cache. On viewing Figure 6 and Figure 7 it is clear that scheduled code
suffers more from the introduction of a realistic cache than unscheduled code, and the

higher the performance of the processor, the greater the impact of the cache.

The speedups achieved by Queens using zero and one delay slots are very interesting
(Figure 9). It has been previously demonstrated that code expansion is a major

impediment when using a finite cache size. When Queens is scheduled using the Standard
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Model and zero delay slots code expansion is 26%. However, when scheduled for one
delay slot code expansion increases drastically to 139%. A lot of this code expansion can
be attributed to aggressive scheduling filling branch delay regions, of 16 instructions, with
speculative instructions. The effect of this is to put increased pressure on the instruction
cache especially when the current working set can not be fully held by the cache (see

Figure 8 with cache sizes of 256 and 512 bytes). However, when the cache is large

enough the performances of the two models converges; the performance gained by

speculative instruction execution outweighs the cache stalls caused by increased code size.

The increased importance of maintaining a flow of instructions for a high-performance
superscalar processor is highlighted by these results. Using more advanced caching
structures can reduce the impact of an instruction cache. Set associative caches are well
known, but may increase cache access times. Alternatively multi-level, trace and victim

caches are also likely to prove effective.

To conclude, it has been shown that when the current working set can not be held in either
the instruction or data cache, then a significant reduction in performance is encountered.
The challenge is to regain the speedup that has been lost to cache stalls as a result of the
increase in code size caused by instruction scheduling. Our objective is to develop the
HSA idiom to maximise the extraction of parallelism at compile time. We will also
determine whether any further speedup can be extracted from ‘scheduled code through the

introduction of out-of-order instruction issue.
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Abstract

Memory hierarchy has been accepted as the most limiting
factor in current MII processors [1]. For architectures
that employ static instruction scheduling, memory
performance is of increasing importance, since the
instruction scheduling process tends to increase code size.
This paper looks at the impact of a realistic memory
hierarchy on a minimal superscalar processor model
which uses aggressive static instruction scheduling
techniques. The divergent performance impact of a cache
on scheduled and unscheduled code is quantified, as well
as the resultant effect on overall scheduling speed-up.

1. Introduction

It is widely believed that the most limiting factor in
current architectures is the memory sub-system [2].
Despite this, much of the research into Multiple
Instruction Issue (MII) processor design assumes a perfect
cache and memory system. There are two diverse schools
of thought on MII research: dynamic instruction
scheduling relies on complex hardware to uncover
instruction parallelism at run-time; static instruction
scheduling relies on a specialised compiler to uncover the
instruction parallelism at compile-time. In this paper we
use the Hatfield Superscalar Architecture (HSA), a
statically-scheduled superscalar architecture developed at
the University of Hertfordshire to examine performance
gains of aggressive static scheduling [3]. It is well known
that the code expansion inherent in the scheduling process
[4] make statically-scheduled architectures more reliant on
cache performance. In this paper we wish to compare the
performance impact of a realistic cache structure on
scheduled and unscheduled code, and examine the impact
of code expansion. Also, we expected cache misses to
have a disproportionately high impact on scheduled code,
and we quantify the extent of the loss of speed-up.

To facilitate this and future studies, a highly
parameterised cache simulator [5] has been developed to
model a wide variety of cache structures. The cache
simulator is integrated into the Hatfield Superscalar
Architecture instruction level simulator [6].
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2. The Hatfield Superscalar Architecture

The HSA evolved as a progression from HARP [7], a
VLIW processor that was developed and fabricated at the
University of Hertfordshire. As with all VLIW
architectures, HARP suffered from a pre-determined
constant instruction issue rate, and from code expansion.
The HSA project attempts to combine the best features of
VLIW and superscalar architectures. The problems of
incompatibilities within a processor family and fixed
VLIW instruction widths are averted by dynamically
issuing variable sized instruction groups. The problems of
superscalar complexity and a fixed-sized instruction
window are avoided by using extensive instruction
scheduling at compile-time, combined with in-order
instruction issue at run-time. The HSA has therefore been
described as a minimal superscalar architecture [8].

The HSA uses a generalised branch delay mechanism
[9] to hide the latencies caused by fetching a new stream of
instructions after a taken branch. To avoid the
introduction of NOPs in empty branch-delay-slots, the
number of instructions 'in the branch delay region is
encoded directly- into each branch instruction. The
instruction scheduler is responsible for filling the branch
delay region with useful instructions. However, a recent
study [10] describes how a branch prediction mechanism
can be added to the HSA. Perfect branch prediction can be
simulated using a zero branch-delay-slot model. In this
paper we therefore simulate processor models with zero,
one and two branch-delay-slots.

3. The cache simulator

Like most high-end computer architecture research, the
HSA initially assumed a 100% cache hit rate for memory
references. This study removes the simplification, and
quantifies the effect of a realistic cache on the speed-ups
achieved by the HSA static instruction scheduler.

The non-blocking cache structure was developed to
support multiple cache accesses per cycle, see figure 1.
Although the primary intention was not to develop a new
cache structure, the design does include some novel ideas.
A Data Write Buffer is positioned before the cache at each
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Figure 1 - Basic cache structure

cache level and acts as a small associative store that
accepts all writes, and then passes them on to the cache
when write ports are free. The write latency of the buffer
can be varied, and it can optionally merge writes to the
same cache block. The Outstanding References Buffer
supports multiple outstanding memory references, while
preventing duplicate block requests.

The cache simulator was implemented as a highly
parameterised template that allows almost any basic cache
structure to be specified. The cache simulator has been
successfully designed and implemented as an extension to
the HSA processor simulator, and is used in this paper to
simulate the effects of a cache structure on a statically-
scheduled superscalar architecture.

4. Test parameters

For all tests, eight integer benchmarks were used. Run-
times on the baseline model with a perfect cache range
between 200 000 and 11 000 000 simulated clock cycles.
The successful examination of the impact of a cache relies
on the careful selection of the cache sizes. With too large
a cache, a benchmark’s working set will completely reside
in the cache; with too small a cache, the large number of
block replacements will completely dominate the results.
Four cache models between 512 bytes (128 words) and
4KB (1024 words) were chosen to reflect both the
instruction and data working sets of the benchmarks. The
tests consisted of all permutations from three branch-
delay-slot models, five cache models and three processor
models.

Two branch-delay-slot models simulate fast and slow
cache access times of one and two cycles. The zero
branch-delay-slot model simulates perfect branch
prediction. The cache read and write times are 1 cycle for
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the zero and one branch-delay-slot models, and 2 cycles
for the two branch-delay-slot model.

The cache models are all direct-mapped, with a block
size of 64 bytes (16 words). No use is made of sub-blocks.
The five sizes of instruction and data cache modelled are
512 bytes (8 sets), 1KB (16 sets), 2KB (32 sets), 4KB (64
sets), and a perfect cache.

All cache models have a single cache return (bypass)
line. Write policies are ‘write back’ and ‘allocate on write
miss’. The instruction cache has a fetch width of 16
instructions. In this study instruction fetches are allowed
to cross cache block boundaries. The main memory
contains one, non-pipelined, read/write port which can
satisty a single read or write in ten processor cycles.

The three proecessor models consist of a Baseline, a
Standard Superscalar and a Maximal Superscalar model.
The Baseline Model simulates a standard RISC processor
that fetches and issues one instruction per cycle and
contains one functional unit of each type. It executes code
generated by our gcc compiler. The Standard Model
simulates a high-performance superscalar architecture and
contains 16 functional units of each type. The cache
structure, however, only contains two data read and two
data write ports. The Maximal Model differs only by
having 16 data read and 16 data write ports. Both
superscalar models execute code that has also passed
through the HSA scheduler [3]. All instructions have unit
latencies, except for multiply (3) and divide (16).

5. Results
Figures 2 to 4 show the performance of each cache size

as a percentage of the perfect cache performance. The
figures are calculated with the cycles taken for a run, by:

100% * (perfect cache / cache of size x)
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Figures 2 and 3 show that with a 512 byte cache, the
performance of the superscalar models falls to 40%, while
on the Baseline Model, the performance only drops to
75%. Even with a 4KB cache the performance of the
superscalar models is only 88%, while the Baseline Model
achieves 95%.

Figure 4 examines the Maximal Model with zero
branch-delay-slots. It shows that six of the benchmarks
correlate to the average very well. The two exceptions are
Bubble, which maintains 99.9% performance with 1KB
caches, and Tree, which only manages 35.2% performance
with 4KB caches.

Figure 5 shows the speed-ups that the Maximal
superscalar model achieves over the Baseline Model. The
figures are calculated with the cycles taken for a run, by:

Baseline Model Cycles / Maximal Model Cycles

The range of figures is most significant on the Maximal
Model with zero branch-delay-slots. Using a 512 byte
cache on both the Baseline and Maximal Models results in
a speed-up of only 1.7. In contrast, using a perfect cache
on both the Baseline and Maximal Models results in a
speed-up of 3.8. Even with a 4KB cache on both models,
the speed-up falls 11% to 3.4.

Figure 6 shows the speed-ups for each individual
benchmark with the Maximal Model and one branch-
delay-slot. Perm shows great sensitivity to the cache size;
speed-ups range from 2.4 for a 512 byte cache to 8.0 for a
perfect cache.

Finally, figure 7 examines the behaviour of Perm in
more detail by comparing zero and two branch-delay-slots
on the Maximal Model.

6. Discussion and conclusions

Reducing the cache size affects the Baseline, Standard
and Maximal Models at a different rate. This is shown in
figures 2 and 3. The difference in performance
degradation between the Baseline Model and the two
superscalar models can be attributed to two main factors.

The first factor is that scheduled code places more
strain on the instruction cache due to code expansion.
Across the eight benchmarks, each scheduled for 6
models, the average code expansion is 80%. This ranges
from 9% for Tower on the Standard Model with one
branch-delay-slot, to 200% for Tree on the Maximal
Model with one branch-delay-slot.

The second factor is that the HSA scheduler assumes a
perfect cache. It therefore schedules memory loads to take
one or two cycles, depending on the branch-delay-slot
model. However, a cache miss will stall instruction issue
until the missing block can be fetched (for at least 10
cycles). This is more significant for an MII model.

Overall the Maximal Model has a slightly greater rate
of decline than the Standard Model. This is because the
scheduler aggressively fills the 16 load ports, provided by
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the Maximal Model, with speculative loads. With a 100%
cache hit rate these loads improve performance. However,
with a realistic cache structure they also significantly
increase the number of data cache misses.

Figure 4 examines the two atypical benchmarks
(Bubble and Tree) in more detail. Bubble is a linear sort
program with a small array as the data set. It therefore has
a small contiguous working set. In contrast, Tree is a tree
sort program with memory allocated to nodes dynamically.
1t therefore has a large fragmented data set.

With a perfect cache on the Maximal Model, speed-ups
of 3.7 (zero), 3.4 (one), 3.0 (two branch-delay-slot model)
are achieved through static instruction scheduling. In
figure 5, it can be seen that a 512 byte cache reduces the
speed-ups given to 1.7, 1.9 and 2.0 respectively.
However, with a 4KB cache the performance is only
reduced to 88%, the speed-ups recover to 3.5, 3.2 and 2.9
respectively.

We have therefore established that the scheduled
superscalar models suffer more from decreased cache size
than the Baseline Model. The result of that disparity can
be seen in figures 5 to 7.

It has been stated that instruction delivery is the most
important problem [2]; these results support this
hypothesis. Figure 7 shows a significant performance
increase for the zero delay slot model between 1KB and
2KB caches. This is because, with 1KB caches, the
instruction and data working sets are not fully located in
their respective caches. However, increasing the cache
sizes to 2KB cuts almost all block replacements to single
figures, indicating that the working sets now fit into the
caches.

To conclude, it has been shown that the impact of
varying cache sizes are much more severe on scheduled
code than unscheduled code, thus having a significant
effect on overall speed-up achieved. While increasing
cache size recovers most of the lost performance,
increasing cache size leads to longer read latencies, This
shows the increased need for high performance memory
[2] and branch prediction [11] systems, and also pre-
fetching techniques [12].
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